
Assessing the polymer coil-globule state from the very first spectral modes
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The determination of the coil-globule transition of a polymer is generally based on the reconstruc-
tion of scaling laws, implying the need for samples from a rather wide range of different polymer
lengths N . The spectral point of view developed in this work allows for a very parsimonious de-
scription of all the aspects of the finite-size coil-globule transition on the basis of the first two Rouse
(cosine) modes only, shedding new light on polymer theory and reintroducing well-established spec-
tral methods that have been surprisingly neglected in this field so far. Capturing the relevant
configuration path features, the proposed approach enables to determine the state of a polymer
without the need of any information about the polymer length or interaction strength. Importantly,
we propose an experimental implementation of our analysis that can be easily performed with mod-
ern fluorescent imaging techniques, and would allow differentiation of coil or globule conformations
by simply recording the positions of at least three discernible loci on the polymer. Furthermore, the
framework we put forward applies to virtually any polymer model, fractal globule, loop extrusion...

The coil-to-globule phase transition, which describes
the abrupt compaction of a polymer due to environmen-
tal changes, characterizes the physics of polymers in so-
lution, with direct consequences for macroscopic solution
properties such as viscoelasticity or transport features
and, moreover, successfully models the heterogeneity of
chromatin density, which most likely plays a crucial func-
tional role in the regulation of gene expression.

It is usually studied by means of the scaling proper-
ties of the radius of gyration as a function of the num-
ber of monomers, N . However, this approach requires
comparing polymers of different lengths, which is not al-
ways possible. Even the determination of the number of
monomers N is not always easy, as it depends on the
Kuhn length of the polymer, hence its bending persis-
tence, which can be difficult to determine in the case
of real polymers, and a fortiori for complex biological
polymers. Moreover, important deviations from the the-
oretical scaling are induced by the finite size of the poly-
mers [1].

From a different perspective, the dynamics of the poly-
mer can be studied. Typically, the dynamics of single
monomers can be compared to theoretical predictions
such as those of the Rouse or Zimm models [2, 3]. Now,
interestingly, the Rouse model uses a Fourier-like de-
composition of the polymer conformation. Noting that
this decomposition applies to any given conformation,
we used it to determine the average spectral content of
the polymer to inquire its equilibrium properties and
study the coil-globule transition, rather than its dynam-
ics. This paper aims to investigate this issue and to see
how a spectral representation can facilitate the determi-
nation of the polymer state (i.e. its macrostate). We
developed a method to discriminate the folding state of
a polymer of a given size N , without the need to study
the scaling law or to have access to the energy parame-
ter. Our method exploits the information about the spa-

tial path of the polymer and only relies on low spectral
modes, i.e. long-distance features. The introduction of
a new N -independent order parameter provides us with
a parsimonious and robust measurement of the state of
the polymer on the coil to globule scale. Finally, based
on this analysis, we propose an innovative experimental
approach to determine the equilibrium state of a polymer
from fluorescence imaging, provided that a minimum of
three loci, equally spaced along the chain, can be dis-
cernibly labeled.

The Rouse model describes an ideal chain (no ex-
cluded volume nor attractive interaction) for which the
radius of gyration scales as the variance of a random
walk, 〈R2〉 ∼ N . The chain dynamics is described by
applying the overdamped Langevin equation to a bead-
spring polymer of N + 1 monomers, immersed in a fluid
of viscosity γ at temperature T [4]. The application of
the Langevin equation yields a system of N + 1 three-
dimensional coupled stochastic equations [2]. To solve
the model, this system is decoupled by introducing the
new set of variables { ~Xp(t), p = 0 . . . N}

