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Abstract

We study a set of cohomology classes which emerge in the coho-
mological formulations of the calculus of variations as obstructions to
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1 Introduction

In the differential (or geometric) formulation of the calculus of variations,
‘taking the variation’ of a Lagrangian corresponds to taking the differential
of a cochain, the Lagrangian, in some complex, a particular kind of quotient
of the de Rham complex of the total space of a fibre bundle. The first
fundamental result in this context was the solution of the so called ‘inverse
problem’ of the calculus of variations, i.e. the questions as to when equations
are Euler-Langrange equations, i.e. derive from the variation of a Lagrangian.

The solution splits into two parts. A certain type of cochain, a so called
dynamical or source form, is locally variational if it is a cocycle, i.e. it is closed
in the complex. Then, there exists at least a 1-cocycle of local Lagrangians.
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1

http://arxiv.org/abs/2111.09247v1


M. Palese, E. Winterroth 2

This cochain is globally variational, i.e. the 1-cocycle can be replaced by a
single global Lagrangian, if its cohomology class vanishes.

At this point it is natural to enlarge the concept of variational problem
and to consider also ‘local variational problems’, i.e. the above 1-cocycles
of local Langrangians. This may be advantageous even when a globlal La-
grangian exists, since it may be hard to find, to write down or generally
more cumbersome to deal with: Chern–Simons gauge theories are a well
fitting example.

For local variational problems, global conservation laws can no longer
be derived from the symmetries of the Lagrangians, instead one is lead to
study symmetries of the corresponding dynamical form (which we assume to
describe physically meaning global equations) within a combination of the
first and second Noether theorem (this is sometime also called a Noether–
Bessel-Hagen approach).

While the conservation laws so derived remain global, the conserved quan-
tities may not. There appears a topological obstruction, a cohomology class
in the complex, which may not vanish, even if a global Lagrangian exists; see
[14, 15, 22, 23].

We proved that this obstruction constitutes a link between the existence of
global conserved quantities and the existence of global solutions: the pullback
of the cohomology class to the base -and under certain conditions the class
itself- is also an obstruction to the existence of global solutions [23]. We can
study this cohomology class in various important special cases and (classical)
Chern Simons gauge theories are a natural choice. The 3-dimensional case
has been dealt with previously [22], [23]. There, the obstruction proved to
be sharp.

In this paper we extend the results of [23] to the 2p+ 1-dimensional case
for the (p + 1)th-Chern polynomial and the unitary group U(n), n ≥ p + 1,
with p arbitrary. The result is that the obstruction vanishes if and only if
the p-th Chern class vanishes. However, it is not clear if the obstruction will
still be sharp. It seems more likely that it is in this case a kind of primary
obstruction, analogous to the characteristic classes in obstruction theory.

The way the obstruction arises shows the power of the cohomological
formulations of the calculus of variations: the obstruction we characterize
not only allows to identify de Rham cohomology classes as obstruction to
the existence of solutions, but it can do so by means intrinsic to the calculus
of variations. This is particularly relevant in theories involving the coupling
of the Chern–Simons Lagrangian with another Lagrangian, where it may be
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used to derive non existence theorems in theoretical physics applications [30].
Furthermore, since our obstruction arises as an obstructions to the existence
of global conserved quantities, we identify the the pth real Chern class of P
as an obstruction to the globality of conserved quantities.

There is quite some interest in higher Chern–Simons theories in theoreti-
cal physics (a sample selection spanning over three decades: the seminal and
well known [9], [10], the excellent review [31]; see also the recent [4]) and it
should be, thus, interesting to investigate the consequences of our findings.

Since, we touch upon various and quite disparate topics, we aim to give a
reasonably self contained exposition. We will first sketch how to construct a
suitable complex for the differential approach to the calculus of variations (for
a more thorough treatment see e.g. [19] for the construction on finite order jet
bundles). Note that, instead of using the contact splitting of πr ∗

r−1(T
∗Jr−1Y ),

starting from an analogous splitting one can work on jets of infinite order,
see e.g. [3, 2, 25, 26, 27, 29]; our results remain valid also in the infinite order
case. Afterwards the concept of local variational problem is explained and
the corresponding ‘Noether theorems’ and the obstruction to the existence
of global conserved currents are introduced. Next the link with the existence
of global solutions is established. We then deal first with the formulation
of Chern–Simons theories on the bundle of connections before investigating
the conditions of existence of global solutions and the role of (variational)
cohomology therein in the specific case of the p + 1 Chern polynomial and
the unitary group U(n), n ≥ p+ 1.

