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Abstract

Conformations of wormlike chains in cylindrical pores with attractive walls are explored for varying
pore radius and strength of the attractive wall potential by Molecular Dynamics simulations of a
coarse-grained model. Local quantities such as the fraction of monomeric units bound to the surface
and the bond orientational order parameter as well as the radial density distribution are studied and
the global chain extensions parallel to the cylinder axis and perpendicular to the cylinder surface.
A nonmonotonic convergence of these properties to their counterparts for adsorption on a planar
substrate is observed due to the conflict between pore surface curvature and chain stiffness. Also
the interpretation of partially adsorbed chains in terms of trains, loops and tails is discussed.

I. INTRODUCTION

Understanding the behavior of polymers in cylindrical confinement is a longstanding challenge1–47

and relevant for a broad variety of applications, e.g., oil recovery from porous rocks48–50, single
molecule sensing51 and DNA translocation52,53 through artificially produced channels54–56, and other
microfluidic or nanofluidic devices54,55. Also in biology the transport of biopolymers in biologically
formed channels plays a role.

The theoretical studies of this problem3–7,9,10,14,16–47, have focused almost exclusively on the con-
finement in pores and nanochannels with repulsive surfaces (typically modeled by rigid hard walls).
However, the question of how a long flexible or semiflexible polymer can enter into such a cylin-
drical pore (or nanochannel with square or rectangular cross section) is a nontrivial problem: a
flexible macromolecule with linear chemical architecture and N monomeric units in dilute solution
has a typical radius Re = `b

√
N in Theta-solvents and Re = `bN

ν with ν = 3/5 under good sol-
vent conditions57, `b being the bond length between subsequent monomeric units along the chain.
However, a flexible polymer in a narrow tube of diameter D has a linear dimension along the tube
of order Rz = N`2b/D � Re for Theta conditions9 and Rz = ND(`b/D)1/ν under good solvent
conditions3 (prefactors of order unity here are suppressed throughout). The situation is even more
extreme for long semiflexible polymers with persistence length58–60 `p � `b, which have a radius61

Re = (`p`bN)1/2 for contour lengths L = N`b less than L∗ = `3p/`
2
b where under good solvent condi-

tions excluded volume effects set in62–64: For D � `p � L one finds Rz to be almost equal to L14,35,
if one is in the regime where hairpins25,29 are not yet important37,42,44,45. This large discrepancy be-
tween Rz and D has the consequence that the partition coefficient1,2,8,10,12,13,15, defined as the fraction
of chains in the pore relative to the fraction of chains in the dilute solution which is in equilibrium
with the chains in the pore, is extremely small. This partition coefficient K is related to the free
energy difference δF between the confined and unconfined chains via K = exp(−δF/(kBT )), and
for semiflexible chains in the limit D � `p � L one also finds4,35 that δF/(kBT ) ∝ (L/`p)(`p/D)2/3,
while for a flexible polymer3,16 δF/(kBT ) ∝ Rz/D.

The smallness of the partition coefficient is a clear hindrance for applications such as separation
processes for filtration, size-exclusion chromatography, etc. A recipe to overcome this is to exploit
adsorption compensation of this free energy cost using liquid chromatography near the critical ad-
sorption conditions65–69, and this has motivated theoretical studies for flexible polymers18. While
the adsorption transition of flexible chains on planar surfaces has been studied extensively since
a very long time (e.g.,70–73), the adsorption transition of semiflexible polymers on planar surfaces



2

has only been clarified much more recently74–79. In both cases, an interesting singular behavior is
predicted in the limit N →∞. Considering the adsorption of a long macromolecule on the surface
of a cylindrical pore, one can expect a rounding of this phase transition, and this finite size effect80

becomes the more pronounced the smaller the diameter D of the pore. This modification of the
character of the adsorption transition should be particularly pronounced for semiflexible polymers,
since the persistence length `p can be a mesoscopic length (e.g., `p = 50 nm for ds-DNA33), i.e., of
the same order as the tube diameter. Adsorbing a persistent segment on the inner wall of the tube
is much easier when the segment is oriented parallel to the tube axis rather than perpendicular to
it. Thus, the adsorption behavior can be expected to be rather different from its counterpart of a
planar surface.

Often it is assumed that the choice of purely repulsive pore walls is appropriate due to electrostatic
effects33 but it is also known that under many circumstances attractive interactions between a
polymer and a surface operate, e.g., van der Waals forces or screened electrostatic forces81, e.g.,
DNA, may adsorb on mica82 or on bilayer membranes83, etc. Also neutral synthetic polymers are
typically adsorbed in pores due to van der Waals forces, as capillary rise experiments with alkanes
such as C24H50 in Vycor pores suggest84. These examples are clear enough to show that adsorption
of polymers in cylindrical pores is of widespread interest.

Note that in this paper we do not at all consider electrostatic interactions explicitly (if they are
present, it is assumed they are strongly screened). The problem of electrostatic interactions and their
effect on adsorption of polyelectrolytes in confined geometries has been comprehensively discussed
recently by de Cavalho et al.85

In this paper we shall fill this gap in the understanding of polymer adsorption on curved substrates
by Molecular Dynamics simulations of a coarse grained model, which is described in Sec. II, extending
our previous work on adsorption of semiflexible polymers on planar surfaces77–79. Sec. III presents
our numerical results and interprets them tentatively in terms of the pertinent theoretical concepts,
emphasizing the change of polymer conformations due to the curvature of the adsorbing wall in
comparison with a planar adsorbing surface with the same adsorption potential. Finally Sec. IV
gives a short summary and presents an outlook to further work.

