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ABSTRACT
The computer-aided investigation of protein folding has greatly benefited from coarse-grained models, that is, simplified representations at
a resolution level lower than atomistic, providing access to qualitative and quantitative details of the folding process that would be hardly
attainable, via all-atom descriptions, for medium to long molecules. Nonetheless, the effectiveness of low-resolution models is itself ham-
pered by the presence, in a small but significant number of proteins, of nontrivial topological self-entanglements. Features such as native
state knots or slipknots introduce conformational bottlenecks, affecting the probability to fold into the correct conformation; this limita-
tion is particularly severe in the context of coarse-grained models. In this work, we tackle the relationship between folding probability,
protein folding pathway, and protein topology in a set of proteins with a nontrivial degree of topological complexity. To avoid or miti-
gate the risk of incurring in kinetic traps, we make use of the elastic folder model, a coarse-grained model based on angular potentials
optimized toward successful folding via a genetic procedure. This light-weight representation allows us to estimate in silico folding proba-
bilities, which we find to anti-correlate with a measure of topological complexity as well as to correlate remarkably well with experimental
measurements of the folding rate. These results strengthen the hypothesis that the topological complexity of the native state decreases the
folding probability and that the force-field optimization mimics the evolutionary process these proteins have undergone to avoid kinetic
traps.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0063254

I. INTRODUCTION

Since the discovery of the first knotted native structure in 1994,1
a large number of proteins has been found to entail some degree of
topological complexity.2–5 According to KnotProt,6 at present over
1600 proteins are known that feature one of the various kinds of pos-
sible topological motifs:2,6,7 these can be knots,1,3,4,8,9 slipknots,4,10

complex lassos,11,12 or links.2 These proteins need to follow a very
specific sequence of steps to achieve the knotted native confor-
mation; otherwise, they risk falling into a misfolded state.5 It has,

however, been noted that even the simplest proteins, usually two-
state folders, can present more subtle topological features that play a
role in the folding event and affect folding efficiency. Several descrip-
tors of the native conformation of known proteins were found to be
correlated with their folding rate and efficiency.13 Examples of these
are the contact order,14,15 relative effective contact order,16 native
contact number,17,18 the cliquishness (or clustering coefficient),19

the long range order,20 the content of local secondary structures,21

or the native interaction between the polypeptide termini.22 These
descriptors build on the network of residues that are in contact and
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interact in the native conformation. However, given the relevance
of self-entanglement in the folding of a growing number of struc-
tures, we here focus on the backbone topology of the polypeptide
chain, considering it as a more or less self-entangled curve in three-
dimensional space, regardless of the contact network among non-
consecutive residues. We are thus interested in non-local descrip-
tors that can quantify the degree of self-entanglement of the protein
backbone. To this purpose, several descriptors based on topologi-
cal invariants have been proposed;7 we here focus on the work of
2017 by Baiesi et al., which introduced the concept of “maximum
intrachain contact entanglement” ∣G′∣c,23 a proxy for the topological
complexity of the native state of any given protein. ∣G′∣c measures
the Gaussian entanglement between any looped portion of a protein
with any other non-overlapping subchain. Testing on a set of pro-
teins, they observed that their degree of backbone self-entanglement
anticorrelates with experimental folding rates.23

This seminal work motivated us to analyze the folding path
of those proteins from the perspective of topological complexity
by means of molecular dynamics (MD) simulations. The charac-
terization of a protein’s free energy landscape and the search for
its global minimum are central topics in computational biophysics
research24,25 and are often carried out using coarse-grained (CG)
models, which project higher-dimensional, fine-grained degrees of
freedom onto lower-dimensional descriptions, thus reducing the
computational overhead and increasing efficiency.26–28 One popu-
lar set of CG models are native structure-based CG models, also
called Gō models, the simplest implementation of which represents
each amino acid (AA) by a single site centered on the Cα. These
systems are minimally frustrated on the native contacts, meaning
that the attractive interactions between residues that are in contact
in the native state are explicitly enforced so that the known refer-
ence conformation minimizes the potential.29–31 These models have
remarkable computational efficiency while retaining the ability to
drive a molecule to its folded conformation, thus widely employed
for studying folding, fluctuations, and interactions of proteins with
known native structures;26,32–34 however, they do not perform as well
with models of high topological complexity7,35–37 because the pre-
mature formation of native contacts can push those molecules into
kinetic traps, preventing them from folding properly. This is in con-
flict with the fact that the folding pathway for such systems must be
polarized toward the correct native state, as a result of natural selec-
tion for optimal folding efficiency. To avoid these kinetic traps and
form the correct topology, non-native interactions must play a key
role,38 which is neglected by Gō models.

Building on the latter observations, some of us38 developed the
elastic folder model (EFM), a CG model where each AA is repre-
sented by the position of its Cα, the only non-bonded interaction
is excluded volume, and the whole complexity of the real system’s
intra-molecular interactions is projected onto angular potentials
between neighbors in sequence, built to have a minimum in the tar-
get conformation. In this way, the model has no bias toward native
contacts in the potential function, and local rearrangements of the
chain are the only drivers of collapse to the target state.