2 Local variational problems, symmetries and

conservation laws

In this section we sketch some of the fundamental constructions and classical
results of the differential formulation of the calculus of variations; see e.g.
[19, 24]. We assume the r-th order prolongation of a fibered manifold π :
Y → X , with dimX = n and dimY = n+m, to be the configuration space;
i.e. fields are (local) sections of πr : JrY → X. The affine bundle structure
of πr+1

r : Jr+1Y → JrY , induces a natural splitting JrY ×Jr−1Y
T ∗Jr−1Y =

JrY ×Jr−1Y
(T ∗

X⊕V ∗Jr−1Y ), and therefore corresponding natural splittings
in horizontal and vertical parts of vector fields, forms and of the exterior
differential on JrY . Starting from this splitting one can define sheaves of
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contact forms θ∗r defined by the kernel of the horizontalization. The local
generators of the contact ideal are well known pfaffian 1-forms defining higher
order partial derivatives, and their differentials. The sheaves θ∗r form an
exact subsequence of the de Rham sequence on JrY and one can define the
quotient sequence {0 → IRY → Λ∗

r/θ
∗
r , E∗}, called the r–th order variational

sequence on Y → X, which is an acyclic sheaf resolution of the constant sheaf
IRY ; see [19], where it is also proved that the cohomology of the complex of
global sections H∗

V S(Y ) is naturally isomorphic to the de Rham cohomology
H∗

dR(Y ). Then it is also isomorphic to the Čech cohomology of Y . Thus if
the cohomology of Y is trivial, of course each local inverse problem is also
global.

The quotient sheaves in the variational sequence can be represented as
sheaves Vk

r of k-forms on jet spaces of higher order, see e.g. [19, 22]. La-
grangians are sheaf sections λ ∈ Vn

r , while En is called the Euler–Lagrange
morphism; the latter is thus characterized as a quotient morphism of the
exterior differential morphism of the de Rham complex. Therefore, the de
Rham cohomology H∗

dRY of Y appears naturally as a set of obstructions to
globality in the calculus of variation.

The Euler–Lagrange equations are therefore given by En(λ) ◦ j2r+1σ = 0
for (local) sections σ : X → Y . Sections η ∈ Vn+1

r are called source forms
or also dynamical forms, while En+1 is called the Helmholtz morphism.

In the case of a nontrivial cohomology of Y , given a closed section of
a quotient sheaf of the variational sequence, one look at the problem as to
when this section is also globally exact.

To answer to this question, let K
p
r

.
= Ker Ep; we have a natural short

exact sequence of sheaves which gives rise in a standard way to a long exact
sequence in Čech cohomology, where the connecting homomorphism, explic-
itly given by δp = i−1 ◦ d ◦ E−1

p , is the mapping of cohomologies in the
corresponding diagram of cochain complexes (d is the coboundary operator
in these complexes).

Every global section η ∈ Ep(V
p
r ), i.e. locally variational, defines a coho-

mology class δp(η) ∈ H1(Y ,Kp
r) ≃ Hp+1

V S (Y ) ≃ Hp+1
dR (Y ) (here ≃ denotes

the natural isomorphism between cohomologies).
Every non vanishing cohomology class in Hp

dR(Y ) gives rise to local vari-
ational problems. It is clear that η is globally variational if and only if
δp(η) = 0 (solution to the so called global inverse problem).

Let us consider the case when, instead, [η] ≃ δp(η) 6= 0; then η = En(λ)
can be solved only locally, i.e. for any countable good covering {U i}i∈Z in Y
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there exist local Lagrangians λi over each subset U i ⊂ Y with ηi = En(λi).
The local Lagrangians satisfy En((λi − λj)|Ui∩Uj

) = 0 and conversely any
system of local sections of with this property gives rise to a Euler–Lagrange
morphism η ∈ (En(V

n
r ))Y with cohomology class [η] ∈ Hn+1(Y , IR).

Such a system of local sections λi of (Vn
r )Ui

for an arbitrary covering
{U i}i∈Z in Y is what we call a local variational problem. Two local variational
problems are equivalent if and only if they give rise to the same Euler–
Lagrange morphism.

Note, in particular, that we do not exclude the possibility [η] = 0; i.e.
we allow also problems which admit a global Lagrangian as local variational
problems. A system of local Lagrangians may be the natural way in which a
variational problem presents itself and a global Lagrangian, if it exists, may
be hard to find and difficult to deal with - Chern–Simons theories are an
example of this situation.