II. MATERIALS AND METHODS

We follow our previous work77–79,86 by describing semiflexible polymers in terms of a bead - spring
model with a purely repulsive Weeks-Chandler-Andersen87 (WCA) type potential between any pair
of beads at distance r,

UWCA(r) =

{
4ε
[(

σ
r

)12 − (σ
r

)6]
+ ε, r ≤ 21/6σ

0, r > 21/6σ
, (1)

choosing the potential strength ε = 1, putting the thermal energy kBT to unity as well, and the
range σ = 1 serves as the length unit. This interaction ensures the presence of excluded volume
interactions, appropriate for very good solvent conditions. Successive monomers along the chain
experience also the finitely extensible nonlinear elastic (FENE) potential88

UFENE(r) =

{
−kr20

2
ln
(

1− r2

r20

)
, r < r0

∞, r ≥ r0
. (2)

The constants are chosen as r0 = 1.5σ, k = 30ε/σ2, as previously. Note that Eqs.(1,2) together create
a potential for the bond length with a sharp minimum at `b = 0.97σ. Eqs.(1,2) constitute a standard
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model for flexible polymers89 and can be extended to semiflexible polymers by supplementing it with
a bond angle potential

Ubend(θijk) = εb[1− cos(θijk)] (3)

where θijk is the bond angle formed between the two subsequent unit vectors along the bonds
connecting monomers i with j, and j with k, respectively, when we label monomeric units along the
chain molecule from i = 1 to i = N . For large stiffness κ = εb/(kBT ) Eqs.(1-3) can be considered as
a generalized discretized version of the Kratky-Porod61 model, but including excluded volume. We
would obtain precisely the continuum version of the original Kratky-Porod (KP) model in the limit
N → ∞, contour length L = (N − 1)`b being held fixed, and hence both `b → 0, σ → 0. In this
limit, the persistence length `p gets a precise meaning in terms of the correlation function C(s− s′)
between tangent vectors to the space curve ~r(s) describing the polymer contour, s is a coordinate
running along the contour. One has

C(s− s′) = 〈cos(θ(s− s′))〉 = exp(−(s− s′)/`p) (4)

and `p there is related to κ via

`p = κ (d = 3); `p = 2κ (d = 2). (5)

Since in d = 3 dimensions the chain can bend locally in two directions away from the tangent
vector, but only in one direction in d = 2, the persistence length in d = 2 is twice as large as in
d = 3, according to the KP-model.

Now it is well known that in the presence of excluded volume, for the limit N →∞, the exponential
decay of Eq.(4) fails for large enough distance s − s′, and is replaced by a power law60,62–64,90. For
chains adsorbed on planar surfaces, an even more complicated behavior has been found77–79. For
distances of the order of a few bond lengths, C(s) for a stiff chain has a decay compatible with
C(s) = exp(−s/`p,eff ) where `p,eff is essentially the d = 3 persistence length. For larger s then
a gradual crossover occurs to C(s) = A exp(−s/`p,eff ) with an amplitude A slightly smaller than
unity, while `p,eff then takes a value close to the d = 2 value of `p in Eq.(5). However, for distances
s of the order of `p,eff itself, a crossover to the asymptotic power law90 C(s) ∝ 1/

√
s starts to

set in77–79. In the present work we shall not study how this behavior is modified when adsorption
on a cylindrical surface takes place: the cylindrical confinement causes a slight nonzero average of
bond vector orientations along the z-axis, and hence an even more complicated behavior must arise.
Thus, we consider only the short-distance estimate describing the initial decay of bond-orientational
correlations, defined via86

`p,eff/`b = −1/(ln〈cos(θijk)〉). (6)

As an example, Fig.1 shows a plot of this effective persistence length versus the strength of the
adsorption potential, which will be specified below, for various choices of the tube radius R. For
nonadsorbed polymers with κ = 25 one has77–79 `p,eff = 24.3 in dilute solution in d = 3; note that
`b = 0.97σ and hence one indeed expects `p = κ`b = 24.25. We see from Fig.1 that for nonadsorbed
chains (for the present model the adsorption transition on a planar surface has been estimated to
occur for77–79 εcra = 0.48(1) for κ = 25) `p,eff does not depend on εa/(kBT ), as expected, since the
confined chains then are rarely near the surface, and hence insensitive to the adsorption potential.
However, there is a clear increase with decreasing radius R (i.e., increasing confinement) up to about
3% for R = 8σ. In contrast, in the adsorbed phase, there is a clear increase with increasing εa/(kBT ),
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FIG. 1. Variation of the persistence length `p,eff defined from Eq.(6) with adsorption strength εa for tubes with radius R as
indicated. Here N = 200, κ = 25, and `p = 24.25, shown as broken horizontal line.

up to the order of 15% in the shown regime! This is still far below the theoretical d = 2 value, and
hence the data in Fig.1 show that Eq.(5) is not really useful to interpret the actual behavior of the
confined chains for small distances along the chain.

