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A dilute gas of Bose-Einstein condensed atoms, in a non-rotating and axially symmetric harmonic
trap, can be modelled by the time dependent Gross-Pitaevskii equation. The minimum energy
solutions describe vortices that propagate around the trap center. The number of vortices increases
with increasing angular momentum, and the vortices repel each other to form Abrikosov lattices.
Besides vortices there are also saddle points, where the velocities of the superflow of distinct vortices
cancel each other. The Poincaré index formula states that the difference in the number vortices and
saddles points can never change. When the number of saddle points is small, they aggregate and form
degenerate propagating structures. However, when their number becomes sufficiently large there
is a transition and the saddle points start dispersing. They pair up with vortices and propagate
around the trap center in regular arrangements akin Abrikosov lattices.

I. INTRODUCTION

Topological invariants that characterize a physical sys-
tem are enticing, as they often describe properties of
the system that remain unchanged under its continu-
ous deformations. As a consequence, topology is widely
used to identify and portray robust physical phenomena;
topological techniques are now commonplace in numer-
ous applications from fundamental interactions to con-
densed matter, fluid dynamics and beyond [1]. Here we
extend the repertoire of topological techniques that can
be used to analyze the properties of vortices in a cold
atom Bose-Einstein condensate. This condensate is a co-
herent macroscopic quantum state, with unique features
that facilitate a high level of experimental control [2–4].

Bose-Einstein condensates that are formed in a
trapped gas of ultra-cold alkali atoms are studied exten-
sively, both in earth-bound and in earth-orbiting labora-
tory experiments [5]. Among the emerging applications
is the development of ultra-sensitive sensors and detec-
tors [6]. The properties of cold atom condensates are
also under active investigation, as a potential platform
for quantum computation and simulation [7].

In a theoretical approach, a Bose-Einstein conden-
sate of cold atoms is commonly modeled by a macro-
scopic, complex-valued wave function ψ(x, t). The mod-
ulus |ψ(x, t)| of the wave function describes the density
of the condensate and its phase determines the velocity
vector field of the superflow

v(x, t) = ∇ arg[ψ](x, t) . (1)

The principal topological excitations in these condensates
are vortices [8]. In a two dimensional model, the core
of a vortex is the point where the modulus of the wave
function vanishes, and is a also center of the superflow
velocity v(x, t). As a topological invariant, a vortex is
commonly characterized by an integer valued circulation

of the superflow velocity around its core.
In addition of vortex cores, there are also other fixed

points that can characterize the two dimensional vector
field v(x, t). In particular, there can be saddle points
where the velocity (1) of distinct vortices exactly cancel
each other, while the density of the condensate does not
vanish. The balance between the number of centers and
the number of saddle points is a topological invariant that
is governed by an index theorem.

From the knowledge of all its fixed points, a phase por-
trait of the vector field v(x, t) can be constructed. The
phase portrait characterizes the entire vector field v(x, t)
in a manner that is invariant under continuous local de-
formations. A phase portrait commonly describes ade-
quately the solutions of the underlying dynamical equa-
tion, often without any need to actually solve the equa-
tion.

We first introduce the Poincaré index theorem that
is relevant to describe the topological properties of the
velocity of superflow in two space dimensions. We then
apply the index theorem to characterize the solutions of
the Gross-Pitaevskii equation that models a dilute, non-
rotating condensate of cold atoms in an harmonic trap.

