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Understanding the role of self-propulsion on the conformational properties of active filamentous
objects has relevance in biology. In this context, we consider a flexible bead-spring model polymer
for which along with both attractive and repulsive interactions among the non-bonded monomers,
activity for each bead works along its intrinsic direction of self-propulsion. We study its kinetics
in the overdamped limit, following a quench from good to poor solvent condition. We observe
that with low activities, though the kinetic pathways remain similar, the scaling exponent for the
relaxation time of globule formation becomes smaller than that for the passive case. Interestingly,
for higher activities when self-propulsion dominates over interaction energy, the polymer becomes
more extended. In its steady state, the variation of the spatial extension of the polymer, measured
via its gyration radius, shows two completely different scaling regimes: The corresponding Flory
exponent changes from 1/3 to 3/5 similar to a transition of the polymer from a globular state to a
self-avoiding walk. This can be explained by an interplay among three energy scales present in the
system, viz., the “ballistic”, thermal, and interaction energy.

I. INTRODUCTION

Various self-propelling objects over a diverse range
can be recognized as “active” particles which became of
significant research interest in the past two decades [1–
7]. Different theoretical models followed by various ex-
perimental approaches using synthesized colloidal par-
ticles have been involved in understanding the prop-
erties of such systems [8–35]. In recent years, no-
table attention has been paid to “real” biological sys-
tems as well [36–40]. Although the strategies for self-
propulsion are not the same for “active” objects in differ-
ent systems, emergence of various self-organized spatio-
temporal patterns during their evolution, e.g., phase
separation like in gas-liquid systems, coherent collec-
tive motion with long-range order, giant density fluc-
tuations, etc., are quite generic at all length scales [1–
5, 7–9, 11–14, 21]. For example, bacteria typically move
using their filament-like cilia or flagella, whereas actin
filaments of a cytoskeleton use molecular motors for
their motion. On the other hand, flock of birds or herd
of sheep control their motion by looking or interacting
with their neighbors [1, 8, 9].

The first minimal model regarding simulation of an
“active” system was proposed by Vicsek et al. [8]. In
the Vicsek model, the alignment activity rule provides a
coherent motion of the constituents at sufficiently high
density and low external noise [1, 8]. Another model is
a system consisting of active Brownian particles (ABP)
[2, 11–14, 16, 19, 20]. For this the self-propulsion of
a particle is mediated by its translational and rota-
tional diffusion. At sufficiently high particle densities,
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this system shows activity induced phase separation in
case of a completely repulsive interaction among them
[19]. Whereas variations of both these models have been
vastly used in the literature to understand the behavior
of particle-like systems [1, 2, 6, 12–21], studies related to
the dynamics of filament-like entities using such active
particles are rather less [26–31, 33–35, 41].

Filaments and polymeric objects are integral part of
many biological systems. A passive polymer, i.e., in
absence of any activity or self-propulsion, following a
quench from good to poor solvent condition undergoes
changes of its conformations from coil to a globular one
[42–56]. Kinetics of such collapse for a passive polymer
has been studied extensively in the past few years, using
both lattice [45, 55] and off-lattice models [44, 46, 47,
51–54, 56] as well as using all-atom simulations [57].
Regarding this, the phenomenological description using
the “pearl-necklace” model by Halperin and Goldbart
[47] is well accepted. Thus one asks whether such a
description remains valid for active polymers as well
and if not, then how the conformations and dynamical
properties get affected due to active or self-propelling
forces.

For an active polymer, its monomers can themselves
be active (self-propelling) or can be activated by ex-
ternal forces from its environment [5]. Actin filaments
or microtubules in the cell cytoskeleton are good ex-
amples of linear filamentous objects [38]. They move
using the motor proteins attached to them as well as
due to external driving forces acting tangentially along
their contour [30, 38, 58]. In absence of hydrodynamic
effects, i.e., without conservation of local momentum,
the dynamics of a filament consisting of active beads is
mediated by their internal noise [28, 29, 31]. This re-
sembles the motion of microswimmers with strong cou-
pling among them within a medium. On the other hand,
when a passive filament is immersed in a bath of active
particles, the dynamics is governed by the force exerted
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on its beads due to collisions with the bath particles
[27, 31]. Hydrodynamic flows of the solvent also plays
an important role on its properties [58, 59].