As a consequence, we conclude that the stiffness κ, defined in terms of an interaction parameter
εb of the model Hamiltonian, Eq.(4), is a well-defined property, while the ”persistence length” is
not at all a unique property of a given type of polymer since it depends on global conditions of the
environment in which the polymer exists such as a wide tube with attractive walls.

Also the pore wall is described in our model in a coarse-grained fashion only, assuming a struc-
tureless perfectly rigid cylindrical surface, at which a potential acts that depends only on the radial
distance r′ = R− r (we choose the origin of the coordinate system on the cylinder axis)

Ua(r
′) = εaC

[(σw
r′

)10
−
(σw
r′

)4]
. (7)

where the constant C = 5
3

(
5
2

)2/3
so that the minimum at r′min =

(
5
2

)1/6
has the depth −εa, For

simplicity, the range parameter σw is chosen equal to σ, hence σw = 1. We do not consider any
explicit dependence of this potential on R, which would result if the potential is constructed by
summing over the pairwise Lennard-Jones (LJ) interactions between a considered pointlike particle
and all the atoms located in the cylindrical surface plane.

Note that often a Mie-potential with (9, 3) powers rather than (10, 4) is chosen instead of Eq.(7)
to describe the coarse-grained particle-surface interaction. The (9, 3) powers arise when the LJ
interactions are summed over all atoms in a three-dimensional halfspace rather than only its d = 2
surface. However, experiments show that often the actual surface potential is due to d = 2 surfactant
layers, e.g., the wetting properties of water on silicon surfaces can be varied all the way from complete
drying (repulsive water - Si-forces) to complete wetting (attractive water - Si-forces) when the Si
surface is appropriately coated91. In view of the complicated physical chemistry of the DNA- surface
interactions (see, e.g.,82 and references therein) it may seem questionable whether the model studied
here is qualitatively applicable to real systems of experimental interest. However, in the context
of translocation experiments of DNA and RNA through long nanopores92 it has been shown that
a model very similar to the present one reproduces the experimental trends strikingly well. While
in such studies the length of the (open) pore is an important parameter, here we use a cylinder of
height H = 200σ (i.e., longer than the contour length L = (N − 1)`b where we use N = 200) with



5

periodic boundary conditions in z-direction, representing hence a pore of almost macroscopic length,
where pore end effects are negligible.

The pore radii are in the range from R = 8σ to R = 70σ throughout; the latter choice is already of
the order of the end-to-end distance for N = 200, as one can see from the estimate from the Kratky
Porod model.

The MD methods applied here are standard and have been described in detail previously47,79.
Again we use the recipe to run N = 50 chains in parallel in the same volume;, Fig.2. These chains
do not interact with each other yet this allows a straightforward parallelization using the HOOMD -
Blue software on graphics processing units (GPU’s)93,94. The MD time step was chosen δ = 0.005τMD

where τMD =
√

(mσ2/ε) when we choose the monomer mass m = 1 as well. The length of the MD
runs was typically 107 such time units. The starting configuration of the chain is taken as a straight

FIG. 2. Snapshots of single (noninteracting with one another) semiflexible chains in a tube with radius R = 35: (a) For
εa = 0.10 (desorbed), and (b) εa = 0.70 (adsorbed). Chain integrity is preserved given the PBC along the z-axis. Note that we
have N separate systems, containing just a single chain each, whereby 15 were superposed in these snapshots.

rod along the cylinder axis whereby the system was run initially for 106 time units before before
starting a production run.

III. RESULTS AND DISCUSSION

A. Local order parameters

A quantity that is straightforward to record is the radial density profile ρ(r) of the monomer density,
Fig.3. It is seen that for εa much less than the critical value εcra , where the adsorption transition
takes place at a planar wall, εcra = 0.48(1)77–79, ρ(r) has a flat maximum at the cylinder center. Near
r = 0.75R, ρ(r) has decreased to about ρ(0)/2, and only in the regime from r′ = R − r = 2 and
closer to the surface, the density decays rapidly to zero as a consequence of the repulsive part of the
potential. However, at about εa ≈ 0.4 the curvature of ρ(r) at r = 0 changes sign, and for εa = 0.5
and larger at the cylinder axis a density minimum occurs while a density maximum is then found in
the regime 1 < r < 2, due to monomers adsorbed at the cylinder surface. The height of this peak
increases smoothly with εa but clearly the peak becomes the sharper the larger R is. Of course, a
well-defined sharp adsorption transition, as it occurs for N → ∞ at a planar surface, cannot take
place at the cylindrical surface: the finite size of R causes a rounding of the singularities that occur
for εcra at the planar surface. As we shall see, the simulation results obtained here suggest that
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the finite size effects due to the smallness of R are still more important than the finite size effects
associated with the finite value of N (N = 200 here throughout).
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FIG. 3. Radial density distribution ρ(r) of a semiflexible polymer in a tube of radius R = 12 (a) and R = 50 (b). Several distinct

choices of εa (in units of kBT ) are indicated. The normalization integral
∫ R

0
ρ(r)rdr = 1 has been chosen (with σ = σw = 1 as

the unit of length throughout).

