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Various packing problems and simulations of hard
and soft interacting particles, such as microscopic
models of nematic liquid crystals, reduce to
calculations of intersections and pair interactions
between ellipsoids. When constrained to a spherical
surface, curvature and compactness lead to non-
trivial behaviour that finds uses in physics, computer
science and geometry. A well-known idealized
isotropic example is the Tammes problem of finding
optimal non-intersecting packings of equal hard disks.
The anisotropic case of elliptic particles remains, on
the other hand, comparatively unexplored. We
develop an algorithm to detect collisions between
ellipses constrained to the two-dimensional surface
of a sphere based on a solution of an eigenvalue
problem. We investigate and discuss topologically
distinct ways two ellipses may touch or intersect on
a sphere, and define a contact function that can be
used for construction of short- and long-range pair
potentials.

1. Introduction
It comes as no surprise that packing of ellipses and
ellipsoids is a very thoroughly researched topic that
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appears in many different fields of research, both in experimental realizations and in numerical
models used to study them. Ellipsoids appear in Gay–Berne (anisotropic Lennard–Jones) models
[1] of liquid crystals as a coarse-grained replacement for the full molecular structure [2–4], in
colloidal dispersions with an anisotropic dispersed phase [5–7], and in granular and jammed
matter [8–11], where random and optimal packings are of particular interest [12,13]. All these
examples are, however, Euclidean—yet many experimental systems call for a confinement of
particles to a curved surface, often that of a sphere. Recent examples include packings of rods [14]
and ellipsoids [15], spherocylinder simulations of nematics [16] and proteins adsorbed on vesicles
[17,18]. This calls for an adaptation of ellipse–ellipse intersection algorithms for use on a spherical
surface. Such an algorithm would also allow answering the question of optimal packing: while
the well-researched Tammes problem [19,20] considers optimal packings of circles on a sphere, a
generalization from circles to ellipses of arbitrary aspect ratios can provide us with the packing
fraction for hard ellipses, which so far remains an open question. Furthermore, an algorithm
which can be applied to ellipses of different sizes and aspect ratios opens up the possibility to
consider polydisperse systems.

The bread-and-butter of computing ellipse–ellipse interactions lies in detecting collisions and
overlaps in simulations of hard particles [21], and, for long-range interactions, measuring the
closest distance between them [22]. One of the widely used and cited algorithms developed by
Perram et al. [23,24] has been used, optimized and adapted in numerous ways and for various
applications—in two dimensions (for ellipses) [25,26], three dimensions (for ellipsoids) [27–29]
and was even generalized to hyperellipsoids [30]. However, all these algorithms are limited to
Euclidean space and cannot be applied to the spherical case without modification.

In this work, we present a new algorithm that tackles the previously unsolved question of
computing the distance and detecting overlap of ellipses confined to the two-dimensional surface
of a sphere. Spherical confinement poses interesting challenges to the algorithm. Stretching is not
a linear operation on a sphere, and two ellipses can interact in topologically different ways—
if they interact at all. These situations differ strongly from the Euclidean case. We explain the
intricacies of the spherical ellipse–ellipse interaction with examples, discuss the performance of
the numerical algorithm and conclude by showing a few packing solutions.

2. Numerical algorithm

(a) Problem formulation
First, we define what constitutes an ellipse on the surface of a sphere. We adopt the conventional
definition of an ellipse as the set of points with a constant sum of distances to the foci. To
generalize it to a sphere, we require a constant sum of geodesic distances γ1 + γ2 = 2η < π to
the foci f 1,2: cos γ1,2 = r · f 1,2. Without loss of generality, we can set f 1,2 = {± sinψ , 0, cosψ}. To
convert the trigonometric relations into an algebraic form, we work with the cosine of the focal
property cos(γ1 + γ2)= cos 2η, which introduces an extraneous solution—another ellipse at the
opposite side of the sphere due to cos(2π − 2η)= cos 2η. With further manipulations, we obtain a
quadratic form representing an elliptic cylinder,

x2 sin2 ψ

sin2 η
+ z2 cos2 ψ

cos2 η
= 1, (2.1)

which is oriented in the (x, z) plane. However, on the unit sphere, the set of solutions is invariant
to addition of any multiple of x2 + y2 + z2 = 1, which gives a whole family of quadratic forms that
specify the same ellipse pair. The most natural representation among these is an elliptic cylinder
in the (x, y) plane with zero z2 term, which simply projects a planar ellipse onto the sphere along
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the axis through the centre of the spherical ellipse

x2 1

sin2 η
+ y2 cos2 ψ

sin(η + ψ) sin(η − ψ)
= 1. (2.2)