~Xp(t) =
1

N + 1

N∑

n=0

~rn(t) cos

(
pπ

N + 1

(
n+

1

2

))
(1)

called Rouse modes of the polymer. The p = 0 mode
corresponds to the position of the polymer center of
mass. In the following, we will always focus on modes
p = 1 . . . N − 1 only. Usually, one uses the auto-
correlation function of ~Xp(t) to derive single monomer
dynamical scaling laws, overlooking the potentialities of
the Rouse decomposition in itself. Indeed, in the lan-
guage of signal processing, each component of (1) is a
Discrete Cosine Transform (DCT), closely related to the
Discrete Fourier Transform (DFT), in that it corresponds
to the DFT of a symmetrized signal of double length [5].
Hence, the average over a set of equilibrium configura-
tions of the square mode amplitudes 〈X2

p〉 is none other
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FIG. 1. (a) On lattice MC simulation snapshots for N = 431 and ε = 0 (orange), ε = 0.36 (black) and ε = 0.8 (blue).
(b) Projections rx(n) along the spatial x-axis of a set of 20 configurations, n being the monomer index. Colors refer to the
same parameters as in (a). Dotted lines correspond to the ±2.5 σx(n) envelopes. (c) Logarithm of the square Discret Cosine
Transform of the 20 trajectories of (b), ln |Xp|2, as functions of the logarithm of the mode number ln p (thin lines) and their
average calculated over the ensemble of 16384 simulated configuration and over the three spatial directions (thick lines and
dots). Standard deviations are smaller than the symbol size. Groups of curves are vertically shifted for aim of clarity. Dashed
lines correspond to slopes −2.2 ≡ −(1 + 2ν), −1.3 and 0 (from top to bottom). (d) Averaged Power Spectral Density (PSD)
obtained by applying the same procedure as in (c) to equivalent simulations with ε going from 0 to 0.6 (see colorbar). Dashed
lines correspond to slopes −(1 + 2ν) (top) and 0 (bottom). Inset: The slope αN (ε) of the log-log representation of the PSD,
estimated from the first 2 modes, as a function of ε.

than the canonical estimator of the Power Spectral Den-
sity (PSD), characterizing a polymer macrostate in terms
of the relative weight of the different spectral modes. For
the Cartesian coordinate x (equivalently y or z), it is well
known that [2, 4]

〈X2
p,x〉 =

b2

24 (N + 1) sin2
(

pπ
2(N+1)

) ∼
p�N

1

p2
, (2)

yielding an explicit expression for the mean square am-
plitude of the Rouse modes of an ideal polymer.

The connection between Rouse modes and PSD seems,
surprisingly, to have never been noticed before. However,
the asymptotic dependence (2) has an immediate inter-
pretation in terms of the equivalence to Brownian motion
trajectories [6], for which the PSD has a scaling exponent
−2. Interestingly, exactly the same expression (2) is ob-
tained in a different setting [7].

Now, a real polymer is characterized by interac-
tions between monomers: repulsive excluded volume and
(solvent dependent) attractive interactions. The case
where only excluded volume is present defines the (non-
interacting) self-avoiding polymer model, i.e. the proto-
typical coil polymer. Due to steric hindrance, the poly-
mer occupies more space resulting in swollen conforma-
tions analogous to self-avoiding walks (SAW). The poly-
mer’s radius of gyration then scales as 〈R2〉 ∼ N2ν , where
ν ≈ 0.588 is the Flory exponent [6]. Including steric in-
teractions adds additional non-linear coupling terms to
the Rouse equation system, and, consequently, there is no
explicit solution for the PSD [8]. Yet simple arguments
provide insight into the general trend of the spectrum.
A usual (yet unproven) assumption about SAWs is their
fractal nature, meaning that their statistical properties

are scale invariant [6, 9, 10]. Hence, we expect a power
law PSD, intuitively related to the presence of long-range
correlations induced by steric interactions. The Hurst ex-
ponent H provides an estimation of the long-range mem-
ory of a signal. In particular, for a centered fractal signal
of Hurst index H one has 〈r2n〉 ∝ n2H and a PSD scaling
as p−(1+2H). By guessing a long-range correlated pro-
cess for the SAW, the comparison with the Flory scaling
〈R2〉 ∼ N2ν would lead to the ansatz H = ν which ap-
points the PSD

〈 ~X2
p〉 ∝ p−(1+2ν) (3)

where −(1 + 2ν) ≈ −2.2. Panja and Barkema made
an equivalent ansatz for long wavelengths Rouse modes
of the self-avoiding polymer, and corroborate it by on-
lattice simulations [8].