Moreover, based on the assumption that topologically com-
plex proteins have evolved an optimized folding pathway, the EFM
undergoes an optimization procedure aimed at maximizing fold-
ing success by tuning the force-field parameters to efficiently over-
come topological bottlenecks. The heterogeneous force-field thus

obtained represents a sort of mean-field approximation of the inter-
play between native and non-native interactions and can give impor-
tant insights into the underlying mechanisms of a particular folding
event.39,40

In this work, we aim at answering the following question: given
the observed anticorrelation between experimental folding rates and
topological complexity, to what extent is the decrease in folding
rate ascribable to native structure and topology? In other words,
is the native structure’s topology alone enough to justify a lower
folding rate or are there other elements? Since the EFM conju-
gates the conceptual simplicity of a native-centric Gō model (its
sole initial information is the native structure) with having features
tailored to the task at hand (local structural potentials driving the
global folding, with parameters evolving through optimization), this
model is ideal to answer such questions. We have thus employed
the EFM to correctly fold 12 two-state folder proteins with a com-
plex self-entangled topology,23 and we have investigated the rela-
tionship between topology and folding rates. These proteins are a
subset of the two-state folders studied in Ref. 23, covering the whole
range of ∣G′∣c values. The little computational overhead of the EFM
allowed us to run a large amount of simulations for each protein
and thoroughly explore the conformational space to gather data in
order to statistically estimate an in silico proxy for the folding rate
and test its reliability against the experimental folding rates and its
correlation with the topological complexity of the proteins, repre-
sented by ∣G′∣c. We observe a non-trivial correlation between topol-
ogy and folding rates obtained by the model, and we also demon-
strate that the measures obtained in silico correlate with experimen-
tal data. For each protein model, the force-field parameters were
tuned following a genetic optimization strategy.40 To showcase to
what extent the optimization step, with the correct strategy, affects
the overall process, we run simulations using both optimized and
unoptimized force-fields and observe that the simulation success
rate increases and, more importantly, correlations improve after
optimization.

This paper is organized as follows: in the Sec. II, we describe the
EFM, the genetic optimization algorithm, the topological descrip-
tor, and the simulations strategy. In Sec. III, we compare simula-
tion outcomes for all proteins and show correlations of predicted
folding rates with topology and experimental folding rates for both
optimized and unoptimized force-fields; we observe non-trivial cor-
relations with the optimized force-fields. We then review in detail
two case studies, with varying degree of topological complexity
(∣G′∣c): sperm whale myoglobin (PDB code: 1BZP) and the RNA-
binding domain of U1A spliceosomal protein (PDB code: 1URN)
to gain insights from single systems and subsequently discuss their
folding processes and optimization strategies. We conclude by dis-
cussing how ∣G′∣c affects the free energy landscape and the fold-
ing process and how a model of minimal complexity, such as the
EFM, is able to not only give valuable kinetics insight into folding
paths but also preserve the trends of folding rates of experimental
data.

II. MATERIALS AND METHODS
A. Protein dataset

We analyzed 12 proteins with a two-state folding transition.
This dataset of molecules, listed in Table I, was derived from the
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TABLE I. Results of folding simulations for each protein in the dataset. N is the number of beads, S is the total number of
folding simulations, F is the folding success rate (number of folded simulations/total), NC is the total number of native contacts,
and RMSD′ (in units of σ) is the threshold value at which the protein is considered to be folded. 1URN was optimized via
NC-based optimization, while the rest was optimized with an MSD-based optimization.

Unoptimized force-fields Optimized force-fields

PDB RMSD′ NC N S F S F

1APS 0.359 178 98 1 127 0.028 1 059 0.147
1BNZ_a 0.443 61 64 1 037 0.362 1 013 0.584
1BZP 0.779 66 153 1 135 0.085 1 025 0.926
1FKB 0.571 198 107 1 235 0.145 1 052 0.287
1HRC 0.426 113 104 933 0.549 1 175 0.826
1PSF 0.519 96 69 946 0.172 1 019 0.622
1TEN 0.377 168 89 942 0.115 1 068 0.507
1UBQ 0.224 85 76 1 042 0.186 1 017 0.802
1URN 0.310 121 96 1 319 0.006 1 009 0.459
2ABD 0.308 81 86 936 0.949 1 079 0.948
2CI2 0.201 16 64 947 0.486 1 270 0.943
2VIK 0.776 63 126 1 133 0.417 1 028 0.742

Total 27 094 12 814

work of Baiesi and co-workers.23 From this work, we also took the
reported values of the logarithm of the experimental folding rate Fexp
(see, e.g., Ref. 41). These values were, in turn, obtained from previous
literature, in particular, Refs. 15, 16, and 42 and references therein;
these rates will be employed as the benchmark against which we will
compare the performance of our model. The notion of nontrivial
topology employed throughout this work, as well as the observable
employed to quantify the topological entanglement, follows Ref. 23.
For simplicity, herein we refer to each protein using their PDB codes.

B. Elastic folder model
The elastic folder model (EFM)38 is a native-structure-based

CG representation. In the EFM, the protein is modeled as a chain of
beads, each representative of an AA and centered on the Cα atom.
The potential energy function associated with the model has the
following general form:

V = UWCA +UFENE +Ubending +Utorsion. (1)

UWCA is the Weeks–Chandler–Andersen (WCA) repulsive
potential, the only non-bonded interaction of the model,

UWCA =
1
2

N

∑
(i,j),j≠i

V(di,j),

V(r) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

4ϵ[(σ
r
)

12
− (σ

r
)

6
+ 1

4
] for r ≤ 2

1
6 σ,

0 otherwise,

(2)

where σ is the diameter of the beads, taken as length unit, and equal
to 3.8 Å and di,j = ∣ri − rj∣ is the distance between the centers of the i
and j beads. ϵ is the energy scale parameter set as the energy unit for

the rest of the present work; assuming a temperature of ∼ 300 K, the
numerical value of this energy scale is ϵ ∼ 25 kJ/mol. r = 2

1
6 σ is the

distance at which UWCA = 0.
The remaining components account for bonded interactions.