We will thus define a spherical ellipse as an intersection of the unit sphere and an elliptical
cylinder represented as a degenerate positive semidefinite quadratic form a(r)

a(r)= rAr; A= Tdiag(�, �, 0)TT, (2.3)

where T is a rotation matrix that will not be explicitly needed. We assume from now on that
A is a given quantity which can be computed from any representation of the ellipses, such as
by rotating the focal representation (equation 2.2), or from centre vectors and major semiaxis
directions. Looking for an intersection of two arbitrary spherical ellipses is therefore equivalent
to looking for an intersection of two quadratic forms and the unit sphere

a(r)= rAr= 1, (2.4)

b(r)= rBr= 1 (2.5)

and ||r|| = 1. (2.6)

Quadratic forms are invariant to inversion and produce a pair of antipodal ellipses when
intersected with the unit sphere. This poses an additional challenge for the collision detection
algorithm, as we must specify which ellipse is the correct one and which collisions to ignore. The
correct ellipses can be specified by vectors rA and rB corresponding to the centres of the ellipses—
signed eigenvectors corresponding to the zero eigenvalue of the quadratic forms a and b. The dot
product between the ellipse centre and any point on the ellipse is positive for the correct ellipse
and negative for the antipode.

Unlike in the Euclidean case, scaling the semiaxes of the quadratic form has an important effect
on the topology of its intersection with the unit sphere. When the semiaxes are small compared
with the radius of the sphere, the ellipses are similar to Euclidean ellipses. If the semiaxes are
scaled to be comparable with the sphere radius, the apexes become sharper and converge to a
‘lemon wedge’ shape in the limit where the large semiaxis of the quadratic form matches the
sphere radius. In this configuration, the antipodes touch at two ‘poles’, forming two intersecting
great circles. Beyond this size, the intersection with the sphere splits again into a new pair of
ellipses, but now their centres are directed along the shorter of the quadratic form semiaxes.
At this crossover, the former antipodal pair recombines, and no longer corresponds to elliptical
particles centred at rA,B. These cases with inverted ellipses will play a role in our theoretical
analysis, but have no physical significance.

The goal of our algorithm is to detect when two ellipses are tangent or overlapping by defining
a contact function and to obtain the contact point v. If forces at the contact point are required, the
direction of the force should be along the normal to the ellipse, which is given by the gradient
of the quadratic form (magnitudes can be normalized—here we halve the expression to simplify
notation)

n= 1
2∇⊥rAr

∣∣
r=v
=Ar − r(rAr)

∣∣
r=v
= (A− I)v. (2.7)

From the force and the intersection point, we can also compute torques acting on the ellipse,
which is useful for molecular dynamics simulations.

(b) Solving for ellipse contacts
Following the same steps as Perram and Wertheim [11,23,24], we define a linear interpolation of
the quadratic forms,

q(r, t)= rQ(t)r, Q(t)=A(1− t)+ Bt, (2.8)

with the parameter t ∈ [0, 1], so that q(r, t)≥ 0 on the whole sphere. Solution for contacts of
spherical ellipses, i.e. level sets a= 1 and b= 1, is based on finding the minimal values of this
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interpolation at each t. Constraining the solutions to the unit sphere, the problem can be restated
in terms of finding the stationary points of the Lagrangian function

L= q(r, t)− λ(r · r − 1). (2.9)

Equation ∇L= 0 reduces to solving the eigenvalue problem Q(t)r= λr, with solutions {λi(t)} and
eigenvectors {ri(t)} that satisfy ||ri|| = 1 (for i= 1, 2, 3). Let r1 be the eigenvector corresponding to
the smallest eigenvalue λ1. Plugging r1 back into expression (2.8), we get the minimum value of
q(r, t) on the sphere,

qmin(t)= q(r1(t), t)= λ1(t). (2.10)

