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Macrochains of topologically interlocked rings with unique physical properties have recently gained
considerable interest in supramolecular chemistry, biology, and soft matter. Most of the work has
been, so far, focused on linear chains and on their variety of conformational properties compared
to standard polymers. Here we go beyond the linear case and show that, by circularizing such
macrochains, one can exploit the topology of the local interlockings to store torsional stress in the
system, altering significantly its metric and local properties. Moreover, by properly defining the
twist (Tw) and writhe (Wr) of these macrorings we show the validity of a relation equivalent to the
Cǎlugǎreanu-White-Fuller theorem Tw+Wr=const, originally proved for ribbon like structures such
as ds-DNA. Our results suggest that circular structures of topologically linked rings with storable
and tunable torsion can form a new category of highly designable multiscale structures with potential
applications in supramolecular chemistry and material science.
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Topologically constrained molecules and polymers
have recently attracted considerable attention in physics,
chemistry and biology [1]. Examples are nano-engineered
Mechanically Interlocked Molecules (MIMs) such as ro-
taxanes, catenanes, and molecular knots [2, 3], melts of
rings [4], and olympic gels [5–7] such as the natural oc-
curring kinetoplast DNA [8–11]. Steady advancements
in chemical synthesis techniques [12–14], modelling, and
simulations [15, 16] have recently started to offer a frame-
work to design systems of interlocked rings with con-
trollable properties [13, 14, 17, 18] and versatile applica-
tions [19–21]. Examples range from catalyzers and nano-
machines [22–26] to candidates for novel smart materials
and artificial muscles [27].

Novel experimental techniques are now opening the
possibility to synthesize high-weight polycatenanes,
called Mechanically Interlocked Polymers (MIPs), long
chains composed by n elementary rings held together
only by topological interlocking [13, 14, 28]. In partic-
ular, in [13] metal supramolecular polymers were used to
obtain polycatenanes composed of up to n = 130 rings,
while in [14] a novel self-assembly technique was pro-
posed in which supramolecular rings were grown directly
to form a catenane of up to 22 units [14]. These studies
have prompted the question of how the configurational
properties of MIPs differ from their standard polymeric
counterparts whose elementary units are held together
by covalent bonds [29–32].

Interestingly, in [13] it was also demonstrated the pos-
sibility to synthesize cyclic polycatenanes. This brings
up the question on how and to which extent the imposed
circular constraint can affect the physical properties of
these supramolecular structures. For instance, circular-
ized polycatenanes may assume supercoiled configura-
tions as in dsDNA, significantly affecting their elastic and
dynamical properties, and, arguably, their responsiveness
to external stimuli.

Here we show that circular polycatenanes can store
supramolecular torsion upon circularization and, by us-
ing extensive molecular dynamics simulations, we char-
acterize their equilibrium properties as a function of
the number of elementary rings n and the amount of
supramolecular torsion trapped into the system. Our re-
sults show that this controls the average extension of the
macrochains as well as their local properties such as the
relative orientation of the rings. Finally, by extending to
the present case the notion of twist and writhe used in
ribbon-like structures such as the ds-DNAs, we show that
a relation equivalent to the Cǎlugǎreanu-White-Fuller
theorem holds also for circular polycatenanes.

Our reference system consists of n semiflexible ori-
ented rings (the elementary units of the polycatenane)
each composed of m = 48 beads with nominal diameter
σ. This level of polymerization has been chosen to ob-
tain elementary rings with a thickness to diameter ratio,
p = σ

D , similar to the one typically achieved in polycate-
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nanes obtained from metal-supramolecular polymers [13].
Other values of p, compatible with DNA minicircles [3]
and supramolecular toroids [14] have been investigated
too. The connectivity of each elementary ring is pro-
vided by a FENE potential while the ring’s nominal per-
sistence length is set to lp = 2mσ, preventing substantial
variations in its local curvature due to thermal fluctu-
ations (see Fig. 1a). This level of rigidity is compati-
ble with those of the rings used both in [13] and [14].
The excluded-volume interaction among the nm beads is
treated via a Weeks-Chandler-Andersen (WCA) poten-
tial, see SM.