Peptide bonds are modeled via the finite extensible nonlinear elastic
(FENE) potential,43 UFENE, given by

UFENE =
N−2

∑
i=0

kFENE

2
(R0

σ
)

2
ln[1 − (di,i+1

R0
)

2

], (3)

where R0 is the maximum bond length and kFENE is the FENE inter-
action strength. Ubending and U torsion are employed as a basis set of
functions on which the whole complexity of the intra-molecular
interactions of the chain is projected. Ubending is given by

Ubending =
N−2

∑
i=1

kbend
i (θi − θ0

i )2, (4)

where θ0
i is the bending angle centered on the ith bead in the

reference state and kbend
i is the bending stiffness. U torsion is

Utorsion =
N−3

∑
i=1

U tor
i ,

U tor
i = ktor

i [cos(ϕi − ϕ0
i ) +

1
3

cos(3(ϕi − ϕ0
i ))],

(5)

where ϕ0
i is the torsion angle of the ith bead in the reference state and

ktor
i is the torsion stiffness. The reference angles in Eqs. (4) and (5),

setting the minimum of the potential, are chosen from a target con-
formation, i.e., the PDB crystal structure. We note that this model
has no bias toward the formation of native contacts, and the collapse
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toward the target conformation is driven by the angular potentials
only.

The dynamics of the beads is governed by the overdamped
Langevin equations of motion,

∂V(t)
∂ri

+mγvi(t) + Ri(t) = 0, (6)

where V is the potential energy function of Eq. (1); m, vi, and ri are
the mass, velocity, and coordinate of the ith bead; γ is the friction
coefficient; and Ri is a random force acting on i. Equation (6) is
integrated with a symplectic, first order algorithm.38

The EFM is based on a criterion of optimality: we assume that
topologically complex proteins have evolved to fold along an effi-
cient and reproducible pathway in the free energy landscape. To
implement this optimality, the stiffnesses of the angular potentials
are tuned by means of an optimization process aimed at maximizing
the successful folding rate. In this work, optimization was performed
via a genetic algorithm (see Sec. II C). These guidelines yield a model
of minimal complexity that can provide useful information about the
most efficient folding pathways followed by the protein.

Parameter values for the model employed are reported in
Table II, where we report the bending and torsion coefficients
chosen for the unoptimized, uniform models, i.e., kbend

i = ktor
i = 50.

Because of the CG representation, the EFM protein models can-
not be quantitatively compared to the physical features of realistic
proteins; thus, the predictivity of the model is limited only to the
qualitative aspect of topology formation and to compare the scaling
of characteristic times.

C. Genetic optimization of force-fields
To satisfy the principle of optimality of the folding pathway,

the EFM angular force parameters kbend
i and ktor

i are tuned to maxi-
mize the success rate of folding. In this work, the strategy of Ref. 40
was followed for the optimization, and a similar approach was also
recently employed in Ref. 44. A set of parallel stochastic searches
for mutated force-fields [single force-field optimization (SFFO)] is
performed. The resulting improved force-fields are then ranked

TABLE II. System parameters for the uniform (unoptimized) model: m is the mass of
the beads, ϵ is the energy unit, τmd is the time unit, Δt is the time step, R0 is the
FENE bond maximum length, τ frict is the friction coefficient, and T is the temperature
(kB = 1).

Parameter Value

m 1
σ 1
ϵ 1
τmd σ

√
m/ϵ = 1

Δt 5 ⋅ 10−4τMD
R0 1.5σ
kFENE 30ϵ
τ frict 1τMD

kbend
i 50ϵ

ktor
i 50ϵ

T 0.1ϵ

according to a selected criterion and “crossed over” in a genetic step
[multiple force-field optimization (MFFO)].

A single force-field K is defined as

K = {kbend
1 , . . . , kbend

N−2 , ktor
1 , . . . , ktor

n−3}
= {kang

1 , . . . , kang
2N−5}, (7)

where kang
i is any angular coefficient. To reduce the number of

parameters, instead of assigning to each residue independent bend-
ing and torsion coefficients, pairs of neighboring residues were
enforced to have identical values for torsion and bending parame-
ters, respectively, where possible.

1. Single force-field optimization (SFFO)
In this work, initial values for each pair of coefficients were

sampled from a uniform distribution between 15ϵ and 85ϵ so that
the mean value is 50ϵ, i.e., the coefficients in the uniform force-field.
SFFO starts from the initial force-field K and generates a mutated
K′,

K′ = {kang
1 , . . . , kang

j + δk, . . . , kang
2N−5}, (8)

in which the jth coefficient is modified by adding δk. j is ran-
domly chosen among the 2N − 5 coefficients, while δk is generated
from a normal distribution with the standard deviation equal to 2.5.
Subsequently, the mutation is accepted or rejected according to a
Metropolis-like criterion: K′ is tested by performing a set of n = 16
parallel folding simulations (the test runs), starting from a randomly
generated stretched configuration. After 4 ⋅ 106 steps, the average
Mean Square Displacement (MSD) from the target configuration R0

is measured. The MSD F is defined as

F(t; K′) = 1
Nσ2 ∣R(t) − R0∣2, (9)

where R(t) is the coordinates vector of the chain at time t. Then, the
average over n test runs is

⟨F(tmin; K′)⟩ = 1
n

n

∑
i=1

F
i(tmin; K′), (10)

where t = tmin is the time step at which F is minimum during the ith
test run. The probability of accepting the mutation K′ is then

P(K′∣K) = min{1, exp[⟨F(tmin; K)⟩ − ⟨F(tmin; K′)⟩]}. (11)

The two steps of Eqs. (8)–(11) were repeated for 25 iterations
to minimize ⟨F⟩, enhancing the average folding success rate of the
trajectories.