Consider that the value of the quadratic form q(t) is always greater than 1 in the part of the
sphere that is outside both ellipses, as it is an interpolation of two values greater than 1. As t is
varied from 0 to 1, r1(t) will trace a continuous path on the sphere from r1(0)= rA to r1(1)= rB

where qmin(0)= qmin(1)= 0. If the ellipses do not overlap, this means that r1(t) will have to cross
the region outside both ellipses for some t, where consequently qmin(t)> 1. On the other hand, for
overlapping ellipses, q(r, t) will always be smaller than 1 in the intersection region, meaning that
qmin(t)< 1 for all t. It follows from equation (2.10) that ellipses a= 1 and b= 1 intersect on the unit
sphere if and only if the smallest eigenvalue of Q(t) never exceeds 1 on the interval t ∈ [0, 1]. We
denote this extremum Λ1 and the corresponding eigenvector v1,

Λ1 =max λ1(t) and Qv1 =Λ1v1. (2.11)

Positive definiteness ensures there are always three non-negative real eigenvalues, corresponding
to the casus irreducibilis of the cubic equation, which is solvable in closed form through
trigonometry. To find the maximum Λ1, any one-dimensional maximization algorithm can be
used, such as the golden section search. We can rely on this function being anticonvex with a
single maximum, which ensures reliable and fast convergence.

To gain additional understanding of the relation between eigenvalue extrema and ellipse
contacts, one can consider that the geometric representation of the unconstrained three-
dimensional level set q(t)= 1 is a generic ellipsoid (or possibly a degenerate elliptical cylinder
when one eigenvalue of Q(t) is zero). The eigenvalues of Q(t) correspond to inverse squares of its
semiaxes. This ellipsoid is thus completely contained within the unit sphere if all its eigenvalues
are greater than 1 and intersects the unit sphere if this is not the case. For non-overlapping ellipses,
where Λ1 > 1, the level set q= 1, constrained to the surface of the sphere, will therefore be empty
for some t. This supports the fact that the space of allowed level set locations on the sphere is
discontinuous if the ellipses do not overlap and the level set therefore cannot evolve continuously
from a= q(0)= 1 to b= q(1)= 1 as t is increased from 0 to 1. Conversely, if the ellipses intersect,
the level set on the sphere is always non-empty asΛ1 < 1, with the intersection points of a= 1 and
b= 1 a part of the level set for each t. Examples of disjoint, touching and overlapping ellipses, and
the level sets of q(t), are shown in figure 1a–c.

The value of Λ1 has a clear geometric meaning: if we observe the intersection with a sphere
r2 = 1/Λ1 instead of the unit sphere, the ellipses a= 1 and b= 1 touch at a single point of tangency,
given by the appropriately scaled eigenvector v1. Scaling the system back to the unit sphere by a
factor of

√
Λ1, we see that Λ1 is the factor by which the orthogonal projected area of both ellipses

must be grown to make them tangent (scaling the semiaxes by
√
Λ1). Values of Λ1 > 1 signify

non-overlapping ellipses that become tangent when grown, and values of Λ1 < 1 overlapping
ellipses that become tangent when shrunk. This property makes Λ1 an appropriate choice for a
contact function, with the same meaning it has in the Euclidean case (see the work of Perram
and Wertheim [11,23,24]). However, without additional tests, the value ofΛ1 does not distinguish
between the two antipodal ellipses represented by the same quadratic form and thus signals an
overlap even when the ellipses in question are on the opposite sides of the sphere. For a usable
algorithm, collisions with the antipodes of the ellipses represented by the quadratic forms must
be ignored. This is handled in the following section.
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(a) (b)
a

q(t)

v

b

(c)

(d)

1.5
(a)

(b)

(c)

1.0
l

0.5

0
0 0.2 0.4

t
0.6 0.8 1.0

Figure 1. Cases of (a) disjoint, (b) touching and (c) overlapping ellipses on a sphere, with ellipses stretched to achieve tangency
shown by dashed coloured lines. Level sets of q(t)= 1 (equation (2.8)) at different t are shown by dashed grey lines. Black
dashed lines represent the lines described by the eigenvector corresponding to the smallest eigenvalue ofQ(t) when t runs from
0 to 1, and v marks the intersection point found when the eigenvalue is maximized. (d) Smallest eigenvalue with respect to
t for the three cases in (a–c), showing that the smallest eigenvalue exceeds 1 when the ellipses are disjoint. (Online version in
colour.)