We consider closed polycatenanes formed by n = 2k
rings, connected in such a way that they can always be
arranged into a planar circle. Adopting this configura-
tion as a reference, we orient the rings so that all their
normals point either above or below the plane. Specif-
ically, for each ring i we define its normal as Ni =
4
m

∑m/4
k=1(rk+m/4−Ri)× (rk −Ri), where rk is the posi-

tion of the k−th bead on ring i, oriented as above, Ri is
its center of mass, and N̂i = Ni/|Ni|. We then assign a
linking number Lki,i+1, to all pair of rings i, i + 1 (with
n + 1 = 1) according to the standard convention for the
sign of crossings, see Fig. 1. In this way one can distin-
guish three classes of rings forming the circular polyca-
tenanes: 0-rings, which form a +1 and a −1 Hopf link
with their neighbours (in blue in Fig. 1), and +2(−2)
rings, which contribute two +1(−1) Hopf links (in red
and yellow respectively in Fig. 1c), d)). Clearly, the link-
ing numbers of all ring pairs can be univocally identified
by fixing the type of either even- or odd-numbered rings.
Furthermore, in the planar conformation, 0-rings can ro-
tate around the axis identified by the centers of their
neighbours along the chain by an angle φ(p) without af-
fecting their neighbours, while the same is not possible
for +2 and −2 rings. Thus, the latter can be thought to
induce a torsion in the polycatenane.

Using the setting above, we identify the supramolecu-
lar torsion captured by circularization with ntr = n+−n−
where n+ and n− are the number of +2 (red) −2 rings
(yellow) respectively. Clearly, ntr = 1

2

∑n
i=1 Lki,i+1,

where Lki,i+1 ∈ {−1,+1} is the linking number of the
pair of rings (i, i+1), with n+1 = 1. Given the constraint
that all polycatenanes must admit a planar conformation
as in Fig. 1 c), ntr can only take values between −n/2
and n/2.

We note that for circular polycatenanes ntr is con-
served, while the number and position of 0, +2 and −2
rings can vary. This can be easily seen by rotating the
gray ring marked 1 in Fig. 1c) and then reorienting the
rings so that their normals point up. The resulting cate-
nane, shown in Fig. 1d), still has the same value of ntr,
no matter whether we count it on the odd or even rings.
As shown in the SM, all different labelings of the rings
giving a fixed value of ntr can be mapped to a reference

polycatenane having ntr +2-rings and n/2− ntr 0-rings.

Figure 1. a) The annular polycatenanes we consider are com-
posed of n identical, almost rigid rings of diameter D, each
formed by m beads of diameter σ. b). The stiffness of the
rings allows us to map them on their centers Ri and normal
vectors N̂i. Notice how the vectors N̂i need not to be per-
pendicular to the backbone vectors Ti. c) A polycatenane
with torsion index ntr can be obtained by using ntr ”torsion
inducing” rings (red) and n/2 − ntr ”freely-rotating” rings
(blue). d) Equivalent polycatenanes with the same value of
ntr, like the one shown here, can be obtained by flipping and
reorienting one or more rings.

The system is evolved with an underdamped Langevin
dynamics integrated numerically with the LAMMPS
package [33] with default values for the mass, tem-
perature, and energy coefficients, damping time τd =
10τLJ where τLJ is the characteristic simulation time,
and integration time step ∆t = 0.0124τLJ , see SM.
Starting from an initial condition with a fixed value
of ntr, the system is relaxed to equilibrium where an
extensive sampling of the configurational space is per-
formed. Here we consider polycatenanes composed of
n = {20, 40, 60, 80, 100, 200, 300} rings, with ntr/n =
{0, 0.1, 0.2, 0.3, 0.4, 0.5}.

In figure 2 we report some typical equilibrium config-
urations of circular polycatenanes for several values of n
and different amount of ntr: one can readily see that,
for fixed n, configurations with large ntr are more crum-
pled than those that are torsionally relaxed (ntr = 0).
Moreover, as n increases, torsionally stressed configura-
tions start to form curled substructures reminiscent of
the plectonemes in supercoiled DNA [34]. Although n
is not very large, branched-like structures at very large
scale can be observed too.