To precisely define the fraction of adsorbed monomers f we have previously suggested to weight
the density with the adsorption potential77–79, which would mean in our case

f =

∫ R

σw

dr′(R− r′)Ua(r′)ρ(r′)/

∫ R

σw

dr′(R− r′)Ua(r′) (8)

Note that in77–79 due to a typo the lower integration limit of the integral was zero, but the
integration must be extended only over the range where the potential is attractive, of course. Yet
Eq.(8) is less useful when we want to distinguish in an individual chain configuration whether a
monomer is ”adsorbed” (then we say it belongs to a ”train”) or not (then the monomer belongs to
a ”loop” or a ”tail”, see Refs.77–79). Thus in practice we have opted for the simple procedure to
count a monomer as ”adsorbed”, if its distance from the surface is within the range r′ < 2, and
non-adsorbed else. Then in any configurations f = Na/N where Na is the total number of adsorbed
monomers in this configuration. Although the choice of this cutoff r′ = 2 is somewhat arbitrary, the
results for f are hardly distinct from the results one would get from Eq.(8).

Fig.4a shows a plot of f vs. εa for all the choices of the cylinder radius R that were studied. It
is seen that even when εa = 0 there is still a nonzero fraction of monomers which is then counted
as adsorbed; this is a finite size effect associated with the finite manitude of R. We find that f
decreases rapidly with increasing R in the nonadsorbed regime, namely f ∝ 1/R2 (see Fig. 4b)
while near εcra the decay is much slower. We estimate fcr ∝ 1/Rζ with an exponent ζ ≈ 0.3.
The imprecise knowledge of εcra precludes us from quoting a precise value for this exponent. For
εa > εcra the data converge rather fast to nonzero values of f , which are close to unity (meaning that
all monomers belong to a single ”adsorbed ”train”). For the orientational order parameter defined
below in Eqs.(10),(11) we find a similar behavior although the asymptotic region seems to be reached
for the choices of R > 20 only.

The rapid decay of f with R in the nonadsorbed regime is simply understood from the fact that
the density of Gaussian chains near a repulsive walls in a confined geometry scales proportional
to (r′/R)2. For κ = 25, N = 200 in three dimensions excluded volume effects are still negligible,
therefore Gaussian chain statistics applies. An interesting issue is also the variation of the location
εinfla of the inflection point of the curves f vs. εa with R as well as the value finfl of f at the inflection
point itself (Fig.4c). Very roughly, we find εcra − εinfla ∝ 1/R (Fig.4c) and finfl ∝ 1/Rζ .
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FIG. 4. (a) Adsorbed fraction f of monomers plotted as function of the wall potential strength, using N = 200 and κ = 25
throughout, for cylinder radii from R = 8 to R = 70, as indicated. Curves are guides to the eye only. (b) Log-log plot of f vs.
R for εa = 0 and εcra = 0.48, as indicated, taken from the data in panel (a). We have also included corresponding data for the
orientational order parameter defined below in Eqs.(10),(11). The straight lines through the critical values indicate effective
exponents −0.29± 0.01 and −0.48± 0.02, respectively. (c) Plot of εinfl

a vs. 1/R. (d) Adsorbed fraction f plotted vs. εa using
N = 100, 200 and 400, for two choices of R, namely R = 20 and R = 35.

In Fig.4d we address the claim made above that it is the finite size of the tube radius R and not
the finite size of the contour length L = (N − 1)`b that controls the rounding of the adsorption
transition which we can see in Fig.4a. Comparing the data for f for N = 100, 200 and 400 for two
typical choices of R we see that N = 100 is clearly somewhat too short while the difference between
the results for N = 200 and N = 400 exceeds the magnitude of our symbols (which is representative
of our statistical errors) only slightly. Of course, for R � `p we expect that the rounding will be
controlled more and more by the finite size of N , as it is the case for planar surfaces77–79.

Other interesting local order parameters concern the orientation of bond vectors. Since there are
two special directions associated with cylindrical confinement, one being the z-direction along the
cylinder axis, the other the radial direction from the axis to the cylinder surface, we monitor the
average orientation of a bond vector relative to these axes in terms of the parameters η̄z and η̄r,
respectively. The overbars are used to indicate that both order parameters can also be estimated
spatially resolved as functions of the distance r between the mid-point of the bond vector and the
cylinder axis, Fig.5a. These order parameters are defined as

ηz(r) = (3〈cos2(ϑ(r))〉 − 1)/2, (9)

ϑ(r) being the angle between the bond vector and the z-direction, and

ηr(r) = (3〈cos2(α(r))〉 − 1)/2, (10)

α(r) being the angle between the bond vector and the radial direction, while the averages are defined
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as