(c) Solution branches and secondary contacts
Points of tangency of ellipses on the sphere can be defined in terms of the full intersection set of
two elliptical cylinders in three dimensions,

S = {r, a(r)= b(r)= 1}. (2.12)

The ellipses, obtained as intersections of a and b with the sphere of radius r, are intersecting at
points on S at radius r and are tangent in critical points on S with locally extremal distance r from
the origin. The maximized smallest eigenvalue Λ1, which we derived in the previous section,
simply corresponds to the critical point of S farthest from the origin; but this is just one of the
critical points.

Degenerate cases aside, the set S consists of an antipodal pair of two disjoined loops. Each loop
can have at most four critical points—two with locally maximal and two with locally minimal
distance to the origin, corresponding to four values r−2 = {Λ1,Λ2,Λ3,Λ4} (figure 2a). Depending
on the relative orientation and size of the ellipses, there may be only two critical points, r−2 =
{Λ1,Λ4} (figure 2b). At the transition between these two regimes, the critical points Λ2 and Λ3
merge into an inflection point before disappearing. In other borderline cases with zero measure,
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L3
L1

L1

L4

L4

L2

locally maximal distance

locally maximal distance

intersection set S

locally minimal distance

locally minimal distance

(a)

(b)

Figure 2. (a) A generic intersection set S of two obliquely intersecting elliptical cylinders. The intersection consists of two
antipodal loops, with two points of maximal distance and two points of minimal distance from the origin. These represent the
four tangency cases; onlyΛ1 andΛ2 are relevant for our analysis. (b) In exceptional cases, the two loops might be joined in a
four-way junction. (Online version in colour.)

the intersection set may be a ‘basket’ with two fourfold junctions, or may have whole arcs at
constant distance from the origin. These can all be understood as limiting cases with degenerate
maxima and minima.

The maximal critical points Λ1,2 correspond to the tangency with appearance of two new
intersections when ellipses are stretched past the tangency condition. The minimal critical points
Λ3,4 correspond to the disappearance of intersections when stretching ellipses past the tangency
condition. Only the maxima—the critical points Λ1,2—are relevant for detecting ellipse contacts.
The remaining two critical pointsΛ3,4 involve inverted ellipses, as they describe points on S with
locally minimal distance to the origin and are thus closer than at least one of the quadratic form
semiaxes.

The antipodal doubling of ellipses means that the tangency at Λ1 may correspond to the
contact with the antipode of the second ellipse, so it might not be the one we are looking for.
If there are only two critical points, there is no other possible contact. If there are four critical
points, growing the ellipses further makes them touch again at the next locally maximal critical
point (Λ2). This contact might be between the correct pair of ellipses, or it could be between the
same pair of ellipses as the Λ1 critical point, in which case it is not a candidate for a true contact
either.

As already discussed, the maximum of the lowest eigenvalue, Λ1, solves for the first contact.
The rest of the contacts can also be tied to extrema of the eigenvalues of Q(t) over t. The values
Λ2 and Λ3 correspond to the minimum and the maximum of the middle eigenvalue, and Λ4 to
the minimum of the largest eigenvalue (figure 3). Unlike the lowest eigenvalue of Q(t), which
is guaranteed to have a local maximum between t= 0 and t= 1, the remaining eigenvalues can
have extrema outside the interval t ∈ (0, 1), or none at all. In these cases, constrained minimization
returns one of the edge points of the interval.