II. THEORETICAL FRAMEWORK

A. Poincaré index formula

As a two dimensional vector field, here the velocity of
the superflow (1), supports an integer valued index

iv(p; Γ) =
1

2π

∮
Γ

d`·v ≡ 1

2π

∮
Γ

vxdvy − vydvx
v2
x + v2

y

∈ Z . (2)

Here Γ is a closed curve on the (x, y)-plane that does
not pass through any fixed point of v(x). The index is a
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Figure 1. Phase portraits that are encountered in the present study of the superflow velocity vector v(x) in (1). The red arrows
show the vector field v(x), and the cyan lines represent its streamlines. The leftmost panel shows a center that corresponds
to a single vortex with iv = 1. The two panels in the middle display saddle points with iv = −1 and iv = −2, respectively.
The rightmost panel shows how a saddle point can appear in a phase portrait of two vortices (centers). It is a point where the
velocities of the superflows of the two distinct vortices cancel each other.

topological invariant, which computes the quantized cir-
culation of the vector field v(x). A single isolated vortex
core p is a fixed point, i.e. a center, of v(x). For a closed
curve that encircles once a single vortex core p in the
counterclockwise direction, the index is iv(p; Γ) = +1.

Centers are not the sole fixed points of the vector field
v(x). But all the fixed points can be detected by the
Poincaré index formula, and a phase portrait of the vec-
tor field v(x) can then be constructed: The Poincaré
index formula states that for any (sufficiently regular)
closed curve Γ that encloses finitely many fixed points
p1, p2, ...pk of v(x), the sum of their indexes (2) obeys
[9, 10]

Index =

k∑
j=1

iv(pj ; Γ) = XΓ +
1

2
(IΓ − EΓ) . (3)

Here XΓ is the Euler character of the area that is bounded
by the curve Γ, with IΓ the number of (concave) curve
segments with tangencies that are internal to the area
that is bounded by Γ, and EΓ the number of (convex)
curve segments where the tangencies are external to Γ.

We note that in the special case when the vector field
points either outward or inward at a boundary trajectory
of a region so that both IΓ and EΓ are absent, (3) reduces
to the Poincaré-Hopf index theorem [11].

Another vector field, that depends on the modulus of
the complex wave function ψ(x, t), can also be introduced
as

w(x, t) = ∇|ψ(x, t)| . (4)

Unlike the phase, the modulus of the wave function is a
smooth and single valued, strictly non-negative function
that vanishes at x → ∞ and at vortex cores. For any
circular trajectory around the origin, with a sufficiently
large radius so that it encircles all the vortex structures,
the vector field (4) always points towards the interior so
that the Poincaré-Hopf index formula applies; the index
(2) has value iw = +1 and the large scale structure of
the vector field (4) is that of a sink. A single vortex core

is an isolated minimum value critical point of |ψ(x, t)|,
thus it is a source of (4) with index iw = +1. As a con-
sequence the number of vortex cores is always balanced
by accompanying saddle points, but for certain vortex
configurations there are also degeneracies. This is the
case e.g. when a single vortex is located at the center
of the trap, the vortex core is encircled by a nodal line
where the modulus |ψ(x, t)| has its maximum value, and
the vector field (4) has a degeneracy circle. Instead of (2)
the appropriate index theoretic analysis is then based on
the degeneracy index introduced in [12].

B. Gross-Pitaevskii equation

We consider a two-dimensional Bose-Einstein conden-
sate of N alkali atoms in an axially symmetric, non-
rotating, harmonic trap V (x) = |x|2/2. This approx-
imates for example an anisotropic three dimensional
trap, resulting in an oblate, essentially two dimensional
spheroid condensate D. The atoms interact with each
other via a repulsive short range pair potential, so that
in the limit where the number of atoms N becomes large,
the condensate can be modeled by a solution of the
time-dependent two dimensional Gross-Pitaevskii equa-
tion. This is a nonlinear Schrödinger equation for the
complex valued wave function ψ(x, t) that describes the
condensate as a coherent macroscopic quantum state.

With an appropriate choice of various scales and pa-
rameters, the relevant two dimensional time dependent
Gross-Pitaevskii equation reads as follows [13]:

i∂tψ = −1

2
∇2ψ +

|x|2

2
ψ + g|ψ|2ψ ≡ δF

δψ?
. (5)

The dimensionless coupling g specifies the strength of
the pairwise interatomic interactions. In a typical ex-
periment with 104–106 atoms its numerical values are
g ∼ 101–103. For a detailed discussion of the conven-
tions used here, see [14].