As mentioned, studies involving active polymers are
quite new. In experiments, a synthesized activated
polymer can be realized using a chain of colloidal or
Janus particles and then making it motile by apply-
ing an electric or magnetic field [60, 61]. In recent
years, using analytical methods and computer simula-
tions also a few studies looked at properties of active
polymers [5, 27, 29, 31, 33, 34, 41, 62]. Employing Brow-
nian dynamics simulations, Bianco et al. [33] have ob-
served conformational changes of a single polymer chain
consisting of active beads for which the activity on a
bead works along the tangent vector of the neighboring
beads. In an earlier work [34], we explored the kinetics
of globule formation of a flexible polymer with increas-
ing activity which was applied in a Vicsek-like align-
ment manner using underdamped Langevin dynamics.
Such an activity helps in aligning the velocities of neigh-
boring beads towards a particular direction and thus
changes the pathway across the coil-globule transition.

In this paper, we conduct a comprehensive study of
a coarse-grained flexible polymer chain consisting of ac-
tive Brownian beads and look at its kinetics at very low
temperature in a poor solvent condition. Instead of us-
ing activity via any explicit alignment interaction, here,
for such an active Brownian polymer (ABPo) the self-
propulsion on each bead acts along its intrinsic direc-
tion. Due to the translational and rotational diffusion of
the beads and being driven by stochastic noises, the di-
rection of propulsion changes with time. In addition to
exploring the dynamics of the polymer with increasing
activity using the Langevin equation in its overdamped
limit, we also check the validity of different scaling laws
known for a passive polymer in equilibrium.

The rest of the paper is organized as follows. In Sec.
II we discuss the model and methods of our simulations.
Then the results are presented in Sec. III followed by
the conclusions in Sec. IV.

II. MODEL AND METHODS

We consider a flexible bead-spring polymer chain
where the monomers are connected in a linear way.
The bonded interaction between successive monomers is
modeled via the standard finitely extensible non-linear
elastic (FENE) potential [35, 54, 56, 63]

VFENE(r) = −
K

2
R2ln

[

1−

(

r − r0
R

)2]

, (1)

where r0 = 0.7 is the equilibrium bond length, K is
the spring constant which is set to 40 and R = 0.3
represents the maximum extension of the bonds from
its equilibrium value.

The non-bonded monomer-monomer interaction with
r being the spatial separation between them, is modeled
via the standard Lennard-Jones (LJ) potential [21, 35,
54]

VLJ(r) = 4ǫ

[(

σ

r

)12

−

(

σ

r

)6]

, (2)

where ǫ is the interaction strength which is set to unity,
i.e., all the energies are measured in units of ǫ. The
bead diameter σ is related to r0 as σ = r0/2

1/6. The
repulsive part of the potential takes care of the excluded
volume interaction. This potential has a minimum at
21/6σ ≡ r0.

For advantages in numerical simulations the potential
is truncated and shifted at a cut-off distance rc = 2.5σ
such that the non-bonded pairwise interaction takes the
form [64]

VNB(r) =

{

VLJ(r) − VLJ(rc)− (r − rc)
dVLJ

dr

∣

∣

∣

r=rc
r < rc ,

0 otherwise ,

(3)
which is continuous and differentiable at r = rc, and
has the same qualitative behavior as VLJ.

The dynamics of the ABPo chain is studied using
overdamped Langevin equations. The activity for each
bead works along its direction of self-propulsion which
changes with time. For each active bead we work with
the following equations for the translational and rota-
tional motion [16, 19, 20, 28],

∂t~ri = βDtr[−~∇Ui + fpn̂i] +
√

2Dtr
~Λtr
i , (4)

and

∂tn̂i =
√

2Drot(n̂i × ~Λrot
i ). (5)

Here ~ri represents the position of the i-th particle, Ui

is the passive interaction consisting of both VFENE (be-
tween bonded monomers) and VNB (among the non-
bonded monomers), β = 1/kBT is the inverse temper-
ature, and fp (same for all beads and constant over
time) denotes the strength of the self-propulsion force
acting along the unit vector n̂i. ‘×’ represents the cross-

product between two vectors. ~Λtr
i and ~Λrot

i are the ran-
dom noises with zero-mean and unit-variance and are
Delta-correlated over space and time given by

〈Λiµ(t)Λjν (t
′)〉 = δijδµνδ(t, t

′) , (6)

where i, j are the particle indices and µ, ν represent the
Cartesian components. In Eqs. (4) and (5) Dtr and Drot

are, respectively, the translational and rotational diffu-
sion constants of the beads. Their relative importance
is defined as [3, 16, 20, 29]

∆ =
Dtr

Drotσ2
. (7)
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In our simulation we have fixed ∆ = 1/3 [29]. Dtr is
related to β and the drag coefficient γ as Dtr = 1/γβ,
where we have chosen γ = 1. ∂t represents the first-
order time derivative. Time is measured in units of
σ2γ/ǫ ( ∝ 1/Drot = σ2γβ). For the simulations, we
have set the integration time step to 10−5 in units of
this timescale.