Note that the configurational space available in
macroring models is more complex and richer than the
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Figure 2. Typical configurations for n = 20, 100, 300 for two
different values of ntr. Left column: ntr = 0, the polyca-
tenanes are torsionally relaxed. Right column, ntr = 0.5n,
corresponding to the maximum torsion storable in planar cir-
cles. These last polycatenanes are visibly more compact and
crumpled. The scale of the snapshot is preserved at fixed
values of n. The color map highlights the sequence of the
elementary rings along the backbone.

one in twistable (or ribbon-like) chain models typically
used to describe dsDNA. In fact, our ”monomers” are
rings linearly bonded through topological constraints
(Hopf links). This allows a significant degree of freedom
for each ring, a local entropy, while keeping the whole
system globally constrained. The consequences can be
appreciated by looking at the normal-normal correlation
function Cn(d) = 〈 1

n

∑n
i=1 N̂i · N̂i+d〉 for different values

of the stored torsion, see Fig. 3 a). As expected, for the
maximum value of storable torsion, ntr = n/2, C(d) de-
creases slowly, confirming that some twist is stored along
the catenane. Interestingly, for ntr = 0 the correlation
C(d) goes to zero at d = 1, and then regularly oscil-
lates between relatively large, but decreasing values for
d = 2, 4, 6 and zero for d = 3, 5, 7. This behaviour can be
understood by observing that in this case, each ring can
freely rotate around the axis joining its two neighbours.
Hence, the angle between the normals of two contiguous
rings may range from 0 to 180 degrees giving an average
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Figure 3. Normal-normal correlation function, Cn(d) as a
function of the index-distance d along the backbone of the
polycatenane, for four different values of the fraction, ntr/n =
(0, 0.25, 0.4, 0.5) with n = 60 and n = 200. Each ring is made
by m = 48 beads.

of 90 degrees. This means that on average consecutive
rings will lie on reciprocally orthogonal planes and that
next nearest neighbours are likely to have the same ori-
entation, i.e. C(d) = 0 for odd d′s and C(d) > 0 for
even d′s (the positive sign is due to our choice of the nor-
mals in the reference configuration). Clearly, as the main
direction of the backbone is changing, this peculiar even-
odd behaviour tones down and disappears as d becomes
sufficiently large. For ntr = n

4 , we see yet another set of
relative orientations, with C(d) reaching negative values.
This remains true for ntr = 0.4n, although the minimum
is less marked. This effect appears to be due to the emer-
gence of local conformations such as the one depicted in
Fig. 1b), in which rings tend to stack together along the
backbone. Such local organizations are no longer relevant
when ntr = max(ntr) = n/2. In this case the rotation
of each ring around the catenane’s backbone affects the
position of the others.

To characterize quantitatively the effects that different
amounts of locked torsional stress have on the configu-
rational properties of the system, we coarse grain it by
identifying each oriented ring i with its center of mass
Ri and its normal N̂i. The resulting polygonal curve
is described by the sequence of pairs of vectors (Ri, N̂i)
and bonds Ti = Ri+1 − Ri, see SM for more details.
Using this coarse-grained coordinates, we computed the
squared radius of gyration of the backbone for different
values of n and ntr: R

2
g(n, ntr). All distances were mea-

sured in units of the ideal ring diameter, D = m
π . As

shown in Fig. 4 a), the stored torsion affects significantly
the value of R2

g(n, ntr): going from ntr = 0 to ntr = n
2 at

fixed n the polycatenanes become roughly twice as com-
pact. Furthermore, despite the fact that the simulated
values of n are not sufficiently large to draw any con-
clusion on the exponent of the expected scaling behavior
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Figure 4. a) Squared radius of gyration as a function of the number of rings, n, for different values of ntr/n. Rg is in units
of squared diameter of an ideal ring with m beads, D = m/π. b) Scaling of the absolute value of the writhe, |Wr|, with n,
for different values of ntr/n. c) Tw +Wr for different values of ntr/n and n. Results for different contour length n have been
shifted on the abscissa for clarity. Results for n = 20 include different aspect ratios p. d) Dependency of (Rg/D)2 on the aspect
ratio of the rings, p = σ/D, for polycatenanes with n = 20, having ntr/n = 0 (upper point) and ntr/n = 0.5 (lower points).
The error bars in panles a), b), d) correspond to the standard deviation of the reported values.