2. Multiple force-field optimization (MFFO)
Several SFFOs are run in parallel in the Multiple Force-Field

optimization (MFFO). The MFFO is organized in cycles. In every
cycle, an initial population of NK = 16 force-fields {Kj}NK=16

j=1 is gen-
erated; each force-field undergoes m = 25 SFFO iterations indepen-
dently from each other. After these iterations, the resulting NK force-
fields are ranked, and a crossover step is performed to generate new
force-fields, which will be submitted to the next cycle.
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In the ranking step, the NK mutated force-fields are ranked
according to their folding probability. Since this probability is
unknown a priori we estimate it based on the results of the test runs
performed along the optimization. To this end, we compute Π f , i.e.,
the exponential moving average of πi

f , namely, the estimator of the
folding probability at the ith iteration step of the SFFO. Π f can be
written as

Π f ≡ Πm=25
f = απm

f + (1 − α)Π(m−1)
f . (12)

0 < α < 1 is a smoothing factor, and π f is defined as

π f (ξ0, tmin) =
1
n

n=16

∑
i=1

L [ξ0 − ξ(tmin, K)]. (13)

L is a Fermi function that switches from 0 to 1 when its
argument becomes positive,

L (z) = [1 + exp(− z
w
)]
−1

, (14)

where w is a parameter controlling the scale of the switching; ξ is any
set of reaction coordinates that can resolve the folding events, and ξ0
is the vector of threshold values at which the protein is considered
to be folded. In this work, either the MSD or the fraction of native
contacts, NC, were used as reaction coordinates (see below).

In the crossover step, the Nwin = 6 top-ranked force-fields (win-
ners) are kept for the next cycle and are used in combination with
new randomly generated force-fields to build a new population
{K′j }NK=16

j=1 as follows:

{K′j }NK
j=1 = ({Wi}Nwin

i=1 ,{Hk}NK−Nwin
k=1 ), (15)

where W indicates the winners and H indicates a set of NK −Nwin
newly generated hybrid force-fields. The latter ones are obtained by
(i) generating six new random force-fields (called “low-fit”) with the
same uniform distribution of the initial ones, then (ii) splitting both
the six newly generated random force-fields and the winner force-
fields into six segments each, and finally (iii) randomly selecting
among all the force-fields generated by combination of the subsets
of winner and low-fit force-fields. This “crossover” operation, typi-
cal of genetic algorithms,45 yields the new set of force-fields {K′j }NK

j=1,
which will be the initial conditions for the next MFFO cycle.

For each of the proteins, the following optimization procedure
was employed: 20 MFFO cycles of 16 parallel SFFOs. Each SFFO
was run for m = 25 iterations, and each iteration had 16 test runs.
All proteins were first optimized with an MSD-based MFFO rank-
ing [ξ =MSD in Eq. (13)]. Subsequently, proteins 1APS, 1URN, and
1FKB were also optimized with a NC-based MFFO ranking [ξ = NC
in Eq. (13)]. In total, 1 920 000 simulations of 4 ⋅ 106 time steps each
were run for optimizing all proteins.

D. Simulations scheme
Two kinds of simulations were carried out: (i) equilibration

simulations, initializing the model from the native conformation
(the PDB structure), and (ii) folding simulations, starting from a
completely unfolded conformation. All simulations lasted 7 ⋅ 106

steps.

One equilibration per protein was first performed with the
unoptimized force-field to monitor the RMSD from the initial PDB
structure under equilibrium conditions. The highest RMSD in this
equilibration trajectory (RMSD′p, where the subscript p indicates dif-
ferent proteins) was used as the threshold value below which the
protein was considered to be folded (Table I). Subsequently, about
1000 folding simulations per protein (ranging from 933 simulations
for 1HRC, to 1319 for 1URN) were carried out.

The force-fields were optimized with the MFFO algorithm, and
new simulations were performed using the resulting force-fields.
With these optimized force-fields, for each of the 12 proteins, about
1000 folding simulations per protein (ranging from 1009 for 1URN
to 1270 for 2CI2) were carried out. For 1URN, 1FKB, and 1APS,
we tested both the MSD-based and NC-based ranking criteria in
MFFO optimization. RMSD′p values and total number of simula-
tions are shown in Table I. The conformations sampled by all the
equilibration or folding trajectories are then gathered in ensem-
bles that are employed for the calculations of the properties of
each protein model, such as folding rates (see Sec. II F) and free
energy surfaces (see. Sec. II of the supplementary material for further
details).

E. Topological descriptor for self-linked proteins
In order to describe the topology of a protein, one can look

at the Cα backbone and think of it as a single piece of string that
folds itself in the three-dimensional space.8 Herein, we consider pro-
teins with a self-entangled topology, i.e., where a part of the chain
forms a topological link with another part of the chain. The topolog-
ical complexity of these intrachain links is measured via maximum
intrachain contact entanglement ∣G′∣c (defined below), a descriptor
based on Gauss’s linking number,23,46,47 namely, a double integral
computed on two closed curves γ1 and γ2,

G = 1
4π∮γ1

∮
γ2

r1 − r2

∣r1 − r2∣3
(dr1 × dr2), (16)

where r1 ∈ γ1 and r2 ∈ γ2. G = l, where l is the number of times the
loop γ1 threads through γ2.46,47 This value is reciprocal (it remains
the same if the curves are interchanged) and is a topological invari-
ant, meaning that it does not depend on the shape of the two
curves.46–48 If one or both the curves γ1 and γ2 are open, then G
is no longer an integer but remains a proxy for their level of entan-
glement.48 G can be thus computed along the backbone of one or
more proteins, integrating over the curves traced in the space by its
subchains, obtaining a measure of the topological complexity of the
polypeptide conformation. Knowing this, ∣G′∣c is calculated as fol-
lows: a pair of non-overlapping subchains γi and γj are selected from
the backbone of a protein. γi is essentially a closed loop, meaning
that its first and last residues (ri1 and ri2) form a contact, i.e., their
native positions are closer than 9 Å. Instead, γj is not constrained
this way and can therefore be an open loop. Figure 1 provides an
example of a protein chain subdivided in a closed γi and an open γj
loop.