If there are only two critical points on each loop of the intersection manifold S, then the middle
eigenvalue has no local extrema, neither inside the interval (0, 1) nor anywhere else on the real
line, and Λ2,3 are undefined. If there are four critical points, the local extrema may lie outside the
interval t ∈ (0, 1). This corresponds to a second contact between the same pair of ellipses as Λ1,
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inverted contact inverted contact

antipodal contact true contact

ellipse (a = 1)

ellipse (a = 1)

ellipse (b = 1)

 antipode ellipse
(b = 1)  antipode ellipse

(b = 1)

10

8

6

eigenvalues of A

eigenvalues of B

l
4

2

0

0 0.2 0.4 0.6 0.8 1.0

t

Figure 3. Eigenvalue spectrum of a generic case, with all four extremaΛi occurring inside the interval t ∈ (0, 1). If the first
contact is between the antipodes (lower left inset), the true contact and thus the correct value of the contact function is found
by theminimumof the second eigenvalue. Observe that the green ellipse (a= 1) still intersects the red (b= 1) antipode ellipse,
whichwe are ignoring. If the first contact is between the correct ellipses, then the lowest eigenvalue is the correct solution—we
need information about the correct antipode to test for that. The upper twoextrema correspond to inverted contacts (the shaded
area lies above the lowest non-zero eigenvalue of A and B). (Online version in colour.)

same side collision
l

10

8

6

4

2

0

0 0.2 0.4 0.6 0.8 1.0
t

no local minimum

Figure 4. Eigenvalue spectrum of a case where the first two contacts are between the same ellipses, signifying that either
the first contact is correct or neither of them is (as in the latter case, both contacts are between antipodes). Such situations
are characterized by the middle eigenvalue not having a local minimum in the interval 0< t< 1. Top two contacts are not
depicted. The shaded area corresponds to inverted ellipses. (Online version in colour.)

meaning that either both critical points signify contact between the true ellipses or both signify
contact with the antipode, in which case there is no contact (figure 4). This is convenient, as simply
checking for the existence of a minimum of the middle eigenvalue inside the interval t ∈ (0, 1)
includes all cases in which the critical pointΛ2 can constitute a real contact. Finally, if the resulting
Λ1 or Λ2 exceed any of the eigenvalues of A or B (which coincide with the non-zero eigenvalues
of Q(t= 0) and Q(t= 1)), it signifies a contact where at least one ellipse is inverted. We can test
this by finding the minimum non-zero eigenvalue Ω of A and B, corresponding to the largest
semiaxis of the largest ellipse. Critical points that exceed this value, Λ1,2 >Ω , do not correspond
to valid contacts, nor can their values be unambiguously used as an analitical continuation of the
contact function, because mixing of antipodes into the inverted ellipse makes the choice between
the branches impossible.
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(d) Contact function
To define a well-behaved contact function F to use as a test for ellipse–ellipse intersections,
the correct eigenvalue must be selected. This is done with the help of the eigenvectors, which
correspond to critical points. We denote with ±v1 and ±v2 the eigenvectors corresponding to
Λ1 and Λ2, respectively, and rA and rB are the true centres of the ellipses on the unit sphere,
their signs picking the correct ellipse of the antipodal pair. If the true ellipse collides with the
antipode of the second one, the projections of the intersection vector onto the vectors of ellipse
centres are of opposite signs, and vice versa. If there is no contact, or the contact is with an
inverted ellipse, assigning the value F=Ω makes the function continuous under variations of the
relative position of the ellipses. The full algorithm for computing the contact function is described
in algorithm 1.

Algorithm 1. Ellipse-ellipse contact function.

Result: Contact function F
Ω←min eigenvalue2,3(Q(0), Q(1));
t1← argmaxt∈[0,1] eigenvalue1(Q(t));
Λ1←Q(t1);
v1← eigenvector(Q(t1),Λ1);
if (rA · v1)(rB · v1)> 0 then

if Λ1 <Ω then
return Λ1;

else
return Ω ;