R2
g ∼ An2ν , the different slopes of the curves R2

g(n, 0)
and R2

g(n, n/2) suggest that introducing a torsion above
a certain level should at least change the amplitude A.
Note that in very long dsDNA rings, the scaling behavior
of the average extension crosses over to the one expected
for branched polymers when supercoiling becomes rele-
vant [34]. We expect that a similar crossover occurs also
for catenanes made by a very large number of elemen-
tary rings, a condition that, however, is currently not
experimentally accessible.

The fact that circular polycatenanes take on confor-
mations which resemble a DNA with plectonemes (see
also the snapshots reported in Fig. 2 for n = 300) can be
further tested by looking at the n dependence of the ab-
solute value of the writhe |Wr|, a quantity that captures
the amount of coiling of a closed curve on itself [35–37].
In our case, Wr is measured on the backbone of the poly-
catenane, defined as the polygonal curve interpolating
the centers of mass of the rings.

The behaviour of |Wr| as a function of n is reported
in Fig. 4 b) for different values of the stored torsion. The
difference in the scaling behaviour of |Wr| for relaxed
and torsionally stressed polycatenanes is evident. For

the former case, |Wr| ∼ n1/2, as expected by rigorous
and numerical results on unconstrained random poly-
gons [38, 39]. On the other hand, as soon as a finite
density of torsion is trapped along the circular polyca-
tenanes, i. e. ntr > 0, |Wr| grows linearly with n with
an amplitude that depends on ntr. This transition from
sub-linear to linear regime is a genuine effect of circular
polycatenanes that cannot be observed in standard mod-
els of linear unstructured polymer chains unless they are
either strongly confined [40–42] or collapsed into globular
shapes by effective attractive interactions [43]

The physics of double stranded polymers as dsDNAs
offers again a useful framework to characterize the con-
formational properties of circular polycatenanes. In the
case of a dsDNA we know that circularization fixes the
linking number between the two strands of the helix, Lk,
via the formula Lk = Tw + Wr, where Tw is the total
twist of the dsDNA helix around the ring backbone and
the writhe Wr is the average amount of coiling of the
ring on itself, as stated above [36, 37, 44]. This result
is the famous Cǎlugǎreanu-White-Fuller theorem. For
dsDNA, the definitions of Lk, Tw, and Wr, arise nat-
urally from an expansion of the Gauss linking number
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integral [35, 45, 46]. This is true in general for ribbon-
like surfaces, if one maps the boundaries of the ribbon to
two curves linked together.

In our case, the assumptions used to expand the Gauss
linking number in the dsDNA case do not hold, as circular
polycatenanes are not smooth; on the contrary, the local
entropy of the rings can cause abrupt changes in the local
properties of the macrochains. Nonetheless, since we are
considering almost rigid rings, we can still define Tw as
the amount of twist captured by the normals of the rings,
being careful to consider only the component orthogonal
to the backbone (see SM and Fig. 1b), and Wr as the
total writhe of the catenane backbone. By doing this,
we are implicitly mapping the macroring onto a ribbon.
One of the curves defining that ribbon is provided by
the coarse-grained backbone discussed earlier. The other
curve connects the tips of the vectors ν̂k that are obtained
by projecting the normals N̂k onto the direction that is
perpendicular to the vectors tk forming the backbone.
In this way, we can measure Tw and Wr for any circular
polycatenane, and check whether and to what extent the
relation Tw +Wr = constant holds.