The integral can be calculated via discretizing the chain over
the number of residues (i = 1, . . . , N) and by defining the aver-
age positions Ri = 1

2(ri + ri+1) and the bond vectors dRi = ri+1 − ri;
hence,
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FIG. 1. Example of protein backbone (protein 1URN), highlighting the closed sub-
chain γi (residues 55–90, blue) and the open subchain γj (residues 1–49, orange),
which yield the maximum intrachain contact entanglement.

G′ij =
1

4π

i2−1

∑
i=i1

j2−1

∑
j=j1

Ri − Rj

∣Ri − Rj∣3
(dRi × dRj), (17)

where the prime in G′ij is to point out the fact that the calculation
is on an open chain. Then, calculating G′ij for every possible combi-
nation of non-overlapping subchain couples {γi, γj} and taking the
maximum of the absolute value (the sign depends only on the rel-
ative directions of the two subchains), one obtains the maximum
intrachain contact entanglement:23

∣G′∣c = max
[i1 ,i2],[j1 ,j2]

∣G′ij∣. (18)

∣G′∣c was calculated for 12 small two-state folder proteins (see
Table III), during one equilibration simulation (see Sec. II D), sam-
pled every 5000 steps in the trajectory, thus obtaining a distribution
of values of ∣G′∣c for each protein.

F. Folding rate estimators
In order to assess the folding efficiency of the proteins under

examination, we computed the folding frequencies Fp for the pro-
teins as Fp = S f

p /Sp, where Sp is the total number of simulations and
S f

p is the number of simulations for protein p whose RMSD has fallen
below RMSD′p at any point during the simulation. These were cal-
culated both with the unoptimized and the optimized force-fields
for each protein and correlated with experimental quantities from
Ref. 23.

Additionally, we computed a quantity more akin to a folding
rate, R̃p, based on the median folding time for every protein p, as

R̃p =
1

median[
T
∑
t=0

θ(tp − t′p)]
p
Δt

, (19)

where t is the current time step, t′p is the time step at which
RMSD(t′p) = RMSD′p, RMSD′p is the benchmark value of RMSD,
T = 7 ⋅ 106 is the maximum time step, Δt is the length of the time
step, and θ is the Heaviside function. The rates are expressed in τ−1

MD,
which is an arbitrary time unit derived from the model constants
(Table II).

III. RESULTS
A. Optimization results

A first batch of 20 cycles of MFFO optimizations was run for all
the proteins of Table I, where the criterion for successful folding was
that MSD < 0.9. Subsequently, since the optimized model of protein

TABLE III. ∣G′∣c comparison table: ∣G′∣c for every protein, as calculated by Baiesi et al.,23 compared to average ⟨∣G′∣c⟩ over
one equilibrium simulation of 7 ⋅ 106 steps with the elastic folder model and their relative standard deviation, max and min.
i1, i2, j1, j2 are residue indexes that identify subchains γiγj .

PDB Number ∣G′∣c as ⟨∣G′∣c⟩ std(∣G′∣c) Max ∣G′∣c Min ∣G′∣c
code of residues i1, i2 j1, j2 in Ref. 23 with EFM with EFM with EFM with EFM

1APS 98 41, 97 1, 40 1.62 1.487 0.054 1.655 1.159
1BNZ_a 64 19, 6 37, 55 0.27 0.256 0.024 0.362 0.172
1BZP 153 95, 149 35, 94 0.47 0.429 0.034 0.546 0.335
1FKB 107 45, 104 4, 31 0.96 0.839 0.041 0.988 0.666
1HRC 104 1, 89 90, 104 0.56 0.429 0.059 0.598 0.181
1PSF 69 21, 66 1, 14 0.47 0.392 0.059 0.578 0.203
1TEN 89 38, 86 3, 37 0.67 0.593 0.030 0.715 0.495
1UBQ 76 12, 66 1, 11 0.47 0.410 0.031 0.546 0.293
1URN 96 55, 90 1, 49 1.15 1.038 0.032 1.127 0.835
2ABD 86 22, 53 54, 84 0.60 0.502 0.040 0.647 0.379
2CI2 64 3, 44 45, 55 0.68 0.588 0.032 0.680 0.468
2VIK 126 66, 119 14, 65 0.86 0.550 0.059 0.801 0.416
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1URN failed to fold consistently, a new optimization run using the
number of native contacts (NCs) as the proxy for folding success
was performed, increasing the folding success rate of the model, vide
infra; finally, the NC-optimized force-field was retained for 1URN.

The values of the proxy success rate Πi (calculated over the test
runs of the best performing force-field per each MFFO iteration) are
reported as a function of the optimization cycle in the supplemen-
tary material (see Fig. S1), showcasing a general increase in folding
success after every cycle. In Fig. 2, the values of the folding rate cal-
culated over ∼ 1000 runs before and after the optimization for each
of the 12 proteins under examination are reported. The optimization
increased the folding success rate in practically all cases.