To obtain conservations laws, it is now natural to consider the symme-
tries of η, which is assumed to be a global object, instead of those of the
Lagrangian, which could be or present itself as a local object. Cohomology
enters in globality problems concerned with conserved quantities, we shall
examine this aspect within Noether formalism [21].

Factorizing modulo contact structures is also the basic idea underlying
the definition of a variational Lie derivative operator LjrΞ and of a variation
formula defined on the sheaves of the variational sequence. This enables to
define symmetries of classes in the variational sequence and corresponding
(eventually higher) conservation theorems; see [1, 8, 22]. The corresponding
‘Cartan formula’ for the variational Lie derivative of closed classes of forms
selects a quite important class defined by both the vertical part of the sym-
metry and the Euler–Lagrange class, as a consequence of δp(LΞηλ) = 0, i.e.
of the fact that the variational Lie derivative ‘trivializes’ cohomology classes,
see e.g. [14, 15].

Let then now ηλ denotes a global Euler–Lagrange morphism for a local
variational problem λi; if ǫi = jrΞV ⌋pdV λi

+ ξ⌋λi denotes a local canonical
Noether current, for a projectable vector field Ξ, Noether’s First Theorem
reads locally LΞλi = ΞV ⌋ηλ + dHǫi. By a (global) symmetry Ξ, we have
LjrΞη = 0, and we get along critical sections (i.e. solutions of the Euler–
Lagrange equations) the global conservation law

0 = dHǫi −LΞλi,

since dHǫi − LΞλi is just a local expression for −ΞV ⌋η.
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However, this leads now to the rather curious situation of a global con-
servation law which may not admit global conserved quantities.

Indeed, since we assume η is locally variational, i.e. En+1-closed, and since
LjrΞη = 0 then

0 = En(ΞV ⌋η) ;

therefore locally ΞV ⌋ηλ = dHνi. Thus, ΞV ⌋ηλ defines a cohomology class and
to admit global conserved quantities this cohomology class has to vanish.

We stress that, for a global symmetry, d(ΞV ⌋ηλ) = 0, i.e. this con-
traction is globally defined, but in general we could have the obstruction
δn−1(ΞV ⌋ηλ) 6= 0, so that the current νi would be a necessarily local object
(conserved along the solutions of Euler–Lagrange equations).

On the other hand, and independently (see [21, 5]), for a generalized
symmetry (a symmetry of η but not of λ), we get locally

LΞλi = dHβi ,

thus we can write ΞV ⌋ηλ + dH(ǫi − βi) = 0.

Definition 1 We call the (local) current ǫi − βi a Noether–Bessel-Hagen
current.

Note that a Noether–Bessel-Hagen current is the difference between the
canonical Noether current (from the invariance of a Lagrangian) and the
Bessel-Hagen current (from the invariance of equations). In general, the ob-
struction to the globality of the single type of current is given by different
and, in principle, independent cohomolgy classes [14, 15].

Interesting application of Noether–Bessel-Hagen currents can be recog-
nized e.g. in the study of dynamical systems, such as mechanical systems
where external forces are present, or cosmological system derived from scalar-
tensor gravity with unknown scalar-field potential [28].

Under certain conditions a Noether–Bessel-Hagen current, associated with
a generalized symmetry, turns out to be variationally equivalent to a Noether
current (exact on-shell and generating a canonical conserved quantity) for a
certain correspondingly invariant Lagrangian [8].

We stress that, by the Noether–Bessel-Hagen theorem, δn−1(ΞV ⌋ηλ) 6=
0 is of course also an obstruction for the globality of this latter current
(which is variationally equivalent to the local current νi). In other words,
a local Noether–Bessel-Hagen current can be globalized if and only if 0 =
δn−1(ΞV ⌋ηλ) ≃ [ΞV ⌋ηλ] ∈ Hn

dR(Y ) [14, 15].
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3 A cohomological obstruction to the exis-

tence of global critical sections

The cohomology class [ΞV ⌋η] establishes a curious link between the existence
of global conserved quantities and the existence of global critical sections. For
this link to be meaningful, we have to require X to be closed, i.e. compact
without boundary. To apply these results to non compact manifolds the
existence of a suitable compactification is needed.