As shown in Fig. 4 c), we find that Tw + Wr ∈ Z
for all configurations. As the twist angle between two
consecutive normals is defined in [−π, π], and our coarse-
graining is equivalent to a piece-wise ribbon in which two
successive normals can be twisted by an angle larger than
|π|, this is equivalent to say that Twmod(1) + Wr = 0.
We verified this equivalence by taking its fractional part,
and found it to hold up to a factor of order 10−10, with a
standard deviation of 10−12, compatible with numerical
round-off errors. The fact that Tw is defined mod(1) is a
known aspect of the original Cǎlugǎreanu theorem which
can be dispensed away for smooth ribbon, but might be
present in general [35].

Finally, we investigate how the configurational prop-
erties of the circular polycatenanes depend on the
thickness-to-diameter ratio, p = σ/D, of the elementary
rings. This has been done in the case of rings with n = 20
and p = 0.022,0.65 and 0.87.

The results, reported in Figs. 4c) and d) with n =
20 and twist densities ntr = 0, 10, clearly show that
Twmod(1) + Wr = 0 regardless of the thickness of the
rings, as expected. Furthermore, while the average ex-
tension of the system might depend on p in a non trivial
way, as larger values of p correspond to a larger amount
of twist which relaxes into writhe, we notice that, for
the range of values p commonly used in self-assembled
polycatenanes, the observed effective compression of the
system is notable and persists over about one order of
magnitude.

In conclusion, in this study we demonstrated how the
circularization of properly designed polycatenanes al-
lows the storage of a given amount of torsional stress
that radically affects the equilibrium properties of these
supramolecular structures, both locally and globally.

Specifically, we identify a topological parameter, ntr
which quantifies the amount of torsion initially stored
into the polycatenane, and show that it controls both
the relative orientation of nearest-neighbour rings and
the scaling of Rg and |Wr|.

Remarkably, our results show that the Cǎlugǎreanu-
White-Fuller relation holds for circular polycatenanes at
least up to a factor mod(1) in the definition of the twist:
Twmod(1) + Wr = 0 for all polycatenanes. Taken to-
gether with the result that |Wr| grows as a function of
ntr, as shown in Fig. 4b), this suggest that it should be
possible to map the polycatenane to a ribbon for which
Tw+Wr = Lk, where Lk is an appropriate linking num-
ber. Consider for example an open, linear polycatenane
with alternating links (ntr = 0) and all normals pointing
up. Clearly, one can twist its backbone by π by simply
flipping the last ring or, more in general, all rings after a
chosen one. If one then circularizes the polycatenane and
reassigns the normals and linking numbers, the flipped
ring will correspond to either a +2 or −2 ring, ntr = ±1
(see SM for more details). Therefore, it is tempting to
conclude that ±2 rings correspond to a ∓π twist of an
equivalent ribbon and one crossing of its two boundaries.
Then, if one considers the Tw given by the original nor-
mals, which would now alternate, one would get the re-
lation Tw + Wr = 1

2ntr. In general though,due to the
local entropy of the rings, mapping any given polycate-
nane configuration to an equivalent ribbon is challenging
and requires further study.

Since our results remain valid for polycatenanes in
good solvent conditions and over a wide range of ring
thickness-to-diameter ratios, we believe they should
be observable experimentally in systems ranging from
DNA polycatenanes [47], synthetic polymeric polyca-
tenanes [13, 14], to at much larger scales, macroscopic
systems in which thermal fluctuations are replaced by
randomized mechanical stimuli.

Finally, we believe that the model and findings pre-
sented here could be of interest for further developments
in supramolecular chemistry and in the physics of soft
materials, particularly soft-robotics [48, 49]. Moreover,
as the Cǎlugǎreanu-White-Fuller relation links a local ge-
ometrical property, the twist, to a global one, the Writhe,
our results suggest that circular chains of topologically
interlocked rings could be an inspiring system for mathe-
maticians and theoretical physicists [35, 36, 50, 51] and
be exploited to build highly responsive materials with
tunable properties.
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SUPPLEMENTARY MATERIAL

Polymer model

SUPPLEMENTARY MATERIAL

Polymer model

Our polycatenanes are constituted by n elementary
rings each with m beads of diameter σ. The energy as-
sociated to each configuration is given by H = Hintra +
Hinter, where Hintra includes all energy terms related to
a single elementary ring, and Hinter is the interaction
energy between different elementary rings forming the
polycatenane.