η̄z =

∫ R

0

ρ(r)ηz(r)rdr, η̄r =

∫ R

0

ρ(r)ηr(r)rdr (11)

using a normalization
∫ R
0
ρ(r)rdr = 1. The order parameter ηz(r) is positive for nonadsorbed

chains and bends towards unity for r → R as stiff chains very close to the cylindrical surface
are predominantly aligned in z-direction as well as since then there is no conflict between chain
stiffness and the curvature of the cylinder surface. The radial component ηr(r) for not so large R is
predominantly negative, given that bond vectors are rarely parallel to the radius vector. Interestingly,
for εa > εcra one observes a different behavior: only very few chains form large loops leading away from
the surface and then entries occur where ηz(r) can be negative, and ηr(r) can be positive, Fig.5a.
Due to the smallness of ρ(r) in this regime, however, this unexpected behavior has a negligible effect
on the behavior of the averages, see, e.g., Fig.5b: we see that η̄r is always on average negative,
and rather close to the limiting behavior η̄r = −1/2 for bonds that are perfectly perpendicular
to the radius vector, as expected for bonds strongly adsorbed on the cylindrical surface. In the
nonadsorbed regime, however, we obtain again that η̄r → 0 with increasing R, compatible for large
R with a relation η̄r ∝ 1/R2, as in the case of f (Fig.4b). Interestingly, at εcra (which almost coincides
with the inflection points of the curves η̄r vs. εa) we have a decay η̄r → 0, compatible with a similar
power law as fcr (Fig.4b). While the apparent exponent for the power law of fcr is −0.29 ± 0.01,
for ηr,cr it is −0.48 ± 0.02. Clarifying whether these effective exponents are the true asymptotic
exponents, and interpreting these values theoretically is a challenge that must be left for the future.
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FIG. 5. (a) Spatially resolved orientational order parameters ηz(r), ηr(r) (cf. Eqs.(9), (10)) plotted vs. r for the case R = 12.
Ten values of εa are included, as indicated in the legend. (b) Average order parameter η̄r, plotted as a function of the strength
εa of the adsorption potential, for cylinder radii from R = 8 to R = 70, as indicated. Curves are guides to the eye only. (c)
Same as (b) but for η̄z.

Thus, the finite size effects for this order parameter are similar to those for the adsorbed fraction
f . We have also checked that finite size effects due to the finite chain length are similarly small as for
f by analyzing data for η̄r for N = 100, 200 and 400 for R = 20 and R = 35. The order parameter
η̄z, on the other hand, has a pronounced finite size behavior due to the finite magnitude of R on
both sides of the adsorption transition, Fig.5c. It converges to zero for ε < εcra but it converges to
1/4 for εa > εcra . This happens because for R → ∞ the bonds for εa > εcra need not align in the
z-direction but can take any direction parallel to the surface plane.

In the regime εa > εcra the data for both f and η̄r indicate a rapid convergence towards nonzero order
parameters in the limit R→∞. E.g., for εa = 0.7 one finds from a corresponding extrapolation that
there appears to be a convergence to f = 0.884(5) and η̄r = −0.446(1). However, the corresponding
values for a planar wall were found to be systematically different, namely78 f = 0.994(1) and
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η̄r = −0, 451(1), for the same choice of κ = 25 and N = 200. As a result, we conclude that the
approach to the limiting behavior is a subtle problem when several of the characteristic lengths R, L
and `p are large and have a comparable magnitude.

B. Chain linear dimensions

The delicate character of the approach of the properties of semiflexible polymer chains that are
adsorbed on the wall of a cylindrical pore to the corresponding properties of the chains when they
are adsorbed on a planar wall is clearly demonstrated when we study the total gyration radius square
(Fig.6a) or the z-component of the root mean square end-to-end distance, Fig.6b. While initially
these quantities decrease linearly as function of 1/R because for small R the chains are very strongly
stretched along the cylinder axis, for large R they go through a minimum. Suppose an adsorbed
chain at the cylinder surface would be oriented like a linear rigid rod: if it is oriented along the
z-direction, no cost in bending energy arises while in tangential direction the chain can only be in
a strongly adsorbed state, if it is systematically bent. Two subsequent bond vectors would need to
form an angle γ = `b/R, and hence a total bending energy cost of about (N−1)εa(γ

2)/2 would arise.
This bending energy becomes irrelevant, of course, when it is less than the thermal energy kBT . So
we predict a crossover for R∗/`b =

√
κN/2 which for κ = 25, N = 200, is about 50. Thus, only for

R � R∗ the curvature of the cylindrical surface will be a small perturbation for the conformation
of an adsorbed chain. Most of our data, however, were taken in the opposite regime, R � R∗, and
in this regime a strong bias for the chain orientation in favor of the z-axis results. This minimum
in the variation with 1/R is very pronounced for the gyration radius square, Fig.6a, but rather
shallow for the z-component of the end-to-end distance, Fig.6b. In contrast, the variation of the
xy-components, Fig.6c, is a monotonic increase with decreasing 1/R, and this feature is responsible
for the pronounced increase of the total gyration square as 1/R→ 0.

As a consequence, we expect that the root mean square component of the end-to-end distance
in z-direction is larger than in the tangential direction while on a planar surface both orientations
are strictly equivalent. Hence we consider it as a surprise that at the cylinder surface the larger
linear dimension of the adsorbed chain (in the z-direction) is smaller than the corresponding linear
dimension on a planar surface for large R (where R exceeds `p).