Theorem 1 Let η be the dynamical form of a local variational problem and
let Hn

dR(Y ) ∼ π∗(Hn
dR(X)). If the variational problem admits (global) critical

sections then all conservation laws derived from symmetries of the global field
equations admit global conserved quantities.

This theorem is a consequence of the fact the the class [ΞV ⌋η] vanishes along
critical sections, see [23], and, thus, does not depend on the differential for-
mulation of the calculus of variation one works with.

The condition Hn
dR(Y ) ∼ π∗(Hn

dR(X)) is satisfied, for example, by all
theories on vector or affines bundle. In particular, it is satisfied by all theories
which can be formulated on the bundle of connections (see below), like Yang–
Mills type or Chern–Simons type theories.

Obviously, if critical sections annihilate [ΞV ⌋η], then the non vanishing of
this class (or one of its pullbacks) is an obstruction to the existence of global
critical sections. More precisely, if the class jσ∗([ΞV ⌋η]) does not vanish,
neither σ nor any section homotopical to it, i.e. any deformation or variation
of σ, can be critical. Thus, jσ∗([ΞV ⌋η]) is an obstruction to the existence
of global solutions for the (local) variational problem defined by η in the
homotopy class of σ.

If we require π and, thus, jσ again to induce isomorphisms between
Hn

dR(X) and Hn
dR(JY ) ≡ Hn

dR(Y ), the class jσ∗([ΞV ⌋η]) vanishes if and
only if [ΞV ⌋η] vanishes.
Therefore, we have [23]

Corollary 1 Let σ be a section of Y over X. If 0 6= jσ∗([ΞV ⌋η]) ∈ Hn(X),
then there is no (global) critical section in the homotopy class of σ.

If Hn
dR(Y ) ∼ π∗(Hn

dR(X)), as before, there are no (global) critical sections
if [ΞV ⌋η] 6= 0.
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On the one hand, Euler–Lagrange equations are essentially a set of partial
differential equations and for partial differential equations even the existence
of local solutions is a non trivial problem, involving deep analysis. From
that point of view, one would think that topological obstructions are too
coarse to play a particularly important role. On the other hand, we have
seen already two classical results (on the global inverse problem and on the
existence of global conserved currents), where a certain cohomology class is
the only obstruction to globality.

Of course, it is actually a slight abuse of language to talk of one coho-
mology class as obstruction, since it depends on the symmetry as well.

Unfortunately, the class [ΞV ⌋η] seems almost impossible to study in gen-
eral. Partly this is due to the difficulties with giving an explicit, but general
isomorphism between variational cohomology and de Rham cohomology; an
important improvement in this respect would be to be able to keep track
of the contact structure in the Leray–Serre spectral sequence. Even more
important is that the definition of [ΞV ⌋η] involves a contraction and the con-
traction of a form with a vector field behaves very badly with cohomology.

Thus, one is naturally led to study [ΞV ⌋η] in interesting special cases and
Chern–Simons theories are for their ‘topological’ character the first natural
choice. The three dimensional case was dealt with in in detail in [23]. In
the next section we investigate Chern–Simons theories in arbitrary (odd)
dimensions and present some preliminary relevant results.

4 Chern–Simons theories in dimension 2p+ 1

Classical Chern–Simons theory is a classical field theory for principal connec-
tions on an arbitrary principal bundle P over an odd dimensional manifold
X. In what follows, the dimension of X will be 2p + 1. We will be mainly
concerned with U(n), n ≥ p+1, as structure group and the kth-Chern poly-
nomial, though at the end we will shortly discuss some other cases. Most of
the expository material will nevertheless be valid in general. Anyhow, it will
be stated explicitly when we deal exclusively with our main case of interest.
X will still be required to be closed.
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4.1 The bundle of connections

To study Chern–Simons theories with the variational sequence or, more gen-
erally, any differential formulation of the calculus of variations, it is necessary
to describe connections as sections of a bundle. To do so we need the bundle
of connections: for an arbitrary principle bundle P it is defined as

CP := J1
P /G 7→ P /G ∼ X ,

this bundle, πCP : CP 7→ X, is an affine bundle modeled on the vector bundle

T ∗
X⊗V P /G 7→ X,

i.e. the bundle of VP /G valued 1-forms on X. Locally CP can be trivialized
as CP |U ∼ U×R

n⊗g with g the Lie algebra of G. If (xi)1≤i≤n are coordinates
on X and gp is a base of g, we have coordinates (xi, Ap

i ) (A
p
i is the coefficient

of the component dxi⊗gp) on CP |U .
If hUV : U∩V 7→ G is the transition function of the change of trivialisation

from P |V to P |U ,

(x, ωU(x)) = (x, ad(hUV (x)
−1)(ωV (x)) + dhUV (x)h

−1
UV (x))

is the change of trivialisation from CP |V to CP |U .
Thus, the principal connections on P are in one to one correspondence

with the (global) sections σ of the bundle πCP : CP 7→ X in the following
sense: every section defines the set of local connection forms on X corre-
sponding to a connection on P . Furthermore, the contact structure of J1