Specifically, for each of the n rings we define Hintra as
follows.

Hintra =

m∑
i=1

UFENE(i, i+ 1) + Ubend(i, i+ 1, i+ 2) +

m∑
j=i+1

UWCA(i, j)

 , (1)

where i and j indicate the index of the bead and the
modulo on m is implicitly assumed to account for the
periodic nature of the rings. In the following, we use ri,j
to indicate the norm of the vector ri − rj .

The FENE term, UFENE is defined as follows:

UFENE(i, i+1) =

−
kR2

0

2 ln

[
1−

(
ri,i+1

R0

)2
]

if ri,i+1 ≤ R0

0 if ri,i+1 > R0.

(2)
Here the maximum extension of the bond is set to R0 =
1.5σ and its strength to k = 30.0ε/σ2.

The bending potential, Ubend(i, i+ 1, i+ 2) is given by
a Kratky-Porod term:

Ubend(i, i+ 1, i+ 2) = κθ

(
1− ti · ti+1

||ti||||ti+1||

)
, (3)

where ti = ri+1−ri is the i−th bond vector, κθ =
KBTlp
σ

and lp is the persistence length. By choosing lp = 2mσ
we consider elementary rings that are essentially rigid.

The steric interaction is accounted for by using the
Weeks-Chandler-Andersen (WCA) potential:

UWCA(i, j) =

4ε

[(
σ
rij

)12

−
(
σ
rij

)6
]

+ ε if rij ≤ 21/6σ

0 if rij > 21/6σ

(4)

Finally, the interaction between different rings, Hinter

is given by:

Hinter =

n∑
I 6=J

m∑
iI=1

m∑
jJ=1

UWCA(iI , jJ), (5)

where I and J run over the n elementary rings while iI
and jJ run over the beads belonging to ring I and J .

System setup

To construct an annular polycatenane with a fixed
amount of quenched torsion, we proceed as follows.
Given n = 2k rings, we first place k of them flat on even
vertices of a planar n-gon (gray rings in Fig. SI.1). Then,
we complete the polycatenane by adding the rings on the
odd vertices in such a way that they form either two +1
Hopf links with their neighbours (red rings in Fig. SI.1)
or a −1 and +1 Hopf link (blue rings in Fig. SI.1). This
is achieved by inserting suitably deformed and rotated
dodecagons, as shown in Fig. SI.1. While the blue do-
decagons in Fig. SI.1 can freely rotate around the axis
joining the centers of their neighbours, this is not true
for the red dodecagons, which cannot undergo the same
rotation without affecting their neighbours. This con-
straint due to topology introduces a torsion to the whole
polycatenane.

By varying the number ntr of red rings in the interval
[0, n/2] we can store torsion in the system from a min-
imum value of 0 (ntr = 0, torsionally relaxed polycate-
nane) to the maximum value max(ntr) = n/2. This cor-
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n = 20, ntr = 0   n = 20, ntr = 4 n = 20, ntr = 10 

a) b) c)

d) e)

Lk = 0 Lk = +2

Figure SI.1. Initial configuration for (a) a zero torsion polycatenane, (b) a polycatenane with ntr = 4 and (c) a polycatenane
with ntr = 10. Blue rings, (d), contribute a +1 and a −1 Hopf links, and thus have Lk = 0; red rings, (e), contribute two +1
links, Lk = 2.

responds to the maximum amount of twist that can be in-
serted into a planar circle. Higher values can be achieved
by considering out-of-plane initial configurations.

To recover the desired system of semi-rigid rings, we
perform an energy minimization of the system followed
by a short equilibration run of the Langevin Dynamics.
This is sufficient to relax the dodecagons in Fig. SI.1 into
semi-rigid rings.