Following the literature, a dimensionless quantity,
the Péclet number is defined as the ratio between the
strength of the active force fp and the thermal force
kBT/σ as [3, 16, 20, 29]

Pe = fpσ/kBT. (8)

By choosing T = 0.1 we keep the thermal noise small.
For the passive case, Pe = 0, this T is well below the
Θ-transition temperature Tθ = 2.646(4) [54]. In the
rest of the paper the results for different strength of the
activity are presented in terms of Pe.

For both passive and active cases, the initial con-
figurations are prepared at a high temperature where
the polymer is in an extended coil state. Then the
time evolution of this polymer is studied by tuning
the activity parameter fp. We considered chains with
the number of beads N varying over a wide range be-
tween 32 ≤ N ≤ 380 and Péclet numbers between
0 ≤ Pe < 70. 〈. . . 〉 represents averaging over 100 in-
dependent realizations (initial conditions and thermal
noise).

III. RESULTS

We organize the presentation of our results into two
subsections. In the first, we investigate the nonequi-
librium kinetics of the polymer during its evolution to-
wards the corresponding steady state. The properties
of the steady-state conformations are then discussed in
the second subsection.

A. Nonequilibrium kinetics

In Fig. 1 we show the typical nonequilibrium confor-
mations for passive as well as a few active cases of the
polymer. For all the cases we started at t = 0 with an
extended conformation of the polymer. As observed in a
few earlier studies, the globule formation of the passive
polymer occurs via “pearl-necklace” like arrangements
of the monomers along the chain [46, 47, 54–56]. Ac-
cording to this description, in the first stage, after the
quench, a few small clusters appear uniformly along
the chain. During the second stage, which is known
as the coarsening stage, the clusters grow in size when
the monomers from their connecting bridges move diffu-
sively and join them. Then as the lengths of the bridges
decrease, these clusters meet each other and eventually

merge to form a larger one. This process continues un-
til a single cluster or globule forms. In the final stage,
the beads within this globule rearrange themselves and
form a more compact structure to minimize its surface
energy. Here, after the formation of the globule, only
the thermal fluctuations drive the rearrangement pro-
cess of the beads in order to make the globule more
spherical.

Coming to active polymers, for low activity strength
with Pe = 12.5, as evident from Fig. 1, the confor-
mations are somewhat similar to those for the passive
case. One point to notice is that the final conformation
looks somewhat more spherical. Now for Pe = 40.5 the
conformations of the ABPo look quite different than in
the earlier cases. The intermediate “pearl-necklace”-like
structures do not appear. Instead the polymer makes
a “loop-like” structure. Then the end of the polymer
where the “loop” has formed, coarsens faster than the
other end resulting in a “head-tail”-like conformation.
The “head” gradually increases in size by the addition
of monomers from the “tail” part and eventually all the
monomers become part of a single cluster. Proceeding
further in time we observe that the polymer again slowly
starts stretching from both the ends. For a much higher
activity, with Pe = 62.5, the conformations at early
times look quite similar to the Pe = 40.5 case. Then
with increasing time we see that the polymer stretches
more and more instead of collapsing. In this case, the
final steady-state conformation of the polymer becomes
a completely extended one.