We are interested in the ground state solution of (5)
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that minimizes the Gross-Pitaveskii free energy

F =

∫
d2x

{
1

2
|∇ψ|2 +

|x|2

2
|ψ|2 +

g

2
|ψ|4

}
. (6)

Since F is a strictly convex functional, its only critical
point is the absolute minimum ψ(x) ≡ 0. It follows
that the ground state solution of the Gross-Pitaevskii
equation can be timecrystalline [15] provided there are
conserved quantities [16]: Besides the free energy F the
time evolution (5) conserves two additional quantities, as
Noether charges. One of these is

< N̂ > ≡
∫
d2xψ?ψ ≡ N = 1 , (7)

that counts the number of atoms. For clarity we have
chosen the parameter values in (5), (6) so that the nu-
merical value (7) is normalized to N = 1. For an axi-
ally symmetric trap, the macroscopic angular momentum
along the z-axis

< L̂z > ≡
∫
d2xψ?(−iez · x ∧∇)ψ ≡ Lz = lz , (8)

is also conserved. The numerical value lz of the canonical
angular momentum of the condensate

L̂z = −iez · x ∧∇ ≡ −i∂θ , (9)

with θ the polar angle around the z-axis, is a free param-
eter that can take an arbitrary value; see [14].

The r.h.s. of (5) can not vanish unless ψ ≡ 0, so
that for non-vanishing values of the Noether charges, the
minimum of F can not be a critical point of F . Thus, to
construct the ground state wave function of (5), we use
methods of constrained optimization and minimize the
free energy (6) at the fixed values of the Noether charges
(7) and (8). The Lagrange multiplier theorem [17] states
that the minimum of (6) can be found as a critical point
of

Fλ = F + λN (N − 1) + λz(Lz − lz) , (10)

where the Lagrange multipliers λN , λz respectively en-
force the values N = 1 and Lz = lz of the Noether
charges. The critical points of Fλ obey

− 1

2
∇2ψ +

|x|2

2
ψ + g|ψ|2ψ = −λNψ + λz(iez · x ∧∇)ψ,

(11)
together with the two conditions (7) and (8). From these
three equations we solve for the critical point wave func-
tion ψcr(x) and for the ensuing Lagrange multiplier val-
ues λcrN , λ

cr
z . Note that both Lagrange multipliers are

time independent [16], and that they cannot vanish si-
multaneously.

We focus on the critical points of (10) that are also
minima of the free energy (6). Let {ψmin(x), λminN , λminz }
denote such a configuration. If ψmin(x) is an initial value

of the Gross-Pitaevskii equation (5), then it obeys the
linear time evolution

i∂tψ = −λminN ψ + iλminz ez · x ∧∇ψ . (12)

We recall (9), denote σ = λminN /λminz , and define

Aθ = ez · x ∧∇ tan−1(x/y)

This is a vector field on the plane with a center at the ori-
gin (x, y)=(0,0). The Poincaré index (2) is iA = +1 for
any trajectory that encircles the origin once in counter-
clockwise direction; we note that Aθ is akin the azimuthal
component of the vector potential of a line vortex along
the z-axis. The time evolution (12) can further be writ-
ten as

i∂tψ = −λminz ( L̂z + σ Aθ)ψ ≡ −λminz L̂
cov

z ψ . (13)

In the presence of Aθ the rotations around the z-axis
i.e. changes in the polar angle θ are generated by the

covariant angular momentum operator L̂
cov

z instead of
the canonical (9). Thus the equation (12) describes the
rotation of the initial wave function ψmin(x) around the
center of the trap, with angular velocity λminz .