P

defines a connection on the principal bundle J1
P 7→ CP and this connection

is universal in the sense that every principal connection on P 7→ X is in-
duced by it via a section σ : X 7→ CP . We will refer to it as the canonical
connection φ.

Let ckij be the structural constants of g. We can write for the curvature
of the canonical connection (see e.g. [7])

F = Σk gk⊗ ( Σµ,ν,κ (dx
µ ∧ dA

k
µ
+ Σi,j

1

2
ckij A

i
νA

j
κ dxν ∧ dxκ)) .

Its horizontalization with respect to the contact structure on J1CP is then
given by

h(F) = Σk gk⊗ ( Σµ,ν ((A
k
µ
ν − A

k
ν
µ) dx

µ ∧ dxν + Σi,j

1

2
ckij A

i
µ
A

j
ν dxµ ∧ dxν)) (1)
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with

(π1
0)

∗F = Θφ + h(F) .

Here Θφ is of course the contact component of (π1
0)

∗F ; if θ
k
µ = dA

k
µ −

Σν A
k
µ
ν dx

ν are the local contact one forms on J1CP , its local expression is
given by

Θφ = Σk gk⊗ Σµ dx
µ ∧ θ

k
µ
. (2)

Now, if (π1
0)

∗J1
P is the total space of the pullback of the principal bundle

J1
P 7→ CP to J1CP via the jet bundle projection π1

0 : J1CP 7→ CP , we can
think either Θφ, h(F) ∈ Λ2(J1CP )⊗VP /G or Θφ, h(F) ∈ Λ2((π1

0)
∗J1

P )⊗g,
depending on the interpretation of F .

We have the following expression for the curvature Ωσ of the connection

ωσ with σ(x) = (x,A
k
µ(x))

Ωσ = (j1σ)∗h(F) = σ∗F (3)

with coordinate expression

Ωσ = Σkgk⊗

⊗[Σµ,ν((
∂

∂xν
A

k
µ(x)− ∂

∂xµ
A

k
ν(x))dxµ ∧ dxν + Σi,j

1
2
ckijA

i
µ(x)A

j
ν(x)dxµ ∧ dxν)] .

4.2 Chern–Simons theories on the bundle of connec-

tions

We will now outline the construction of classical Chern–Simons theories.
Starting point is the work by Chern and Simons on secondary characteristic
classes, [11] and [12]. Chern–Simons theories are gauge theories for connec-
tions. These gauge theories were introduced in [13] in three dimensions and
in [9] and [10] in higher dimensions. Interestingly, these higher dimensional
theories have been fairly extensively studied in theoretical physics, see e.g.
[31].

Let Pk be the k-th G-invariant polynomial on g the Lie algebra of G, let
ω be a connection on the principal bundle P over X and Ω its curvature
form Pk(Ω) is a closed form of degree 2k on P . Horizontal and invariant
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under the right action of G, it can also be considered a closed form on X .
The cohomology class it defines is the k-th real valued Chern class of P . It
is independent of the connection ω (this is the starting point of Chern-Weil-
theory).

Chern and Simons found in [12] a 2k − 1-form TPk(ω) on P such that

Pk(Ω) = dTPk(ω)

on P . One can write explicitly [12]

TPk(ω) = Σk−1
i=0 κiPk(ω ∧ [ω, ω]i ∧ Ωk−i−1)

κi is a rational numerical factor which is of no concern to us; note that we
view Pk here as a linear form on a k-th power of g, for more details see again
[12].

For every coordinate covering of X over which P can be trivialized and
a corresponding family of local connection forms ωU , we get, thus, a family
of local potentials TPk(ωU) for Pk(Ω).

If Pk(Ω) = 0 we have 0 = dTPk(ω) and, thus, TPk(ω) defines a cohomol-
ogy class on P . This cohomology class depends on the connection ω. This
dependence is the starting point of Chern–Simons-Field theories, the central
idea is to use TPk(ω) as a variational principle for connections.
From now on we will consider a U(n)-principal bundle P over a (2p + 1)-
dimensional manifold X with n ≥ p + 1. We will also deal exclusively with
the p+1-Chern polynomial Pp+1. At the end we will remark on some possible
alternative choices.