An interesting issue is also the behavior of the root mean square component of the end-to-end
distance along the cylinder axis when it is studied as function of εa for R < `p. We find that for
R = 8 this quantity is almost independent of εa, and very large, of order 0.81L. For small enough
R, when hairpin effects are completely negligible, precise theoretical predictions exist35

Rz

L
= 1− c0

〈
2R

κ

〉2/3

(12)

which yields (using the result for c0 = 0.17035) about Rz/L = 0.8737 for R = 8. So our data are only
somewhat outside the regime where this theory asymptotically holds, given that N = 200 is not yet
long enough so that hairpins could cause a significant reduction of Rz. This fact is expected, when
one considers the prediction for the free energy cost of hairpin formation35

F

kBT
= C

L

κ

〈 κ

2R

〉2/3
, C = 2.356 (13)

which yields about 25.3 in our case. For larger R, the corresponding free energy would be smaller
(e.g., 13.7 for R = 20), but still the z-component of the end-to-end distance is almost 50% of the
contour length. For R = 20, we observe that 〈R2

ez〉 decreases first distinctly with increasing εa,
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FIG. 6. 〈R2
g〉 (a),

√
〈R2

ez〉 (b) ,
√
〈R2

gxy〉 (c), and
√
〈Rg,⊥ >2〉 (d) plotted versus 1/R for several choices of εa, as indicated.

The latter quantity denotes in (d) the component of 〈Rg2〉 perpendicular to the plane resulting from ”unrolling” the cylindrical
surface surrounding the chains.

reaching a minimum near εa = 0.3 or εa = 0.4, and then increases again. In this regime of εa, the
chain is neither strongly repelled nor strongly attracted by the surface, and so the full cylinder volume
is actually available for the chain whereby the minimal extension in z-direction is understandable.
For R = 20, the strongly adsorbed chain has a distinctly larger value (e.g., 〈R2

ez〉 = 12250 for
εa = 0.6 rather than 7685 for εa = 0.3). We interpret this strong increase in terms of the increase of
the effective persistence length when the effective dimensionality changes from d = 3 to d = 2 due
to adsorption, cf. Eq.(5).

While the MD simulation code uses the Cartesian coordinates x, y, z, there is not only interest in
x, y-components of the radii of chains in cylinder geometry, of course. Even if the chains were strictly
adsorbed on the wall and stretched out along the z-axis, due to averaging over the azimutal angle φ
of the coordinates (z, r, φ), transforming between Cartesian and cylindrical coordinates we always
obtain x , y components of the radii of the order of R. In order to characterize the chain conformation
in the cylinder, we are more interested in the radial distribution of the center of mass of the chains
ρ(rCM) and the components of the gyration radius of individual chains in radial direction. In order
to better understand the chain conformations, we have found it useful to ”unwrap” the cylinder
surface into a plane (X − Z) and study the chain conformation in a Cartesian coordinate system
where the radial direction then would always be the Y -component. Note that in this X − Z plane
there is a periodic boundary condition in Z-direction at Z = H, and in X-direction at X = 2πR.
In the following,we use the subscripts ”||” and ”⊥” always referring to the ”unrolled” plane XZ.

Fig.7 shows examples of chain configurations in such a coordinate system with an unrolled cylinder
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FIG. 7. Chain conformations for R = 20 relative to a cylinder surface unrolled into a plane with coordinates X,Z, with Z along
the cylinder axis z, and X in tangential direction at a chosen point of the surface. The perpendicular coordinate Y displays
the radial distance to the surface r′ = R − r and is highlighted by the vertical straight green lines. Examples are for εa = 0.3
(a) and 0.7 (b, c, d).
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FIG. 8. 〈R2
g||〉 (a), and 〈R2

g⊥〉 (b) vs εa for pores with different radius R as indicated. All data refer to the case κ = 25 and
N = 200 throughout.

surface. Note the difference by an order of magnitude in the scale for Y = r′: for εa = 0.3 hardly
any monomers are close enough to the surface to be counted as adsorbed whereas almost all of them
are adsorbed for εa = 0.7. As in the planar case, the typical distance between the extrema of this
curve describing the chain contour can be interpreted in terms of Odijk’s deflection length concept4,
as discussed for the case of adsorption on a planar surface77–79.

Already from the snapshot pictures it is plausible that the component of the gyration radius square
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in the direction perpendicular to the confining surface is of order R2 in the nonadsorbed case but
only of order unity in the adsorbed case, as one can see more quantitatively in Fig.6d.

To summarize these results, Fig.8 shows the dependence of 〈R2
g||〉 (a) and 〈R2

g⊥〉 (b) on εa: while
the standard Cartesian components of either the end-to-end distance or gyration radius show hardly
any direct effect of the adsorption transition of the polymer on the cylindrical wall, that shows up
so clearly both in the snapshot pictures of the chains, Fig.1, and in the radial density distribution,
both the parallel component 〈R2

g||〉 and the transverse component 〈R2
g⊥〉 of the ”unwrapped” chains,

parallel and perpendicular to the adsorbing surface that were illustrated in Fig. 7, manifest the
signature of the adsorption transition very clearly.