For the quantification of kinetics across the coil-
globule transition, we measure the squared radius of
gyration defined as

R2
g =

1

N

N
∑

i=1

(~rcm − ~ri)
2, (9)

where ~rcm is the center-of-mass of the polymer given by

~rcm =
1

N

N
∑

i=1

~ri. (10)

From the average value of R2
g it is not possible to un-

derstand the fluctuations related to the conformations
in each run. As an illustration we show in Figs. 2(a)-(d)
the variation of R2

g versus t for a few typical runs with
N = 380 at the Pe values used in Fig. 1. For Pe = 0
and 12.5, R2

g decays monotonically and the individual
runs mainly exhibit an up-down shift. Smaller values
of R2

g close to 5 for the runs indicate the formation of a
globule. For Pe = 40.5 one observes an oscillatory be-
havior for any individual run. After reaching a compact
globule the structure again starts to extend due to ac-
tivity of the beads, as seen from Fig. 1. Such oscillatory
behavior can not be observed in averaged data as the
corresponding times for collapse and re-expansion are
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FIG. 1. Conformations at different times t (in units of σ2γ/ǫ) during the evolution of a polymer with N = 380 for the
passive (Pe = 0) as well as for a few active cases. Snapshot corresponding to t = 0 represents the starting conformation.

not the same for different runs. Now for Pe = 62.5 the
polymer always extends from its starting point. This
can be understood by looking at the values of R2

g on
the y-axis.

Next in Fig. 3(a) we plot the average 〈R2
g〉 versus t

in the passive case Pe = 0, for three different values of
the chain length. We see that the decay of R2

g becomes
slower with increasing N as observed earlier [34, 54, 56].
To check for the active cases, in Figs. 3(b) and (c) we
plot 〈R2

g〉 versus t for Pe = 12.5 and 25, respectively.
For these also, we see a similar trend for the decay of
〈R2

g〉 for different N as observed for the passive case.

To have a comparison regarding the relaxation of the
ABPo towards its final steady state for different Pe, we

TABLE I. Parameters b0, b1, τc, and β for different values of
Pe, obtained by fitting the time dependence of the squared
radius of gyration 〈R2

g〉 with the ansatz (11). All data are
for N = 380.

Pe b0 b1 τc β
0 5.77(9) 94(3) 148(10) 0.78(3)

6.25 4.71(2) 92(2) 119(9) 0.79(3)
12.5 4.59(2) 86(3) 177(10) 1.15(3)
18.75 4.75(2) 85(2) 207(12) 1.28(5)
25 5.03(2) 87(3) 264(19) 1.23(9)

31.25 7.1(7) 90(3) 386(34) 1.09(9)
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fit our data with the form [34, 54]

〈R2
g(t)〉 = b0 + b1 exp[−(t/τc)

β ] , (11)

where b0 is the value of 〈R2
g〉 at t → ∞, i.e., the size

of the polymer in its collapsed conformation, τc mea-
sures the required relaxation time to reach the collapsed
state, and b1 and β are fitting parameters where b1 is
related to R2

g at t = 0. For β = 1, Eq. (11) corre-
sponds to a purely exponential decay. The solid lines
in Figs. 3(a)-(c) for N = 380 show the resulting fits
using the ansatz (11). In Table I we quote values of
the fitting parameters for a few values of Pe. The er-
rors for the fitting parameters are calculated using the
Jackknife resampling method [65]. In all cases, the fit-
ted β values differ from 1. For very low activity, i.e.,
Pe = 6.25, we see that τc is smaller than that for the
passive case, indicating a much faster relaxation to the
globule. Now with increasing Pe the values of τc be-
come larger showing a nonmonotonic behavior of the
relaxation time with the variation of Pe. Larger error
bars for τc with Pe ≥ 25 are due to the presence of
larger fluctuations in R2

g. Interestingly, with increasing
Pe one also observes a nonmonotonicity in the values of
b0 which is related to the size of the globule in its steady
state. Larger values of b0 indicate that the globules are
not completely spherical.

Now we consider the cases with higher activities, i.e.,
Pe = 40.5 and 62.5. As a qualitative comparison among
different activities, in Fig. 4(a) we plot 〈R2

g〉 versus time
for different Pe values for our longest considered chain,
i.e., N = 380. For Pe = 40.5 the decay of 〈R2

g〉 is
much slower. For much higher activity with Pe = 62.5,
unlike the other cases, 〈R2

g〉 increases from its starting

FIG. 2. Plots of R2

g versus t for a few typical individual
runs with N = 380 for different values of Pe during time
evolution of the polymer.

point, reflecting that the steady-state conformation is
an extended coil (cf. Fig. 1). Now, we ask whether a
stretched conformation of the polymer is a generic fea-
ture for a high enough activity. To check for that, in
the inset, we plot 〈R2

g〉 versus t for Pe = 62.5 with two
different starting conditions. Along with the data for
the extended case similar to the main frame, we also
present data for which the starting conformations of
the ABPo are globules. Data are presented on a log-
log scale to emphasize the differences of the values of
〈R2

g〉 at small t. We see that, even after starting from

entirely different initial conformations, 〈R2
g〉 for both of

them converges towards a similar value at large t. It
confirms that for high enough Pe, when activity domi-
nates over the inter-monomer interactions as well as the
thermal fluctuations, the steady-state conformation of
the polymer becomes an extended coil.