We will sketch the construction of a local variational problem starting
from the Chern–Simons form TPp+1(φ) for the canonical connection φ on the
bundle J1

P 7→ CP . For a family of local connection forms φU on a covering
of CP with coordinate patches, we get, thus, a system of local potentials
TPp+1(φU) for Pp+1(F). This system of local potentials projects now in the
variational sequence on J1CP onto the system of local Lagrangians

λCS
U = Σp

i=0κiPp+1(φU ∧ [φU , φU ]
i ∧ (ΩΣ|U)

p−i)

Again we consider Pp+1 here to be linear on a power of g. The dynamical form
(or, cum grano salis, the Euler–Lagrange morphism) of this local variational
problem is

ηCS = (π2
1)

∗(Pp+1((ΩΣ)
p ∧ F))
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This (once again we consider Pp+1 to be linear) is the image (of the pullback
to J2CP ) of Pp+1(F) in the variational sequence.
In particular, Pp+1(F) and ηCS define the same cohomology class inHn+1(J2CP ).
Since Hn+1(JrCP ) ∼ Hn+1(CP ) ∼ Hn+1(X) = 0, the theory is globally vari-
ational, but a global Lagrangian is not easy to find and quite tricky to work
with. It also seems to depend always on fixing a physical quantity, a back-
ground connection, a priori. See [6] for the 3-dimensional case and [16] for
higher dimensions.

5 The obstructions in the case of Chern–Simons

theories for U(p + 1) and the p + 1th Chern

polynomial

Let P 7→ X be a U(p + 1) principal bundle over the (2p + 1)-dimensional
manifoldX. Since U(p+1) is a matrix group, it and its Lie algebra up+1 have
standard representations. All matrix expressions, in particular determinants,
are understood to be relative to these.

Let ck be the kth Chern polynomial on up+1 (see e.g. [18] volume II,
XII.3); for A ∈ up+1 it is defined by

ck(A) =
1

(k)!

(

i

2π

)k

· Σp+1
i=1 M

k
i (A) (4)

Σp+1
i=1 M

k
i (A) stands for the sum over all k-principal minors of A. If Ω is the

curvature 2-form of a connection ω on P , we have by Chern–Weil theory

[ck(Ω)] = cIRk (P ) ∈ H2k(X, IR) (5)

where cIRk (P ) is the kth real Chern class of P (for the integer Chern classes
in algebraic topology see e.g. [17] chapters 17 and 20 and [20] chapters 13

to 16). Note that 1
(k)!

(

i
2π

)k
is a normalization factor such that [ck(A)] lies

in the image of H2k(X,Z) in H2k(X, IR) induced by the inclusion Z ⊂ IR.
Thus, we have

cp+1(Θφ + h(F)) =
1

(p+ 1)!

(

i

2π

)p+1

·Det(Θφ + h(F))
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and

ηCS = cp+1(Θφ ∧ h(F)p) =

1

(p+ 1)!

(

i

2π

)p+1

·
(

Σpq(−1)p+q(Θφ)pq ∧Mpq (h(F))
)

(6)

(Θφ)pq is the pq-entry of Θφ and Mpq (h(F)) is the pq-minor of h(F), i.e. the
determinant of the matrix obtained by deleting the pth row and qth column
of h(F). Note, that the right hand expression is globally well defined on
(π1

0)
∗J1

P , because there h(F) and Θφ are Lie algebra valued.

Proposition 1 Let P 7→ X be a U(p+ 1) principal bundle over a manifold
X of dimension 2p + 1. A principal connection ω on P is a solution of
the classical Chern–Simons gauge theory derived from the (p + 1)th Chern
polynomial if and only if the rank of its curvature form is everywhere ≤ p−1.

Proof. Solutions are sections σ of πCP : CP 7→ X such that ηCS ◦
j1σ = 0. Keeping in mind that Θφ does not vanish anywhere along any
section , see (2) above, we see from (6) above that Mmn (h(F)) |σ = 0. Since
Ωσ = (j1σ)∗h(F), see (3) above, this means that all pq-minors of Ωσ vanish,
i.e. Ωσ is everywhere of rank ≤ p− 1.