Depending on the physico-chemical properties of the
polymer and the solvent, an effective attraction J be-
tween monomers may also exist. The state of the polymer
thus depends on the relative strength of inter-monomer
forces and thermal energy, ε = J/kBT . This case is
often modeled by the Interacting Self-Avoiding Walk
(ISAW), an on-lattice polymer with each nearest neigh-
bor monomer pair contributing −ε to the energy (the
SAW model is retrieved for ε = 0). In the thermody-
namic limit N → ∞, above a critical value εθ (θ-point),
the strong attraction induces a second order phase transi-
tion to curled up conformations of uniform density called
globules, whose typical scaling is 〈R2〉 ∝ N2/3 [6]. How-
ever, finite-size polymers undergo a smooth coil-globule
transition at a N -dependent critical energy [11–14].

The spatial configuration of the chain can be described
by noting that a collapsed polymer is equivalent to an
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ideal polymer compressed within a spherical volume of
radius R [6]. Over small length scales, the polymer be-
haves like a free chain, until it reaches the volume bound-
ary, where it is reflected and starts an independent ran-
dom walk. The chain can thus be described as a series of
independent subchains. The positions of two monomers
in different sub-chains are uncorrelated [6], resulting in
the sequence of positions of monomers sufficiently spaced
along the chain being a white noise signal. From the
spectral point of view, this implies a constant spectrum
for small values of p. We thus predict that the PSD of
globules verifies the property

〈 ~X2
p〉 ∝ p0 for small p. (4)

To test our hypotheses, we simulated single ISAW on
the cubic lattice [15] and sampled conformations thanks
to the Metropolis algorithm with reptation moves [16].
We performed simulations for N ranging from 100 to
3000, and ε in the range 0.0–0.99. For each (N, ε), 32000
statistically independent conformations are recorded.
Figure 1-a shows typical conformations for the case N =
431 and three different ε. The three spatial components
are DCT transformed and their square amplitudes are
summed to obtain their DCT spectra, as shown in Fig-
ure 1-c. For any given (N, ε), we average over the set
of configurations to obtain the corresponding PSD (thick
lines in Figure 1-c). Figure 1-d shows the resulting PSDs
for different values of ε and for the given N .

The results confirm both our predictions. First, for
small values of the interaction parameter ε, the PSDs
display the expected scaling of Eq. (3), corresponding
to a slope of −(1 + 2ν) ≈ −2.2 in the log-log represen-
tation. Second, in the large ε region, the spatial tra-
jectories clearly show the effect of confinement into the
globule volume (Figure 1-b). Correspondingly, the low p
modes are strongly attenuated, leading to a rather flat
spectrum, in agreement with our prediction (4).

We aimed to compare the scaling of εθ(N) to previous
results, typically defined either by the vanishing of the
second virial coefficient [12], by the condition of divergent
specific heat [13], or by a specific scaling of 〈R2〉 [17]. In
Ref. [13], Vogel et al. show by on-lattice simulations that
the boundary between the two phases is best fitted by a
function of the form f(N) = a1N

−1/2 + a2(2N)−1 + εθ.
We here propose two different definitions for the phase
transition critical line. The first one is simply given by
the inflection points of the sigmoid functions. The corre-
sponding εI(N) points are very well-fitted by f(N) (Fig-
ure 2, circles, and Table S1). A second, more physical
definition of a transition line is given by the εF (N) that
maximizes the fluctuations of our order parameter αN (ε).
Indeed, the relative standard deviation ∆αN (ε)/αN (ε)
displays a sharp peak at the transition (meaning that
the conformation of the polymer itself largely fluctuates)
as shown by the inset of Figure 2. The corresponding