Equivalence of different circular polycatenanes with
fixed ntr

As specified above, our systems are built by insert-
ing n+ = ntr rings forming +1 Hopf links with both
neighbours (+2-rings), and n/2− ntr rings which do not
contribute to Lk (0-rings). Note that the same amount
of torsion ntr can also be obtained by placing n+ rings,
each contributing to +2 Hops links (+2 rings) and n−
rings each contributing to -2 Hopf links (−2 rings), so
that ntr = n+ − n−. Here we show that all polycate-
nanes with a given value of ntr have the same physical
behaviour, so that the set of rings chosen to fix ntr does
not affect the results. To do so, we first notice that the
choice of the normal of the rings is rather arbitrary, as
the rings themselves do not have a physical orientation.
For this reason, we can reorganize the placement of the

red, blue, and yellow rings in Fig 1 in the main text by
flipping a ring with a -1 and +1 Hopf links and then re-
assigning the normals so that they all point either up or
down. To show that this move is sufficient to connect
all polycatenanes with the same value of ntr we map our
system to a circular ising chain, in which the +1 and −1
values of the spins correspond to +1 and -1 Hopf links
respectively, see Fig. SI.2. Clearly, the “magnetization”
of this system, m = 2(n+ − n−) = 2 ∗ ntr corresponds
to the injected torsion of the macroring. Note that the
Ising chain can be seen as the dual of the circular poly-
catenane and the elementary rings that can be flipped
without affecting their neighbours correspond to domain
walls separating a +1 and a −1 spin. The flipping move
on the polycatenane is then equivalent to the exchange of
two spins around a wall, a move that clearly preserves the
magnetization (Kawasaki move) and that can be shown
to be ergodic in the space of configurations of the Ising
chain with fixed m. Therefore, we can use only red (+2)
and blue (0) rings to fix the value of ntr in the circular
polycatenane.
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Figure SI.2. a) a polycatenane with ntr = 0 obtained by using
an equal number of +2 rings (red) and -2 rings (yellow). b)
Its dual Ising lattice, where the spins correspond to the Hopf
links. The system has magnetization m = 2ntr. Rings that
can be flipped without affecting their neighbours correspond
to ”walls” between a +1 and a −1 spin in the Ising system.
c) A move which exchange both spins around a wall clearly
preserve the magnetizationm and is ergodic, allowing to reach
conformations such as d in which there are no yellow rings.

Equivalence between ntr and twist of a linear
polycatenane

The definition of ntr in our model is based on the link-
ing number between neighboring elementary rings, which
in turn depends on their orientation. One can then notice
that each insertion of a +2-ring and −2 rings corresponds
to a twist of the backbone of a linear polycatenane by an
angle equal to −π and +π respectively. This is shown in
Fig. SI.3.

Langevin Dynamics

The underdamped Langevin dynamics of the systems is
integrated numerically using the LAMMPS package [33]
with the LJ units of σ = M = ε = KB = 1, temperature
T = 1.0 and damping time τdamp ≡ 1

γ = 10τLJ . Starting
for a given intial configuration we evolved the system for
a minimum of 109 steps, with timestep ∆t = 0.0124τLJ .

Conformation analyses

We characterize the equilibrium configurational prop-
erties of an annular polycatenane Γ through observables

Figure SI.3. Passing from twist to ring-ring liking number.
The greek letters above the polycatenanes indicate the twist-
ing angle φi,i+1 between rings i and i + 1. Dots and crosses
in the ring centers indicate normals pointing up and down
respectively. The ring colors correspond to those introduced
in the main text and indicate the Lk of the ring with its
neighbours when all normals point up. A linear polycatenane
formed by 0-rings with their normals pointing up, a), becomes
a polycatenane with ntr = 2, c), if one flips successive rings
and then redefine the normals. In this simple case, each yellow
ring correspond to a twist angle of +π.

such as the squared radius of gyration, R2
g(Γ), the Twist,

Tw(Γ), and the writhe Wr(Γ) where Γ = {r1,1, . . . , rn,m}
is the set of coordinates of all beads of the elementary
rings forming the polycatenane.

In order to define the twist and writhe of the poly-
catenane, we need to map its configuration to that of a
ribbon, using the coarse-graining strategy defined below.