Around 1000 folding runs of 7 × 106 time steps were run
for each of the 12 proteins using the best overall force-field from
the optimization. Moreover, 64 equilibration simulations were per-
formed per each protein model to collect statistics about the equilib-
rium state.

B. Correlations
As it is commonly the case in the context of CG models,

quantitative measures of time are of difficult interpretation due to
the characteristic “telescoping” of time scales;49 we thus resorted

FIG. 2. Estimated folding frequencies F before and after 20 cycles of optimization.

to a definition of in silico folding rates as the frequency of suc-
cessful folding events. These frequencies were then correlated with
topological descriptors as well as experimentally measured fold-
ing rates. Figure 3 shows how the estimated folding frequency (for

FIG. 3. Correlations of estimated folding frequency for unoptimized (left column) and optimized (right column) force-fields vs ∣G′∣c (top row) and ⟨∣G′∣c⟩ (bottom row). F is
the estimated folding frequency. Force-field optimization improves all correlations. Proteins are colored sequentially according to their ordering given by ⟨∣G′∣c⟩ going from
purple (lowest value) to black (highest value).
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non-optimized and optimized force-fields) correlates with (i) the
Gauss linking number ∣G′∣c computed on the native structure [pan-
els (a) and (b)] and the Gauss linking number ⟨∣G′∣c⟩ averaged over
an equilibrium simulation starting in the native state [panels (c)
and (d)]. Even before optimization, all proteins reached their native
structure. After the optimization step, the folding frequency was
higher in all cases but one; the most significant difference was found
with protein 1BZP, which increased its folding frequency by 0.877
(0.085–0.962), and the least difference was found with 1FKB (0.142,
from 0.145 to 0.287). The only force-field that did not improve was
that of 2ABD, which featured a rate as high as 0.949 before the
optimization and changed to 0.948 after the optimization. Our pre-
dicted folding frequencies strongly anticorrelate with topology [see
Figs. 3(b)–3(d)].

A few comments are in order regarding the (anti)correlation
between ⟨∣G′∣c⟩ and the folding frequency. As a first thing, we
observe that the correlation coefficient increases (in absolute value)
from −0.57 to −0.84 when going from the unoptimized to the opti-
mized force-fields, that is, an increment of ∼ 47%. Second, we note
that in the work by Baiesi and co-workers,23 the correlation found
between ∣G′∣c and the experimental folding rate is −0.64; a higher
value, namely,−0.91, is achieved only when the experimental folding

rate is correlated with a weighted sum of ∣G′∣c and the relative contact
order (RCO), a quantifier of the local structural packing of the pro-
tein in the native state. Furthermore, in the aforementioned linear
combination, the RCO accounts for the 67% of the parameter. We
thus conclude that in the case of the elastic folder model with opti-
mized force-fields, the ⟨∣G′∣c⟩ parameter alone largely accounts for
the impediments that the topological self-entanglement introduces
in the folding process of the proteins under examination. The resid-
ual lack of correlation suggests that further optimizations are pos-
sible: the discrepancy between the correlation coefficient obtained
with the optimized EFM force fields and the larger one measured
in Ref. 23 making use of a mixed topological/structural observable
hints at possible modifications of the optimization procedure and/or
of the interactions themselves that, when accounting for structural
features of the native state, might boost the folding accuracy of the
model.

Regarding the comparison with the experimental folding rate,
no significant correlation is observed with the one computed mea-
suring the simulation time required for the proteins to reach their
native state, R̃ [see Figs. 4(a) and 4(b)]; this was expected, given the
distortion of time scales that is known to affect coarse-grained mod-
els. On the contrary, however, a rather strong positive correlation

FIG. 4. Correlations of the experimentally estimated folding rate Fexp23 vs the numerical folding rate R̃ (top row) and the folding frequency F (bottom row) for unoptimized
(left column) and optimized (right column) force-fields.
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emerged between the experimental estimated folding rate and the
in silico folding frequency computed after the optimization
[Figs. 4(c) and 4(d)]. On the one hand, the data show that the experi-
mentally measured folding rate and the folding frequency computed
from our simulations are largely determined by the same proper-
ties of the molecules under examination and that the optimization
procedure enhances this correlation by endowing the model pro-
teins with a capacity to avoid kinetic traps that is semi-quantitatively
in line with that of the real proteins selected by evolution. On the
other hand, however, the discrepancy between the two quantities
highlights the fact that they indeed measure two related yet dis-
tinct properties of the system: while the experimental folding rates
entail kinetic information, the folding probability only quantifies
the reliability of the folding process, i.e., the capacity of the pro-
tein to reach the correct native state. Furthermore, the degree of
frustration intrinsic to the proteins is certainly reduced and mini-
mized by the EFM, its interactions, and the optimization process;
however, it is possible that a certain amount of frustration remains,
whose removal, if possible, would require to modify this coarse-
grained model with an extension of its interactions and optimization
with the inclusion of more structure-based properties, as previously
discussed.

In conclusion, these results strengthen the previous obser-
vations and prove that, thanks to the force-field optimization

FIG. 5. Folded (a) and misfolded (b) state of 1BZP. Colors go from the C-term (red)
to the N-term (blue).

procedure, the impact of topological complexity on the folding pro-
cess can be captured to great extent by a simple model that employs
no other input parameter beyond the native conformation.