As another measure of such conformational change
due to activity, in Fig. 4(b), we plot the average coor-
dination number 〈nn〉 of a monomer versus time t for
different values of Pe on a log-log scale. nn is calcu-
lated by counting the number of beads within the cut-
off radius rc = 2.5σ, around a monomer. For passive
as well as for lower activities we see that 〈nn〉 increases
with time and saturates for t ≥ 500. This indicates the
formation of a globule. For Pe = 40.5, 〈nn〉 also in-
creases but saturates at a smaller value. With higher
activity Pe = 62.5, on the other hand, 〈nn〉 decreases
monotonically which suggests that the polymer becomes
extended. As already mentioned, the activity works on
each bead along its direction of self-propulsion and thus
for very high activities the beads try to move far apart
from each other and essentially the polymer becomes
elongated.

To see the effect of increasing activity on the macro-
scopic conformational changes with time, we calculated
the end-to-end vector correlations and compared them
with those for the passive case. This two-time correla-
tion is defined as [31]

Cee(t) = ~ree(t) · ~ree(0)/~r
2

ee(0) , (12)

where ~ree stands for the end-to-end vector of the poly-
mer given by

~ree = ~r1 − ~rN . (13)

In Fig. 5 we plot this normalized end-to-end vector au-
tocorrelation 〈Cee(t)〉 versus t on a semi-log scale for
the passive as well as for a few active cases. For all
of them, starting from a coil conformation, we measure
how rapidly the conformations change with time for dif-
ferent values of Pe. For lower activities (Pe = 12.5 and
25) 〈Cee(t)〉 follows quite a similar trend as for the pas-
sive case until t ≈ 200. This could be expected from
Fig. 1 as the conformations for Pe = 0 and 12.5 look
visually quite similar. After that initial regime 〈Cee(t)〉
for Pe = 12.5 deviates from the passive case and the
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FIG. 3. Plots of squared radius of gyration 〈R2

g(t)〉 versus t for (a) the passive case (Pe = 0) and active chains with (b)
Pe = 12.5 and (c) Pe = 25, for three different chain lengths.

decay becomes faster. In this regime, the decay is
exponential-like and for 200 ≤ t ≤ 700 data look consis-
tent with exp(−0.004t). With lower activities, though
the final conformations are globules and the decay of
〈R2

g〉 follows a similar trend as that for the passive case,
the beads can rearrange themselves within the cluster
more rapidly due to their self-propulsion. This certainly
helps in modifying the structure of the ABPo and leads
to a faster decay of 〈Cee〉. Now for Pe = 40.5 the decay
of 〈Cee(t)〉 is always slower compared to the passive and
the lower activity cases. This is due to the intermedi-
ate conformational changes as observed in Fig. 1. With
much higher activity, i.e., for Pe = 62.5, the decay be-
comes even slower, as the polymer always remains in
the extended state. For the passive case and also for
the higher activities it seems like there are continuous
changes in the slopes of the decay.

From the previous plots we now have a good compar-
ative picture of the nonequilibrium pathways towards
the steady-state conformations of the ABPo for low and
high values of Pe. Further, we investigate the scaling
of the nonequilibrium relaxation time for the collapse.
For this, we consider the lower values of Pe for which
the final state of the ABPo is a globule. Following ear-
lier works [34, 54], such a characteristic time τq can be
estimated from the decay of R2

g as

R2
g(t = τq) = q∆R2

g +R2
g(t → ∞) , (14)

where R2
g(t → ∞) denotes the value of the gyration

radius in the globular state and ∆R2
g = R2

g(0)−R2
g(t →

∞) measures the total decay. τq is the time at which R2
g

decays to a fraction q of its total decay. This definition is
valid for the cases for which R2

g decays from its starting
value. In our analysis we have taken q = 1/e. This
choice of q is motivated by the exponential-like behavior
of the fitting ansatz in Eq. (11) for the data shown in
Fig. 3. A more detailed description regarding this can

be found in Refs. [34, 56]. In Fig. 6 we plot 〈τq〉 versus
N for the passive as well as for the active cases with
Pe = 12.5 and 25. For all the cases, data show power-
law behaviors as