end
else

t2← argmint∈[0,1] eigenvalue2(Q(t));
Λ2←Q(t2);
if 0< t2 < 1 and Λ2 <Ω then

return Λ2;
else

return Ω ;
end

end

The contact function F, which is according to the above criterion equal to Λ1, Λ2, or Ω , can
be used either to directly detect when ellipses overlap (F< 1) or to construct a pair potential.
Instead of a hard core repulsion, a soft repulsion potential for overlapping cases F< 1 can be
defined based on the value of F, such as − ln F, F−1, F−1 + F− 2 or 1− F, the last being a soft
potential of finite strength at complete overlap. On the other hand, long-range values of F> 1
could act as a distance metric, e.g. in a Lennard–Jones-like potential, as they do in Euclidean
space [22]. Setting the function to Ω in cases for which the ellipses cannot intersect no matter the
stretch factor, ensures a constant potential and zero force on the particles for that entire region,
and makes the function well-behaved for use in methods that require a potential (e.g. Monte
Carlo methods). Even though there is no correspondence between such an artificially fashioned
potential and any physical phenomena we know of, such an academic exercise could provide a
reasonable approximation to medium-range behaviour that could match empirical observations
in certain physical systems.
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3. Examples

(a) Intersection of unequal circles
The simplest example that can be used for interpretation of the contact function F is a pair of
unequal circles. Define the following pair of quadratic forms:

a= α(x2 + y2)

and b= β(x2 cos2 θ + z2 sin2 θ − 2xz cos θ sin θ + y2),

⎫⎬
⎭ (3.1)

with α > β > 1 and θ the angular separation of the circle centres. In this case, the extremal
eigenvalues (without applying the restriction to 0< t< 1) have a relatively simple closed form,
and the contact function can be expressed as

F(θ )= αβ sin2 θ

α + β + 2
√
αβ cos θ

. (3.2)

The function’s behaviour with respect to θ is depicted in figure 5 for a few combinations of circle
sizes α and β. At θ > π/2, we have F(θ )=Λ2, corresponding to the second contact, as the first
contact is with the antipode. We observe that the crossover between the branches is continuously
differentiable. However, with the exception of equal circles, we see that the function reaches a
maximum at cos2 θ = β/α and then goes back to zero at θ = π . This part of the contact function
corresponds to the second collision also being with the antipode. The collision is internal (non-
facing normals), and the interpolation parameter at minimal middle eigenvalue is t> 1. In our
algorithm, we assign these collisions F=Ω .

(b) Computational cost of the algorithm
The algorithm itself is fast, as the eigenvalue calculation can be expressed in a closed form,
although it uses trigonometric functions that are slower than simple multiplications. One-
dimensional minimization and maximization routines are available in any number of numerical
libraries. We implemented two such routines, the golden section search (GSS) and the Brent
method (GSS with quadratic interpolation), and compared both the numbers of eigenvalue
evaluations Neval to achieve the desired accuracy (tolerance of 10−7 in t) as well as calculation
times. In figure 6, we show the results for a pair of ellipses on a unit sphere with major and minor
semiaxes ξ1 = 0.5 and ξ2 = 0.15, respectively (aspect ratio ε= ξ1/ξ2 ≈ 3.33). At a given angular
separation θ , the contact function and the computational cost required to determine it with the
Brent method depend on orientations of both ellipses as shown for θ = π/3 in figure 6a and 6b for
the number of first and second eigenvalue evaluations, respectively. The number of evaluations
forΛ1 mostly lies between 10 and 20, with the exceptions of diagonals with fewer evaluations and
two loops with Neval ∼ 30 that correspond to the cases near theΛ1 andΛ2 crossover. For relatively
high aspect ratios ε, as is the case in the demonstrated example, the second derivative close to the
crossover becomes large, which is unfavourable for the Brent minimization. Inside these loops,
the second eigenvalue becomes relevant for the contact function, as indicated in figure 6b (Λ2
is only evaluated in regions where the Λ1 eigenvector test fails, see algorithm 1). Additionally,
closer to the diagonals, the local minimum of λ2(t) inside the interval [0, 1] disappears and the
algorithm returns Ω . Note again that despite the algorithm branch changes, the contact function
is continuous in the whole configuration space.