Coarse-graining the rings

The large persistence length of our rings guarantees
that their bending fluctuations are small, keeping them
almost planar. This property allows us to coarse-grain
the rings by identifying them with their center of mass
and their normal, as shown in Fig. SI.4. Specifically, for
any index k ∈ {1, . . . , n} we identify the k-esim ring with
the position of its center of mass, Rk, and its normal ver-
sor N̂k. The normal vector is defined ,using the indexing
of the rings and following the the right-hand rule, as

Nk =
4

m

m/4∑
i=1

(ri+m/4 −Rk)× (ri −Rk),

and N̂k = Nk

|Nk| . Note that in general an unoriented rigid

ring corresponds to a dyad and not a to vector, as the
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Figure SI.4. a) A conformation for a n = 40, ntr = 10,
m = 48 catanenane superimposed to its coarse-grained back-
bone. The color map highlights the sequence of the elemen-
tary rings along the backbone. b) Coarse-grained quantities
for a small set of 4 subsequent rings. For ring 1, we also show
the normal to the ribbon ν1, obtained by subtracting from
N̂1 its projection along the bond T1.

disc whose ring is the boundary does not have an head
or tail face. The above definition of the normal versor is
however possible because each elementary ring can be ori-
ented in the reference conformation (the planar circle) as
described in the main text, and this provides an ordering
of the beads. Applying this coarse-graining procedure,
we can thus map each the “microscopic” conformation of
the polycatenane Γ into the coarse grained representation
Γcg = {(R1, N̂1), . . . , (Rn, N̂n)}.

Twist and writhe

By using the normal versors and the positions, Ri

we can define the Twist and Writhe of the coarse
grained representation, following the procedure described
in Klenin and Langowski in [52]. To do so, we de-
fine the tangent to the polycatenane as the bond vec-
tor joining the centers of mass of two subsequent rings:
Tk = Rk+1−Rk for k < n, and Tn = R1−Rn, where Rk

is the CoM of ring k. We recall that in the Cǎlugǎreanu-
White-Fuller theorem the normal and tangent to the rib-

bon are orthogonal to each other at any point. Thus, we
define the normal versor to the ribbon, ν̂k for the ring k
as:

ν̂k =
N̂k − (N̂k ·Tk)Tk

||N̂k − (N̂k ·Tk)Tk||
. (6)

We define the twist of a polycatenane as:

Tw(Γ) ≡ Tw(Γcg) =
1

2π

n∑
k=1

φi, (7)

with φi = αi + γi where αi is the angle between ν̂i and
the Frenet normal B̂i = Ti×Ti+1

||Ti×Ti+1|| , and γi is the angle

between B̂i and ν̂i+1. Note that φi, αi, and γi are de-
fined in the range [−π, π] where the sign is determined
by following the standard right-hand convention.

The writhe is defined as in [52] by summing over the
solid angles Ωi,j identified by bond vectors Ti and Tj .

Wr(Γ) ≡Wr(Γcg) =
1

2π

n∑
i=2

n∑
j<i

Ωij . (8)

If we call 1 and 2 the starting and ending point of the
tangent vector Ti and 3,4 the ends of vector Tj , we can
define the vectors r12 joining points 1 and 2, r34 joining
points 3 and 4, etc. Introducing the vectors

n1 =
r13 × r14

r13 × r14
, n2 =

r14 × r24

r14 × r24
,

n3 =
r24 × r23

r24 × r23
, n4 =

r23 × r13

r23 × r13
,

we can finally calculate:

Ωij = arcsin (n1 · n2) + arcsin (n2 · n3)+

+ arcsin (n3 · n4) + arcsin (n4 · n1). (9)

Normal-normal correlation functions

We define the normal-normal correlation function C(d)
as the averaged scalar product between two ring normals
separated by d ”bonds”:

Cn(d) =

〈
1

n

n∑
i=1

N̂i · N̂i+d

〉
Γ

, (10)

where the average runs over the independent conforma-
tions Γ sampled by the Langevin dynamics. We note that
Cn(d) measures the correlation between the orientation
of the normals of the elementary rings, not of the ribbon.
As the rings can orient themselves with their normals al-
most parallel to the backbone of the polycatenane, Cn(d)
capture more information than the correlation between
the versors ν̂ does
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