FIG. 2. Top panel: Log-log plot slope αN (ε) esti-
mated on the first 2 modes of Power Spectral density
(dots) for all polymers sizes N from 101 to 3000 (right
to left). For each N , αN (ε) is fitted by a sigmoid

S(x) = D +A(x−B)/
√

1 + C(x−B)2 (lines). Colored cir-

cles are inflection points, defining εI(N). Blue diamonds
indicate the αN (ε) = −2 condition, defining εRWθ (N). In-
set: αN (ε) relative standard deviation, ∆αN (ε)/αN (ε) =
σX2

1
/〈X2

1 〉 + σX2
2
/〈X2

2 〉. Triangles indicate the position of

maxima εF (N), determined by fitting the top of the pics by a
Gaussian function. Bottom panel: Corresponding phase di-
agram in the (ε,N) phase space. The orange to blue colorscale
correspond to values of αN (ε) from -2.2 to 0 (see colorbar). In-
flection points (colored circles) and fluctuation maxima (col-
ored triangles) are shown and fitted by curves of expression

εθ(N) = a1N
−1/2 +a2(2N)−1 + εθ (green and white lines, re-

spectively). The red dashed line is the critical curve of same
expression, with the parameters obtained by Vogel et al. in
Ref. [13]. Fitting parameters are given in Table S1. Both pan-
els: Samples from the sectors (N, ε) ∈ [700; 3000]× [0.55; 1.0]
and [300; 700]× [0.7; 1.0] didn’t meet statistical relevance and
were omitted from the results.

εF (N) maxima are again best fitted by f(N) (Figure 2,
triangles and Table S1).

Interestingly, both εI(N) and εF (N) correspond to val-
ues of α close to ∼ −1.1 (black region) and are therefore
far from α = −2, associated with RW-like configurations
usually identified with the θ-point conditions. Our re-
sults show, instead, that these RW-like conditions do not
appear at the crossover, but are rather located in the
coil region of the phase diagram. More precisely, the
condition αN (εθ) = −2 is met at about ε = 0.27 (blue
diamonds in Figure 2) and indeed corresponds to a PSD
decreasing as p−2 over a wide p-region (Figure S1). The
corresponding εRWθ (N) curve is also fitted by a f(N)
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FIG. 3. (a) Power Spectral Densities obtained by succes-
sive decimation of a N = 431 chain for ε = 0.0 (orange,
coils), ε = 0.32 (black) and ε = 0.46 (blue, globules). Dec-
imation goes from M = N to M = 3 (longer to shorter
curves). (b) The asymptotic and critical values of αN,M ob-
tained from the sigmoid fit of the decimated spectra, as a
function of M (dots and lines): αC(M) = αN,M (0) for coils,
in orange; αI(M) = αN,M (εI) for inflection points, in black;
αG(M) = αN,M (ε → ∞) for globules, in blue. These val-
ues are averaged over N . Shaded regions correspond to 2σα
confidence intervals for different sample size from 256 (larger
intervals) to 2048, calculated by propagating the statistical
variance through Eq. (5). We used a dataset of 16384 config-
urations for each (N, ε,M) condition.

function (although with negligible a1, see Table S1; blue
line in Figure 2). As expected, however, the asymptotic
εθ is virtually the same for the three critical curves εIθ(N),
εFθ (N) and εRWθ (N) and converge to the well established
thermodynamic limit value of εθ = 0.2690, in agreement
with previous numerical estimates [12, 13].