We evaluate the necessary computational cost to determine the contact function both for
the GSS and Brent methods. The results with respect to the angular separation θ are shown
in figure 6c, where the value at each distance represents the average number of eigenvalue
evaluations over the whole orientational domain (106 points, figure 6a,b). The number of Λ1
evaluations with the GSS method remains (almost) constant for all distances, as a fixed number of
interval divisions is necessary to achieve the desired precision. This number is also markedly
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Figure 5. Contact function for circles of different relative radii separated by angle θ . Transition to the antipodal contact at
θ > π/2 is continuous; the insets show that the secondary contact is the correct one, while the contact with the antipode
(dashed circle outlinewithout infill) is ignored. If the circles are of the same size, the contact function ismonotonously increasing,
but if they are of different sizes, the decreasing part (shaded below the curve) corresponds to the case when the ellipses cannot
be made to touch by stretching, and the corresponding eigenvalue detects the second contact between the ‘wrong’ pair of
ellipses. In this region, the value of F is set toΩ (horizontal line), which corresponds to the inverse square radius of the larger
circle. Parametersα andβ correspond to inverse square radii (see equation (3.1)). (Online version in colour.)

higher compared with the Brent method, which shows that quadratic interpolation is highly
effective for this problem (this could be expected from eigenvalue curves in figures 3 and 4).
Note that the number of Λ1 evaluations is symmetric around θ = π/2, as elliptical cylinder
configurations are invariant to coordinate transformation θ→ π − θ and only the antipode
interpretations for the correct/wrong ellipse are exchanged. The number of Λ2 evaluations does
not show this symmetry. At small angular separations, the first eigenvalue will always be the
correct one and only for higher θ does the second eigenvalue evaluation become necessary in
parts of the orientational space (figure 6b). These regions become larger as θ is increased (at some
point, they consume the whole orientational domain), which in turn increases the average Λ2
evaluation numbers.

In some situations, e.g. for simulations of hard particles, the calculation of the exact contact
function is not needed. The optimization algorithm can be terminated immediately after a value
of Λ1 > 1 is encountered, as that means no overlap. The average number of Λ1 evaluations with
this early termination (ET) condition is shown in figure 6c with dashed lines and leads to a sharp
decrease of the necessary calculations in a large part of the plot. As shown in (a) for θ = π/3,
more than oneΛ1 evaluation is necessary only inside the white contour which grows/shrinks for
smaller/larger distances. Additionally, the grey region in the plot highlights the distances where
the overlap appears only for certain ellipse orientations (2 arcsin ξ2 ≤ θ ≤ 2 arcsin ξ1)—on the left
side of this region, ellipses overlap for all orientations and on the right, overlap is not possible as
they are too distant and the eigenvalue calculation can be skipped entirely.
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Figure 6. Number of eigenvalue evaluations and contact function calculation times for a pair of ellipses with ξ1 = 0.5 and
ξ2 = 0.15. Number of evaluations needed to determine (a)Λ1 and (b)Λ2 for the Brent method at angular separation θ =
π/3 in the whole orientational domain. ForΛ2, Neval = 0 in a large part of the domain whereΛ1 is the correct eigenvalue
for determining the contact function (outside of the white contours in (b)). Around this eigenvalue crossover, the number of
Λ1 evaluations is increased. The white contour line in (a) surrounds the region where Neval > 1 even with the ET enabled. The
red contours in (b) show the border where the contact function transitions to the constant value of F =Ω . (c) Number of
contact evaluations for GSS and Brent line minimizators. The increase inΛ2 evaluations is a consequence of growing regions
whereΛ1 is not the correct eigenvalue. ET (dashed lines) significantly decreases the number ofΛ1 evaluations. The grey area
corresponds to distances where the overlap of ellipses depends on their orientations; on the left side of this region, overlap is
guaranteed, while there can be no overlap on the right side of the region. (d) Comparison of contact function calculation times
for GSS and Brent methods. ET results are relevant only for θ < 2 arcsin ξ1, as they can only be used to determine overlap/no
overlap. (Online version in colour.)
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monodispersed bidispersed

Figure 7. Examples of monodispersed and bidispersed dense packings of N= 100 spherical ellipses with aspect ratio ε= 2.
In the bidispersed case, half of all ellipses are smaller by a factor of 1.4. (Online version in colour.)

Finally, figure 6d shows the average calculation time to evaluate the contact function. The
results are on the order of µs and closely follow the combined number of Λ1 and Λ2 evaluations
from (c), with the increase in calculation times corresponding to additional evaluations needed
to determine the second eigenvalue at larger distances. If ET is enabled, the efficiency of the
calculation is significantly improved.