C. Distributions of train lengths, loop lengths, and tail lengths of the adsorbed chains

Traditionally95, the conformation of adsorbed polymers is characterized by the concept of ”trains,
loops and tails” in the context of cubic lattice models where a polymer is described by a selfavoiding
walk on the lattice, whereby only monomers (described then by occupied lattice sites) taken in the
surface plane experience the energy gain due to adsorption. An uninterrupted sequence along the
chain of such occupied lattice sites in the surface plane is called a ”train” (irrespective of whether
it runs all the way straight in a lattice direction or exhibits 90 degree kinks in the surface plane).
”Loops” are portions of the chain which are connected to monomers which are in the surface plane,
but all other monomers in the loop are further away from the surface. A linear polymer can have
one or two ”tails”, with only one end of the sequence connected to a neighbor along the sequence
that is in the surface plane. The number of monomers belonging to such sequences is denoted as the
”length” of the train, loop, or tail, respectively.
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FIG. 9. (a) Distribution of train lengths plotted versus the train length on semi− log scales, for the case N = 200, κ = 25, and
R = 8, including 6 choices of εa, as shown in the legend. (b) Distribution of loop lengths versus the loop length, for the same
case as panel (a). (c) Distribution of tail lengths versus the tail length, for the same case as panel (a). The mean lengths of
trains 〈ntr〉, loops 〈nl〉, and tails 〈nt〉, are plotted vs. εa in the shown inserts.

This concept can be carried over to off-lattice models as used here too, counting monomeric units
which have a radial distance r′ < 2 from the cylindrical surface as part of a train. Of course, for a
smooth continuous adsorption potential this cutoff r′ = 2 is somewhat arbitrary but we expect that
the qualitative properties of the distributions of these lengths should not depend sensitively on the
detailed choice of this cutoff.

Figs. 9 and 10 give two typical examples of these distributions, for the cases R = 8 and R = 20,
respectively. We see that for large lengths n of these trains, loops, or tails the data are compatible
with a simple exponential decay for choices of εa where the chain is only partially adsorbed. An
exception seems to be the case R = 20, εa = 0.6, where Ptrain(n) has a strong peak near n = N ,
and never large loops or long tails occur. Thus the curve for Ptrain for εa = 0.6 has been omitted
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from Fig.10a. But from the study of the local order parameters we know already that this case is
an example of a typically fully adsorbed chain. For small n, the distributions Ptrain(n) exhibit a
nonmonotonic variation with n before the exponential decay starts to set in. Such a behavior was also
seen for adsorption on planar surfaces78, but a clear interpretation of this behavior is not obvious.
Qualitatively, one might expect that a different behavior arises when n < λ/`b and when n > λ/`b,
λ being the deflection length4 which was also studied in78. But a full quantitative understanding of
the values of this length for adsorbed chains is still lacking78.
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FIG. 10. (a) Same as Fig.9a, but for R = 20. (b) same as Fig.9b, but for R = 20. (c) same as Fig.9c, but for R = 20.

A special behavior is also seen in the loop length distribution, where for εa = 0.3 a plateau at
about n = 25 (R = 8) or n between 25 and 50 (R = 20) occurs (Figs,9b, 10b). For planar walls78,
Ploop(n) instead showed a smooth strongly nonexponential decay over a broad range of n. The
detailed understanding of all these features is still a challenge.

The inserts in Figs.9 and 10 show the mean lengths of trains 〈ntr〉, loops 〈nl〉, and tails 〈nt〉.
The length 〈ntr〉 increases with εa while the other two lengths decrease, as expected. We find that
for smaller R the average lengths are always systematically smaller, due to the finite size effects
associated with the smallness of R. Note, however, that all these average lengths depend not only
on R and εa, but a clear influence of the finite size of N must also be expected when any of these
average lengths is no longer very much smaller than N . However, a systematic study of these
distributions for much larger values of N would be very demanding in computer time resources, and
hence has not been attempted.
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The inset displays a magnified plot in the vicinity of the crossing point at εcra so as to emphasize the magnitude reversal with
growing R.

An interesting finding is that the mean train length for εa < εcra decreases with increasing R but
increases for εa > εcra , Fig.11. Indeed, for weak adsorption, εa < εcra , entropy drives the chains away
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from the walls, therefore, the narrower the cylinder the larger is the fraction of monomers that still
remain close to the walls, increasing thus effectively 〈ntr〉. In contrast, for strong adsorption, εa > εcra ,
the attractive potential, Eq.(7), keeps the chains in the vicinity of the cylinder walls whereby the
proximity of the surrounding cylindrical surface makes them intermittently attach to different parts
of the narrow tube, decreasing thus effectively 〈ntr〉. The intersection point estimate from Fig.11 is
compatible with the estimate εcra = 0.48(1) for the planar wall77–79 and may serve as an alternative
method to determine εcra in cylindric confinement than the extrapolation, Fig.4c.

IV. SUMMARY AND CONCLUSIONS

In this paper we study the competition between two types of conformational changes of isolated
semiflexible polymer chains under good solvent conditions, namely, the confinement inside a long
cylindrical pore with cylinder radius R, and the adsorption on the cylindrical surface of this pore,
triggered by a potential (Eq.7) whose strength εa is a second control parameter. We use Molecular
Dynamics simulation methods and apply a coarse-grained bead-spring type model (Eqs.1-3) which
has essentially 3 parameters: the effective chain diameter σ which is our length unit, the chain
stiffness κ, and the chain length N (i.e., the number of effective monomeric units along the chain;
the distance between these units along the backbone of the chain is of order σ as well).