In the following we are interested in the consequences
of the Poincaré index formula (2), in the case of a vec-
tor field v(x, t) that describes the velocity of the super-
flow (1) of the minimal energy solution of the Gross-
Pitaevskii equation (5)) with initial condition ψ(x, t =
0) = ψmin(x). We focus on the topological and geomet-
rical properties of its fixed point structure, as the value
of the angular momentum lz is changed. For this we ana-
lyze the profile of the superflow vector field, by employing
the index formula in combination with various different
trajectories Γ.

III. NUMERICAL RESULTS

We have numerically constructed the critical points of
(10) that minimize the Gross-Pitaevskii free energy (6),
for lz > 0 and with g = 5, 100 and 400. The problem
is discretized within a finite-element framework [18], and
the constrained optimization problem is solved using the
Augmented Lagrangian Method (numerical methods are
discussed in details in [14]). Whenever lz 6= 0 the mini-
mum free energy solution is a configuration with vortices
and saddle points. Its time-evolution (5), (12) is also
timecrystalline, as it always depends on the time vari-
able t in a nontrivial fashion [14].

The number of vortices increases with lz. Each new
vortex enters the condensate at the boundary of the disk
D, and moves towards the trap center as lz increases.
Since the Euler character of a disk is XΓ = 1, the Poincaré
index theorem ensures that, on the entire trapping disk
D, there is always one more vortex (center) than there are
saddle points. That is, when the closed curve Γ coincides
with the perimeter of the entire disk D in counterclock-
wise direction, the index (3) always has the value iv = 1.
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Figure 2. The panels on the different columns show examples of the minimal energy configurations of (6), that satisfy Lz = lz
and N = 1 for the dimensionless coupling g = 400. The panels on the top row show the density |ψ|2 which vanishes at the vortex
core; the squares denote the regions that are zoomed-in, on the bottom panels. The middle panels show the corresponding
vector field v(x). The color map shows the amplitude of the current j = |ψ|v, while the arrows show the superflow vector field
v(x). The bottom row shows the corresponding data zoomed closer to the various fixed points of v(x). The green and magenta
circles highlight the vortices and saddle points of v(x) respectively, corresponding to different trajectories Γ in (3). The regime
lz = 0.8 features a single eccentric vortex as the unique fixed point of v(x). When lz = 1.4, a second vortex together with a
saddle point enters the condensate. Next, when lz = 2, a third vortex enters the condensate, and it is accompanied with an
additional saddle point of v(x). Finally, for lz = 2.5 the third vortex has entered closer to the center of the condensate, to
form a symmetric triangle. This is accompanied by a merging of the two saddle points into a saddle point with index iv = −2.
Both the vortices and the saddle points are characterized by a vanishing superflow |j(x)| = 0. Unlike the vortex cores, where
the density |ψ| vanishes, at the saddle points |ψ| 6= 0. This can be seen by comparing the data for the current j := |ψ|v, with
the density |ψ|2 data. Note that the saddle points can be interpreted as points where the superflows of different vortices cancel
each other.

The Figure 2 shows examples of vortices and saddle
points for different values of the macroscopic angular mo-
mentum lz. The corresponding solutions of Eq. (5), de-
scribe how these structures rotate uniformly around the
symmetry axis, with constant angular velocity −λminz ;
see Eq. (13).

For 0 < lz < 1 the condensate features a unique vortex
that is located off the trap center. Next, when lz = 1.4,
the minimal energy wave function features two additional
fixed points of v(x), a vortex and a saddle point. Upon
increasing lz, the second vortex together with the saddle
point move toward the trap center, until they form a
symmetric pair of vortices with a saddle point in between
(not shown). With a further increase of lz, a third vortex
and a second saddle point of v now appear, as can be
seen when lz = 2.0. Finally, for lz = 2.5 the third vortex
enters closer to the center of the condensate, to form a

symmetric triangle. This is accompanied by a merging
of the two saddle points into a higher degree fixed point;
there is a degenerate saddle point with index iv = −2 at
the center of the disk and it is surrounded by the three
vortices.