The existence of two distinct critical lines was already
pointed out by des Cloizeaux and Jannink [18], but not
clearly illustrated by numerical experiments, to the best
of our knowledge. As a corollary message of our work, we
confirm therefore that the conformation of a polymer of
finite-size at the coil-globule transition is not reducible to
a pure random walk. The very accurate phase diagrams
obtained by spectral analysis validates it as a new, effi-
cient and parsimonious method in polymer studies, ne-
glected until now despite its very classical basis.

With our general hypotheses confirmed, we address the
important issue of characterizing the coil-globule transi-
tion. Inspired by our previous observations on the low
p limit, we define as a new order parameter the log-log
slope at p = 1

αN (ε) =
ln〈X2

2 〉 − ln〈X2
1 〉

ln 2− ln 1
=

1

ln 2
ln
〈X2

2 〉
〈X2

1 〉
. (5)

For the case of Figure 1-d, αN (ε) clearly performs a
continuous transition from the typical SAW exponent
α = −(1 + 2ν) to 0 (inset). The width of the transition
region depends, however, on N . The αN (ε) curves, for
all ε and N , have been fitted by a 4-parameter sigmoid
function (Figure 2, top panel), and all αN (ε) indeed in-

terpolate between the two limiting values α = −(1 + 2ν)
and α = 0. The fact that these limiting values are inde-
pendent of N and ε makes of αN (ε) an excellent order
parameter for assessing the polymer state, as it can be
applied to each single (ε,N) polymer configuration set
and without the need of any information about these two
parameters. The bottom panel of Figure 2 shows a color
plot of α as a function of N and ε where colors span
from orange, for α = −2.2, to blue for α = 0. The typi-
cal finite-size crossover region (in black) is clearly visible,
allowing the definition of a critical transition line ε(N).

As a last, but most important point, the fact that our
order parameter can be calculated on the basis of the
first two spectral modes opens the possibility of exper-
imentally assessing the state of a polymer from a very
reduced and accessible information. The argument re-
lies on a well-known property of the PSD: In order to
get access to the first M modes, it is indeed in principle
sufficient to record the positions of M distinguishable
monomers, equally spaced along the polymer and cover-
ing the whole chain, meaning that the determination of α
would in theory require the knowledge of only 3 positions
along the full polymer.

We tested the efficiency of our approach on decimated
polymer chains, i.e. reduced signals where the positions
~rn of only M equally spaced monomers are retained. We
decimated down to M = 3, an extreme condition of par-
ticular interest from the experimental point of view since,
in this case, time tracking can also be achieved without
much difficulty [19–21] so that time averages can be used
instead of ensemble averages. Figure 3-a shows examples
of PSD obtained for different choices of M . Extreme
decimation (M < 10) alters the first modes. As a conse-
quence, the asymptotic values of the sigmoidal αN,M (ε)
corresponding to ”pure” coils (αC) and globules (αG)
vary, so that it is necessary to provide reference values
for these limit slopes as a function of M . We give these
values in Figure 3-b and in the Table S2. Noteworthy,
the asymptotic values for coils and globules remain well
apart down to M = 3 even for relatively low statistical
sampling meaning that the arrangement of monomers on
large scales is detectable whatever the sampling.

Once these M -dependent limit values obtained, the
order parameter αN,M (ε) can be normalized as α̃N (ε) =[
2αN,M (ε)−

(
αG(M) + αC(M)

)]
/
(
αG(M)− αC(M)

)

so to span from -1 to 1. In this way, equivalent sigmoids
α̃N (ε) are independent of M Figure S2. For sufficiently
large samples, even an extreme decimation with M = 3
allows a very accurate reconstruction of the (N, ε) phase
diagram (Figure S3). The critical line εI(N) matches
that of the complete chain (white line in Figure S3 and
Table S3). The robustness of the proposed approach
against variations in the size of the statistical sample
is explored in Figure S4 showing that the universal
character of the α̃N parameter potentially outperforms
any other method aiming at determining in which phase
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a polymer in given conditions falls.