With this characterization of the solutions at hand we can identify directly
the pth real Chern class of P , cIRp (P ) as an obstructions to existence of global
solutions.

Corollary 2 The vanishing of the pth real Chern class of P , cIRp (P ), is a
necessary condition for the existence of global solutions in the situation of
the above proposition.

Proof. For a matrix B ∈ up+1, cp(B) is up to a normalization factor the
sum over the p-principal minors of B (see (4) above) and cp(B) = 0 if and
only if rank B ≤ p− 1. By (5) cIRp (P ) = [cp(Ω)] for any principal connection
ω on P . But if ωσ is a solution then rank Ωσ ≤ p−1 by proposition 1 and we
have cp(Ωσ) = 0 and the pth real Chern class vanishes. Vice versa, if cIRp (P )
is non trivial, then we have cp(Ω) 6= 0 for all principal connection ω on P

and there cannot be a connection ωσ with curvature Ωσ of rank ≤ p− 1.

We will now show that if 0 6= cIRp (P ) ∈ H2(X, IR) there is also a nontrivial
cohomology class of type [Ξ⌋ηCS ] in the variational sequence, respectively a
nontrivial cohomology class [(j1σ)∗Ξ⌋ηCS] ∈ H2p+1(X, IR).
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Having already identified cIRp (P ) as obstruction to the existence of so-
lutions, one naturally will wonder about the relevance of this: a situation
where the obstructions Ξ⌋ηCS are easier accessible is hard to imagine. There
are, however, three aspects which render this results quite interesting.

Firstly, its theoretical importance lies in the fact that it shows the power of
the cohomological formulations of the calculus of variations: not only allows
it to identify de Rham cohomology classes as obstruction to the existence of
solutions, but it can do so by means intrinsic to the calculus of variations.
In this sense this is a continuation and extension of the results of [23].

Secondly, as we mentioned already, the obstructions of type Ξ⌋ηCS arise
in the context of the Noether theorems in variational cohomology as obstruc-
tions to the existence of global conserved quantities (see e.g. [14], [23], also
[3]). Therefore, by making the connection between the two types of obstruc-
tions explicit, we identify the the pth real Chern class of P as an obstruction
to the globality of conserved quantities.

Thirdly, in the case of the coupling λ̃ + κ · λCS of the Chern–Simons
Lagrangian with another Lagrangian, we obtain the Euler–Lagrange form
ηλ̃+κ ·ηCS. For the obstructions of the type [Ξ⌋ (ηλ̃ + κ · ηCS)] to vanish, this
means then that [Ξ⌋ηλ̃] is the precise counterpart which needs to annihilate
κ · [Ξ⌋ηCS ]. This may be used to derive strong non existence theorems with
direct applications in theoretical physics [30].

Theorem 2 Let P 7→ X be an U(p + 1)–principal bundle over the 2p + 1-
dimensional closed manifold X; let ηCS be the Euler–Lagrange form of the
Chern–Simons gauge theory on P derived from the (p + 1)th Chern polyno-
mial.

If the the pth real Chern class of P , cIRp (P ) does not vanish then there
exists a vertical vector field Ξ on the respective bundle of connections CP 7→ X

such that the corresponding obstruction of the form [Ξ⌋ηCS] does not vanish
either. Conversely, if [Ξ⌋ηCS ] is nontrivial, so is cIRp (P ). Furthermore, we
have

Ξ⌋ηCS = h

(

−1

2π · (p+ 1)
· π∗(β) ∧ cp (F)

)

and

(j1σ)∗Ξ⌋ηCS =
−1

2π · (p+ 1)
· β ∧ cp (Ωσ)

where β is a differential 1-form on X.
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Proof. For the sake of notational simplification we set λk := 1
(k)!

(

i
2π

)k
.

From equation (2) we get locally

Θφ = Σk gk⊗ Σµ dx
µ ∧

(

dA
k
µ
− Σν A

k
µ
ν dx

ν

)

and, thus, with Ξ = Σk,µ ξ
k
µ ∂

∂A
k
µ
we have

Ξ⌋ηCS = Ξ⌋
(

λp+1 · Σpq(−1)p+q(Θφ)pq ∧Mpq (h(F))
)

=

λp+1 · Σpq(−1)p+q(Σk gk⊗ Σµ ξ
k
µ
dxµ)pq ∧Mpq (h(F))

For a section σ : X 7→ CP , the corresponding connection ωσ and its curvature
Ωσ, we have