The Figure 3 shows the evolution of the minimum en-
ergy state, when lz is further increased. When lz = 3.8,
there are five single vortices, and a single saddle point
with an index iv = −4. Next, when lz = 4.1, the to-
tal number of vortices is now six. Three of the vortices
are paired with a saddle point and the other three are
individual. This implies according to the Poincaré index
formula that the saddle point of the vector field v(x) at
the center has index iv = −4.

The configuration for lz = 4.7 in Fig. 3 consists of seven
vortices, arranged in an almost triangular lattice. The
central vortex here is isolated, while the six outer vortices



5

Figure 3. The panels show the minimal energy configurations for larger values of the angular momentum Lz = lz and N = 1
for the dimensionless coupling g = 400. The displayed quantities are the same as in Fig. 2. The regime lz = 3.8 features five
vortices accompanied by a unique saddle point of v(x) with Poincaré index iv = −4. When lz = 4.1, a sixth vortex enters, and
there three satellite saddle points with index iv = −1, and a single one with index iv = −2. Next, when lz = 4.7, there are
seven vortices with almost triangular lattice. Each of the six outer vortices here is paired with an simple saddle point. Finally,
for lz = 6.4 there are ten vortices and nine saddle points with index iv = −1.

with iv = 1 are tightly bound to six saddle-points with
iv = −1. Finally the configuration with lz = 6.4 consists
in a pair of vortices bound to a central saddle-point, the
whole being surrounded by eight bound pairs of vortex
and saddle-points. This again satisfies the Poincaré index
formula.

When the value of lz is further increased, we observe
that the patterns identified in Figures 2 and 3 are re-
peated: The difference between the vortices and sad-
dle points is always one; when lz increases the new vor-
tices and saddle-points enter the disk together, as tightly
bound pairs. The saddle points can either remain bound
to the vicinity of the vortices. Alternatively, they can
also proceed all the way to the disk center where they
can either form condensed higher degree saddle points,
or structures that are akin Abrikosov lattices. But the
vortices always remain isolated and arrange themselves
into co-centric Abrikosov lattices.

Finally, the figure 4 summarizes the main features that
can be observed for the vector field w(x) (4), that is
associated with density gradients.

SUMMARY

We have used the Poincaré index formula, in com-
bination with numerical simulations to study the local
topology and geometry of the two dimensional Gross-
Pitaevskii equation, that models the ground state of a
cold atom Bose-Einstein condensate in an axially sym-
metric disk-like, non-rotating harmonic trap. We have
varied the angular momentum that is supported by the
ground state wave function, and we have confirmed that
the difference in the number of vortices and in the number
of saddle points is always equal to one. In particular we
have observed how the vortices and saddle points enter
the condensate, always in pairs, when the angular mo-
mentum increases. We have observed how the vortices
repel each other to form co-centric Abrikosov lattices,
while the saddle points can either aggregate into higher
degree fixed points or pair up with vortex cores as the an-
gular momentum increases; the ensuing structures rotate
around the trap center at constant angular velocity.
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Figure 4. The panels show the minimal energy configurations
for values of the angular momentum lz = 0.6 and 1 and N = 1
for the dimensionless coupling g = 400. The panels on the top
row display the density |ψ|2. The middle panels display the
corresponding vector field w(x), and the bottom line shows
the corresponding data zoomed closer to the fixed points of
w(x). The green and yellow circles respectively highlight the
source (the vortex) and sink of w(x). The saddle point of
w(x) is represented by magenta circle. All these circles cor-
respond to different trajectories Γ in (3), for the vector field
w(x). The configuration lz = 0.6, features a single eccentric
vortex (the source), and a sink of w(x). The index theorem
dictates that there is also a saddle point. In the case where
lz = 1, there is a nodal line encircling the source. This is a
degeneracy circle with index iw = −1 [12].
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