C. Case study 1
1BZP is a myoglobin from sperm whale (Physeter macro-

cephalus), a 153 residue globular protein consisting of 8α helices
separated by loops. It has ⟨∣G′∣c⟩ = 0.429 (Tables I and III). This pro-
tein showcases the importance of parameter refinement in the EFM:
using MSD as a proxy for the successful folding, the force-field opti-
mization greatly improved the folding rate, bringing it from 0.085 to
0.95 after 20 cycles (Table I, Fig. 2). The structure corresponding to
a misfolded and a properly folded conformation is reported in Fig. 5,
while the free energy surface (FES) of this protein’s folding process
in various conditions is provided in the supplementary material.

D. Case study 2
1URN is the 96-residue-long RNA-binding domain of the U1A

spliceosomal protein50 and has a ⟨∣G′∣c⟩ = 1.038 (Tables III and I).

FIG. 6. EFM representation of 1URN. (a) Intermediate folded state: the N-terminal
will form a hairpin and arrive in (b) the folded (native) state. (c) Misfolded state. α
helices are highlighted in purple and β-sheets are in green. The N-terminal is the
one with the small α helix structure.
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FIG. 7. Free energy surfaces for 1URN. (a) 1319 runs with unoptimized force-field; (b) 1009 folding runs with force-field optimized via NC-based ranking.

The native state presents two α-helices and one β-sheet [Fig. 6(b)].
The latter is composed of four antiparallel strands, two of which
are on the N-terminal and C-terminal, respectively. In the correctly
folded simulations, this structure is formed by initially bringing
together three out of four of the β-strands and the 2 α-helices, form-
ing the “bulk” of the structure and leaving the N-terminal unfolded
[Fig. 6(a)]. This creates a hairpin between the C-terminal and the
β strand immediately downstream. Finally, the N-terminal β-strand
folds inside such hairpin and forms the complete β-sheet [Fig. 6(b)].
Simulation of this pathway was possible only after NC-based genetic
optimization: the EFM model, in fact, essentially fails to fold 1URN
to its native state before optimization. After force-field optimiza-
tion using MSD as proxy, however, its folding success rate is still
extremely low. Inspection of the FES associated with the folding
runs of the unoptimized 1URN model shows that a free energy bar-
rier emerges along the native contact reaction coordinate [Fig. 7(a)],
separating the correctly folded state (NC ∼ 1) from the rest of the
conformational space. Since this feature is not visible along the
MSD coordinate, this observation led us to change the reaction coor-
dinate used to define the folded state in the genetic optimization
from MSD to NC. As a result, after the new optimization, the fold-
ing success rate of 1URN dramatically increased (Fig. 2), effectively
overcoming the NC barrier [Fig. 7(b)]. This suggests that the native
contact formation plays an important role in the correct folding of
the β sheet [Fig. 6(c)].

IV. DISCUSSION AND CONCLUSIONS
In this work, we have investigated the relation between struc-

ture and folding probabilities on a database of 12 topologically com-
plex proteins via the EFM, a structure-based CG model. In the EFM,
the protein is described as a chain of beads connected by bonds,
where the non-bonded interactions are limited to excluded volume

and the whole system-specific features are embedded in the angu-
lar potentials. The EFM can thus be classified as an “angular” Gō
model, where the folding is enforced through local bending and
rotations. Nonetheless, the absence of a bias on the native contacts
(typical of Gō models) and the projection of the folding propensity
on the angular interactions make it possible to effectively include
non-native interactions at the same level of the native ones: this is a
crucial aspect because of the role the former can play in the folding
process of topologically complex proteins.35,38,51,52 We stress once
again that given the degree of approximation and physical ingre-
dients retained by the EFM, the predictivity of the model solely
concerns the native state topology and its formation.

Herein, we have shown that such a simple representation is
sufficient to successfully fold the chain, starting from a stretched
configuration, in the vast majority of the cases under examination.
However, we have also noted that a nontrivial degree of topological
complexity can hinder the folding process. Based on the observa-
tion that self-entangled proteins have likely evolved to avoid the
kinetic traps introduced by topological constraints,38 we have max-
imized the probability to reach the native state by optimizing the
force-field coefficient of the model, employing a genetic optimiza-
tion method.40 The trends reported in Fig. 2 indeed show that the
use of this methodology can increase the probability of folding, pro-
viding models that can autonomously and efficiently collapse to the
native state as realistic proteins are believed to.

Concerning topological complexity, we found an extremely
good agreement between the values of ∣G′∣c computed by Ref. 23
and the averages ⟨∣G′∣c⟩ over equilibrium simulations, reported in
Table III; however, our results also point out that in the minimum
of the potential energy function of a protein (i.e., the native state),
the computed value ∣G′∣c can fluctuate significantly at the equilib-
rium. This suggests that taking the average ⟨∣G′∣c⟩ over an ensem-
ble of conformations sampled at the equilibrium might be a more
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informative indicator of the self-entanglement degree of a folded
protein.

Interestingly, we were able to correlate in silico folding prob-
abilities with experimental data on folding rates, highlighting the
impact of topological complexity on the latter. It is remarkable how
the agreement with experimental data improves after the optimiza-
tion, thus supporting the core hypothesis behind EFM, according
to which optimization recapitulates evolution, thus improving the
model and bringing it closer to reality.

All the proteins considered in the present work can be labeled
as two-state folders,23 meaning that the transition from a com-
pletely denatured conformation to the native state follows a simple
two-state process kinetics, without the formation of intermediate
metastable states. By looking at the FESs (reported for all proteins
in the supplementary material), we can observe the presence of
“potential wells” in intermediate portions of the path, at least in
some of the proteins, which may host intermediate states. Nonethe-
less, since all the degrees of freedom of the protein are projected onto
CG interactions parameterized according to a top-down procedure,
it is not clear a priori how much the simulated folding pathways cor-
relate with an all-atom kinetics or an in vitro scenario. A comparison
of these results with all-atom simulations is thus required, and it is
the object of future studies.