(j1σ)∗Ξ⌋ηCS = λp+1 · Σpq(−1)p+q(Σk gk⊗ Σµ ξ
k
µ
(σ(x)) dxµ)pq ∧Mpq (Ωσ)

As the next step, we need to construct a particular vertical vector field Ξ.
To this end note that, since πCP : CP 7→ X , is an affine bundle modeled on
the vector bundle

T ∗
X⊗VP /U(p + 1) 7→ X

we have

V CP ∼ CP ×X T ∗
X⊗V P /U(p+ 1)

and, in particular, we can identify

∂

∂A
k
µ

= gk⊗dxµ

Since (i · 1p+1) ∈ u(p+1) is U(p)–invariant, (i · 1p+1)⊗β defines a unique
vertical vector field Ξ on CP for any differential 1-form β on X. If we identify
(i · 1p+1) ∈ u(p+1) with g0 and with the local expression β = Σµξ

mu · dxµ, we
have locally Ξ = Σµ ξ

µ ∂

∂A
0
µ
. Therefore, we have

Ξ⌋ηCS = λp+1 · Σp i · β ∧Mpp (h(F)) =
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−1

2π · (p+ 1)
· (π1

0)
∗(β) ∧

(

λp · Σ
p+1
i=1 M

p
i (h(F))

)

=

−1

2π · (p+ 1)
· (π1

0)
∗(β) ∧ cp (h(F))

on (π1
0)

∗J1
P by equation (6) and, thus, on X

(j1σ)∗Ξ⌋ηCS =
−1

2π · (p+ 1)
· β ∧ cp (Ωσ)

If now 0 6= cIRp (P ) ∈ H2p(X, IR) Poincaré duality implies that β can be
chosen such that

0 6= [(j1σ)∗Ξ⌋ηCS] =
−1

2π · (p+ 1)
· [β] ∪ cIRp (P ) ∈ H2p+1(X, IR)

since X is closed. Thus, it only remains to be shown that ((i · 1p+1)⊗β)⌋ηCS

defines a cohomology class in the variational sequence. To see this, note first
that we have

−1

2π · (p+ 1)
· β ∧ cp (Ωσ) = σ∗

(

−1

2π · (p+ 1)
· π∗(β) ∧ cp (F)

)

(7)

Now, −1
2π·(p+1)

· (π1
0)

∗(β) ∧ cp (F) represents a nontrivial cohomology class

whenever (j1σ)∗Ξ⌋ηCS does, since [cp (F)] = cIRp (J
1
P ). For Ξ = (i · 1p+1)⊗β

we have then

Ξ⌋ηCS = h

(

−1

2π · (p+ 1)
· π∗(β) ∧ cp (F)

)

But since the horizontalization h is the projection onto the variational se-
quence for 2p + 1-forms, we have shown that there is a cohomological non
trivial Ξ⌋ηCS, whenever c

IR
p (P ) is cohomological non trivial.

For the converse statement, note that [Ξ⌋ηCS] is the image of [ −1
2π·(p+1)

·

π∗(β) ∧ cp (F)] ∈ H2p+1(CP , IR) in the cohomology of the variational se-
quence; i.e. the former is non trivial if and only if the latter is. For the latter
we have

[
−1

2π · (p+ 1)
· π∗(β) ∧ cp (F)] =

−1

2π · (p+ 1)
· π∗[β] ∪ [cp (F)]
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Since σ∗ and π∗ are inverse isomorphisms in cohomology, we get from equa-
tion (7)

−1

2π · (p+ 1)
· π∗[β] ∪ [cp (F)] =

−1

2π · (p+ 1)
· π∗[β] ∪ π∗[cp (Ωσ)] =

−1

2π · (p+ 1)
· π∗[β] ∪ π∗cIRp (P )

Therefore, if [Ξ⌋ηCS] is nontrivial, c
IR
p (P ) also is (and [β] is up to a constant

multiple its Poincaré dual).
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Diff. Geom. Appl.; J. Janyška, D. Krupka eds., World Sci. (Singapore,
1990) 236–254.

[20] J.W. Milnor, J. D. Stasheff: Characteristic Classes, Annals of Mathe-
matics Studies 76, Princeton University Press, Princeton (NJ) 1974.

[21] E. Noether: Invariante Variationsprobleme, Nachr. Ges. Wiss. Gött.,
Math. Phys. Kl. II (1918) 235–257.

[22] M. Palese, O. Rossi, E. Winterroth, J. Musilová: Variational sequences,
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