These results have relevant implications in the context
of the study of chromatin. The characterization of the
multiscale folding state of chromosomes is a crucial, is-
sue since it likely determines its the biological activity.
This is made evident from the strong progression of ex-
perimental methods to characterize this folding and their
impact on the understanding of genetic regulation mech-
anisms [22]. Very recently, microscopy-based techniques
allow for the first time the visualization of this polymer
spatial trajectory by sequential labeling and imaging of
multiple loci in a collection of fixed nuclei [23–26]. This
results in configuration sets, sampled with a resolution
ranging from 3 to several hundreds of points, which are
for the moment difficult to analyze, the most frequent
approaches being the reconstruction of parameters that
were already obtainable with previous techniques. There
is therefore a clear need for efficient methods to process
this new data to the fullest and without loss of informa-
tion. Our method of spectral analysis precisely fills this
gap with a physically proven approach. Finally, we un-
derline the very broad scope of this spectral approach,
which extends far beyond the pure coil and globule. One
can easily predict a specific spectral signature for fractal
globules, loops, stretched polymers or a variety of multi-
fractal configurations, potentially also interesting for the
study of biopolymers.
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Supplementary information

Coefficients a1, a2 and εθ for the three curves

Data a1 a2 εθ

Inflection points εI(N) 2.1± 0.04 3.3± 0.9 0.2694± 0.0005

Fluctuation maxima εF (N) 2.5± 0.09 2.7± 1.8 0.270± 0.002

Random Walk εRW (N) 0.0± 0.1 4.6± 1.8 0.269± 0.003

Vogel et al. dCv/dt [13] 2.5 8.0 0.2690± 0.0005

TABLE S1. In Figure 2 we have fitted inflection points (colored circles) and αN (ε) fluctuation maxima (colored triangles)

by the expression εθ(N) = a1N
−1/2 + a2(2N)−1 + εθ from Ref. [13] (green and white lines, respectively). Here we list the

corresponding fitting parameters a1, a2 and εθ, together to those obtained by Vogel et al. in Ref. [13] by fitting a different
order parameter.

Reference values αC , αI and αG obtained for different M

M αC
a αI

a αG
a

3 -1.81 -1.09 -0.36

4 -2.03 -1.10 -0.19

5 -2.11 -1.10 -0.11

6 -2.15 -1.10 -0.07

7 -2.16 -1.10 -0.05

8 -2.19 -1.11 -0.03

10 -2.19 -1.11 -0.03

20 -2.21 -1.12 -0.02

a Significant digits.

TABLE S2. Numerical values of the loglog-slopes αN,M (ε) obtained from the spectra in Figure 3-a and displayed in Figure 3-b
(points), as a function of M . The parameter αC , for coils, is obtained at the limit ε = 0; αI is measured at the fitting sigmoid
inflexion point; αG, for globules, is calculted as ε→∞ limit of the fitting sigmoid.ar
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Critical εI(N) inflection point fit parameters upon decimation

M a1 a2 εθ

3 1.7± 0.1 2.7± 1.8 0.273± 0.002

5 1.8± 0.05 5.0± 0.9 2.270± 0.001

8 1.9± 0.04 4.4± 0.7 2.270± 0.001

10 2.0± 0.05 4.2± 0.8 0.270± 0.001

M = N 2.1± 0.04 3.3± 0.9 0.2694± 0.0005

TABLE S3. As shown in Figure 3, decimated configurations retain the main information about the polymer state and allows
us to reconstruct the phase diagram in the (ε,N) phase space. Moreover, inflection points (colored circles in Figure 3 can be

used to define a critical line also in decimated conditions, and fitted by the function εθ(N) = a1N
−1/2 + a2(2N)−1 + εθ. Here

we give corresponding values of the three fitting parameters for M = 3, 5, 8, 10 and, for comparison, for the non decimated case
M = N . Note that the asymptotic value εθ is essentially independent on decimation, ensuring a correct definition of the phase
transition in the thermodynamic limit. The a1 and a2 parameters, that gives the N dependence of the transition in finite-size,
are instead slightly modified by the decimation procedure, but converge toward the original values as soon as M & 10.
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Typical PSD at the theta conditions ε = εRWθ (N)