If one has the application to ds-DNA in mind, σ would physically correspond to 2nm and κ = 25
then corresponds to the typical value of the persistence length of 50nm; however, we do not attempt
a more realistic modeling which would require to consider electrostatic interactions, of course. Our
model qualitatively would correspond to the limit where the electrostatic interactions are strongly
screened. Thus, also our adsorption potential (Eq.7) is of the van der Waals type only. Being
interested in the behavior of long chains, we focus on the choice N = 200. However, for the
adsorption on planar walls there is a strong finite-size-effect due to this finiteness of N , and a
comparative study of several choices of N over a broad range of chain lengths is indispensable to
characterize the adsorption behavior. Yet, for the present choices of R (from R = 8 to R = 70) the
finite size rounding of the adsorption transition caused by the finiteness of R rules the behavior still
almost exclusively.

This strong finite-size rounding of the adsorption transition in the cylindrical pore (truly singular
behavior associated with this transition occurs only when both the limits N to infinity and R to
infinity are taken) shows up both in the local ”order parameters” of the adsorption transition, such as
the adsorbed fraction of monomeric units f and the bond orientational order parameter η̄r, (Figs.4a,
5b) when the strength of the adsorption potential εa is varied. The rounding shows up in the chain
linear dimensions as well, Fig.6. For a study of this behavior, N = 200 turned out to be long enough
as a test using other chain lengths (N = 100 and N = 400) showed.

When we vary the strength of the adsorption potential, three regimes can be distinguished, at
least qualitatively: for small εa, the chain avoids the region close to the cylindrical surface, due to
entropic repulsion the local monomers density decreases in the region σ � r′ = R−r � R ∝ (r′/R)2,
while for r′ < σ due to enthalpic repulsion the density is almost completely suppressed. Due to the
monomeric units that still occur in the region from r′ = σ to r′ = 2σ a ”finite size tail”80 of order
1/R2 arises. Also the orientational order parameter (Fig.4b) shows a similar behavior. For small
R, the chain extension along the pore 〈R2

gz〉 decreases in this region slightly with increasing εa, as
a more uniform density distribution inside the pore is reached (e.g., for εa in the range between 0.3
and 0.4) before it increases again due to adsorption. Thus, 〈R2

gz〉 as function of εa exhibits a shallow

minimum. A similar phenomenon was detected for fully flexible polymers already in an early work11.
In this regime of εa also a crossover of the power law for the decay of f and η̄r with R from 1/R2
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to a much slower decay is found, namely roughly fc ∝ 1/R1/3 (Fig.4b). Also a finite-size shift of the
”effective” adsorption transition point (defined from the inflection point of the f vs. εa or η̄r vs. εa
curves) is found, namely εcra - εinfla ∝ 1/R (Fig.4c).

A very interesting nonmonotonic behavior of the total mean square gyration radius and the z-
component with 1/R is also found, Fig.6a,b. For small enough R, the chains are strongly stretched
along the cylinder axis (reaching an end-to-end distance of the order of the contour length for R < 8).
For R of the order of the persistence length, a shallow minimum is reached, followed by an increase
linear in 1/R as 1/R → 0. The large values for adsorbed chains on planar surfaces (reached for
1/R = 0) reflect the fact that a doubling of the persistence length and hence of the squared gyration
radii occurs when one goes from d = 3 to d = 2 dimensions. For finite R and rather strongly adsorbed
chains, there clearly is a conflict between the curvature of the attracting substrate (which would favor
slightly bent sections of the chain having the length `p and banana-like shape) and chain stiffness
κ of our model (which favors on average a straight conformation over the scale of the persistence
length). On the other hand, when we consider 〈R2

gxy〉 and 〈R2
g⊥〉, we find a monotonous variation

with 1/R. Recall that for our choice of coordinate system, with the z-axis being the cylinder axis,
〈R2

gz〉 converges (essentially) to 1/2 of the parallel component of a strongly adsorbed chain on a
planar substrate, since for the planar substrate x- and z-directions are equivalent, and y in the limit
1/R→ 0 is orthogonal to the plane.

It is remarkable that the chain actual linear dimensions in the cylinder, e.g., 〈R2
g〉, 〈R2

ez〉, 〈R2
gxy〉,

when one studies them as function of εa, are affected very weakly by the adsorption on the cylindrical
wall, unlike the behavior that one finds for adsorption on a planar wall. The components 〈R2

g||〉 and

〈R2
g,⊥〉 of the ”unwrapped conformation”, Fig.8, (parallel and perpendicular to the cylinder surface

that is then ”unrolled ” into a planar surface) show clear signatures of the adsorption transition.

It is also demonstrated that the cylindrical confinement causes a remarkable local stiffening of the
wormlike chains which is evident from the study of an effective persistence length related to 〈cos(θ)〉,
where θ is the angle between subsequent bond vectors along a chain (Fig.1).

We have also analyzed the distributions of the lengths of trains, loops and tails in the vicinity
of the adsorption transition, Figs.9-11. Particularly interesting is the distribution of trains lengths
〈ntr〉, which for large 〈ntr〉 exhibits an exponential decay both below the adsorption threshold and
slightly above it as well (Figs.9a, 10a). But the transition itself shows up clearly as a crossing point
at εcra in the plot of 〈ntr〉 vs. εa for different R (Fig.11).

We hope that our study helps to understand experiments that address the adsorption behavior of
semiflexible polymers in various types of cylindrical confinement. As a caveat, however, we mention
that in experiments adsorption of polymers often needs to be treated as an irreversible process96,97,
leading to distributions of loops, tails and trains that differ from those observed in full thermal
equilibrium.
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