In conclusion, we have shown that the reduced accuracy of the
CG representation here employed and the lack of chemical detail are
balanced by the remarkable computational efficiency, which enables
one to generate statistically significant datasets of folding trajecto-
ries from which qualitative and semi-quantitative information can
be extracted. The reported results thus showcase the effectiveness
of simple models, such as the EFM, in tackling questions about the
impact of geometry and topology on the folding process of proteins
and support the notion that self-entanglement of the polypeptide
chain plays a crucial role in the kinetics of protein folding.

SUPPLEMENTARY MATERIAL

See the supplementary material for details on the optimization
process, free energy calculations, free energy surfaces, and folding
times.

ACKNOWLEDGMENTS
The authors thank Thomas Tarenzi for a critical reading of the

manuscript. The authors also acknowledge the contribution of the
COST Action CA17139. Computational resources were provided by
the Max Planck Computing and Data Facility and the HPC cluster of
the University of Trento. C.P. and R.P. acknowledge funding from
the European Union’s Horizon 2020 research and innovation pro-
gram under GOKNOT Marie Skłodowska-Curie Grant Agreement
No. 796969.

The authors have no conflicts to disclose.

DATA AVAILABILITY

The data that support the findings of this study are available
within the article and its supplementary material and/or from the
corresponding author upon reasonable request.

REFERENCES
1W. R. Taylor, Nature 406, 916 (2000).
2P. Dabrowski-Tumanski and J. I. Sulkowska, Proc. Natl. Acad. Sci. U. S. A. 114,
3415 (2017).
3S. E. Jackson, A. Suma, and C. Micheletti, Curr. Opin. Struct. Biol. 42, 6 (2017).
4P. F. N. Faísca, Comput. Struct. Biotechnol. J. 13, 459 (2015).
5N. C. H. Lim and S. E. Jackson, J. Mol. Biol. 427, 248 (2015).
6M. Jamroz, W. Niemyska, E. J. Rawdon, A. Stasiak, K. C. Millett, P. Sułkowski,
and J. I. Sulkowska, Nucleic Acids Res. 43, D306 (2014).
7C. Perego and R. Potestio, J. Phys.: Condens. Matter 31, 443001 (2019).
8G. M. Crippen, J. Theor. Biol. 45, 327 (1974).
9M. Piejko, S. Niewieczerzal, and J. I. Sulkowska, Isr. J. Chem. 60, 713 (2020).
10A. Begun, S. Liubimov, A. Molochkov, and A. J. Niemi, PLoS One 16, e0244547
(2021).
11W. Niemyska, P. Dabrowski-Tumanski, M. Kadlof, E. Haglund, P. Sułkowski,
and J. I. Sulkowska, Sci. Rep. 6, 36895 (2016).
12J. M. Simien and E. Haglund, Trends Biochem. Sci. 46, 461 (2021).
13D. Baker, Nature 405, 39 (2000).
14K. W. Plaxco and D. Baker, Proc. Natl. Acad. Sci. U. S. A. 95, 13591 (1998).
15K. W. Plaxco, K. T. Simons, and D. Baker, J. Mol. Biol. 277, 985 (1998).
16P. D. Dixit and T. R. Weikl, Proteins: Struct., Funct., Bioinf. 64, 193 (2006).
17D. E. Makarov and K. W. Plaxco, Protein Sci. 12, 17 (2003).
18S. Wallin and H. S. Chan, Protein Sci. 14, 1643 (2005).
19C. Micheletti, Proteins: Struct., Funct., Bioinf. 51, 74 (2003).
20M. M. Gromiha and S. Selvaraj, J. Mol. Biol. 310, 27 (2001).
21H. Gong, D. G. Isom, R. Srinivasan, and G. D. Rose, J. Mol. Biol. 327, 1149
(2003).
22H. Krobath, A. Rey, and P. F. N. Faísca, Phys. Chem. Chem. Phys. 17, 3512
(2015).
23M. Baiesi, E. Orlandini, F. Seno, and A. Trovato, J. Phys. A: Math. Theor. 50,
504001 (2017).
24D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms
to Applications, Technical Report (Academic Press, 2002).
25M. Compiani and E. Capriotti, Biochemistry 52, 8601 (2013).
26W. Noid, J. Chem. Phys. 139, 090901 (2013).
27D. Fritz, C. R. Herbers, K. Kremer, and N. F. A. van der Vegt, Soft Matter 5,
4556 (2009).
28M. Giulini, M. Rigoli, G. Mattiotti, R. Menichetti, T. Tarenzi, R. Fiorentini, and
R. Potestio, Front. Mol. Biosci. 8, 676976 (2021).
29B. C. Gin, J. P. Garrahan, and P. L. Geissler, J. Mol. Biol. 392, 1303 (2009).
30H. Kaya and H. S. Chan, J. Mol. Biol. 326, 911 (2003).
31P. E. Leopold, M. Montal, and J. N. Onuchic, Proc. Natl. Acad. Sci. U. S. A. 89,
8721 (1992).
32P. C. Whitford, K. Y. Sanbonmatsu, and J. N. Onuchic, Rep. Prog. Phys. 75,
076601 (2012).
33R. D. Hills, Jr., L. Lu, and G. A. Voth, PLoS Comput. Biol. 6, e1000827 (2010).
34L. L. Chavez, J. N. Onuchic, and C. Clementi, J. Am. Chem. Soc. 126, 8426
(2004).
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