(c) Dense packings of spherical ellipses
To demonstrate the use case of the proposed algorithm in multiparticle simulations, we calculated
dense packings of N= 100 spherical ellipses with ε= 2 for both monodispersed and bidispersed
systems (figure 7). We employed an energy minimization-based approach similar to the scheme
used by Mailman et al. [31] where the system is randomly initialized at a packing fraction far from
the jamming point, with subsequent iterative increases of particle sizes and relaxations to remove
all overlaps. As angular separation θ between the centres of neighbouring (touching) ellipses is
smaller than π/2 for our system parameters (N and ε), it is sufficient to calculate only the minimal
first eigenvalue to determine the contacts—possible cases with antipodal contacts can be excluded
based on ellipse separation alone.

4. Discussion
Depending on the requirements, the algorithm can be optimized further. For example, with
SIMD instructions, evaluations at multiple t ∈ (0, 1) could be performed with minimal overhead,
allowing for faster determination of the correct eigenvalue branch and narrower initial bracket
for the optimization algorithm. For the purposes of collision-driven molecular dynamics, the
expensive O(n2) complexity of evaluating pair interactions for a large number of particles can
be alleviated by keeping track of nearest neighbours (e.g. by adapting pre-existing methods
that make use of the contact functions [32]). Tracking and changing particle positions and
orientations while keeping their shapes constant requires keeping track of the rotation matrices
in a numerically stable form, which can be done either by tracking the ellipse centre vectors and
the vector of its principal component (e.g. through Euler angles) or by using unit quaternions.

Our algorithm is largely based on the algorithm of [23] but has some important differences
due to the differences between spherical and Euclidean geometry. On the one hand, spherical
geometry of the problem makes it simpler, because in the Euclidean space, translations and
rotations have to be considered separately, while on the sphere, the only parameter for the
position and orientation of the ellipse is a single rotation matrix. Similarities can be partially
restored by handling the Euclidean case in homogeneous (projective) coordinates, but then the
confinement surface is a plane, not a sphere, resulting in a different algorithm. Due to this
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difference, our algorithm requires solving an eigenvalue problem and not a linear system of
equations. In general, the eigenvalue problem is numerically more expensive, but for 3× 3
matrices, a closed-form solution is available.

From the aspect of finding the correct solutions, the spherical version of the algorithm is more
involved, as the configuration space of possible intersections is topologically non-trivial and splits
into different parts based on the behaviour of eigenvalue bands with respect to the parameter t.
The antipodal doubling means we need additional information to treat different branches of the
solution differently. However, as shown in our work, this can be done with a few trivial tests,
with the only caveat that the long-range contact function is spliced and undefined (clipped to Ω)
in parts of the configuration space.

5. Conclusion
The simplicity and speed of the presented algorithm makes it a viable workhorse for future
simulations on a sphere, be it interactions of hard particles or general long-range interactions
where distances are needed, although the concept of the contact function as a distance metric
must be considered with care. Collision detection and generalized distance can be used for Monte
Carlo simulations, while molecular dynamics can make use of the intersection vector and the
normal vector to the surface as well. Elongation of particles is known to affect optimal packing
fraction of random packings in Euclidean space [9,33], and with the presented algorithm, related
questions can be answered for packings on a sphere.

Simulations can also be augmented with other potentials that do not use the contact function—
for example, multipolar interactions, which may account for elliptical magnetic particles or
electrostatically charged macromolecules. The algorithm is viable for particles of different aspect
ratios and sizes, so it can be used for simulations of polydisperse particle systems. Another
important use case is in representation of arbitrarily shaped objects as isosurfaces of Gaussian
sums (called blobs or metaballs in three-dimensional graphics). A product of Gaussians, resulting
directly in addition of quadratic forms when constraned to a sphere, also resembles posterior
Bayesian update when handling probability models for directional or geographical data, which
may be relevant in data processing and machine learning.

Finally, more fundamental questions can also be tackled. Recall that both the Tammes problem
and its long-range potential cousin, the Thomson problem, have been well studied not only by
physicists but also from the perspective of fundamental and applied mathematics and computer
science. Generalization to an anisotropic case is a richer example, which without doubt hides
many undiscovered facts about spherical packings.
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