FIG. S1. The plot shows a typical PSD obtained for a value of ε matching the α = −2 conditions, i.e for ε = εRWθ (N) (green
points). For comparison, a pure coil spectrum is shown (orange points) with its typical -2.2 slope (orange line) and a pure
on-lattice RW (purple points) of slope -2 (purple line) are shown. The first modes slope α for ε = εRWθ (N) is as expected equal
to −2 (green line); Moreover, the plot shows how the same scaling law holds over a wide range of modes. This ensures that the
polymer configurations can be described as random walks up to short scales (where a SAW behavior is recovered).
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Effect of different levels of decimation on the phase transition

FIG. S2. The different panels show renormalized loglog-slopes α̃N (ε) (Eq. (6)) for different value of N . For each N , we show
results obtained by different levels of decimation M (blue points), starting from 3 (red points) to N (yellow points). Comparison
of these different cases shows that, for given N , there is essentially no difference in the behavior of the order parameter
αN (ε), once rescaled with the maximum and minimum values, αG(M) and αC(M), respectively. Data sample includes here
16384 configurations per point. We recall that, as in Figure 2, samples from the sectors (N, ε) ∈ [700; 3000] × [0.55; 1.0] and
[300; 700]× [0.7; 1.0] didn’t meet statistical relevance. Here we have kept the raw results from these sectors, which also gives a
measure of the variability of the corresponding values.
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Sigmoids and phase portrait from the M = 3 decimated configurations

FIG. S3. In Figure 3 of the main article are shown the Power Spectral Densities and critical values of αN,M obtained by
successive decimation of a N = 431 chain. Here we show, for the same system, (a) the renormalized sigmoids α̃N,3(ε) for N
from 101 to 3000 with decimation level M = 3 ; and (b) the phase portrait as reconstructed from the M = 3 decimated signal.
Colored dots are obtained from inflection points as in Figure 2. The white line is a fit yielding εθ = 0.268 (see Table S3). In
both graphs we used a dataset of 16384 configurations.
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Phase portraits after decimation, with different sample size.

FIG. S4. Example of phase portraits obtained by extreme decimation M = 3 starting from a same set of conformations, for
different sample sizes, from 64 to 2048. We recall that, as in Figure 2, samples from the sectors (N, ε) ∈ [700; 3000]× [0.55; 1.0]
and [300; 700] × [0.7; 1.0] didn’t meet statistical relevance. Here we have kept the raw results from these sectors, which also
gives a measure of the variability of the corresponding values. Overall, we observe that if a sample of only 64 configurations is
not sufficient to assign with certainty a system to the coil or globule states, it becomes rather good starting from 512.
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Simulation method details

We simulated single ISAW on the cubic lattice and sampled conformations thanks to the Metropolis algorithm with
reptation moves. We performed simulations for 22 values of N ranging from 100 to 3000, and 100 values of ε in the
range 0.0–0.99. For each (N, ε), 32000 statistically independent conformations are recorded. Figure 1-a shows typical
conformations for the case N = 431 and three different ε. The three spatial components are DCT transformed, and
their square amplitudes are summed to obtain their DCT spectra, as shown in Figure 1-c. For any given (N, ε), we
average over the set of configurations to obtain the corresponding PSD.

Since the deep globular phase is dominated by low energy, entropically suppressed conformations, a statistical
analysis in the high N , low ε region requires sophisticated simulation methods that weren’t undertaken in this study.
Samples from the sectors (N, ε) ∈ [700; 3000] × [0.55; 1.0] and [300; 700] × [0.7; 1.0] didn’t meet statistical relevance
and were omitted from the results.