〈τq〉 ∼ Nz , (15)

with z as a dynamical exponent [46, 54, 56]. For the
passive polymer case we see z ≃ 1.35. Our estimated
value for z matches quite well with a few earlier results
using Brownian dynamics simulations in absence of hy-
drodynamics [46, 48, 51]. However, the dynamics ap-
pears to be faster compared to Monte Carlo simulations
[54, 56]. Now coming to the active cases, with lower ac-
tivities the exponent z appears to be smaller compared
to the passive case. Our estimated values for the expo-
nent z are ≃ 1.05 and ≃ 0.85, for Pe = 12.5 and 25,
respectively. This indicates that for lower activities the
dynamics of collapse becomes faster than that for the
passive case. This scenario is in contrast to the collapse
dynamics observed for a polymer with the Vicsek-like
alignment activity among the monomers [34].

B. Steady-state properties

Next we investigate the properties of the steady state
which is reached once 〈nn〉 has saturated. In particu-
lar we study how the size of the polymer and its related
scaling changes with activity. In Fig. 7(a) we plot 〈R2

g〉s
(subscript s indicates steady-state averages) versus Pe
over a wide range, for three different chain lengths, i.e.,
N = 32, 128 and 380, on a semi-log scale. The behavior
of 〈R2

g〉s is indeed representative of a crossover from a
globule to extended conformations with increasing Pe.
For N = 380, 〈R2

g〉s first slightly decreases and then
increases as a function of Pe. A similar nonmonotonic
feature can also be identified from the values of the fit-
ting parameter b0 in Table I. From this plot one can
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FIG. 4. (a) Plot of 〈R2

g(t)〉 versus t for the passive and
a few active cases. Inset shows data sets only with Pe =
62.5, for which different colors mark the cases with starting
conformations being extended or a globule one. (b) Log-log
plot of the average coordination number 〈nn〉 of a monomer
versus t for the same Pe values as in (a). All data sets are
for N = 380.

identify the corresponding crossover points of Pe which
mark the onsets of the change of conformations from
globule to the extended state for any N . This crossover
point Pe increases with N . Such a dependence has sim-
ilarity with the identification of the Θ-transition tem-
perature with the variation of N in the case of a passive
polymer [54].

For conformational changes of a polymer it is also an
usual practice to look at the distribution P (Rg) of gy-
ration radius for the steady states. In Figs. 7(b)-(e) we
plot the normalized P (Rg) versus Rg at different values
of Pe. There one observes a nonmonotonic behavior

FIG. 5. Semi-log plot of the normalized end-to-end vector
correlation 〈Cee(t)〉 versus t, on a semi-log scale, for different
values of Pe. All data are for N = 380. The dashed line
shows an exponential function exp(−0.004t) as a guide to
the eye.

FIG. 6. Log-log plot of 〈τq〉, estimated from Eq. (14), versus
chain length N for the passive (Pe = 0) and the active cases
with Pe = 12.5 and 25. Solid lines represent the power law
(15) for which the corresponding exponents are mentioned
next to them.

regarding the width of the distribution with increasing
Pe: It decreases for lower activities compared to Pe = 0
and then increases for higher Pe. For passive as well as
for lower activities the peaks are at Rg ≈ 2.1 − 2.2,
whereas for Pe = 62.5 it shifts to the right, i.e., to-
wards a much larger value of Rg ≈ 20. This behavior of
P (Rg) confirms a transition of the polymer from globule
to extended state with increasing Pe. Similar behavior
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FIG. 7. (a) Plot shows the variation of the size of the poly-
mer, 〈R2

g〉s for its pseudo-equilibrium steady-state conforma-
tions, versus Pe. (b)-(e) Plots of the normalized distribu-
tions of radius of gyration P (Rg) versus Rg for the steady-
state conformations at different values of Pe for N = 380.

of P (Rg) is expected for a passive polymer as well for
temperatures below and above its Θ-transition temper-
ature.

Until now we have seen the effect of activity in the
macroscopic changes of the polymer. To see the effect in
the microscopic details we measure the individual bond
lengths rb between any two successive beads, defined as,

rb = |~ri+1 − ~ri| , (16)

where ~ri represents the position of the i-th bead, and
looked at their distributions. In Fig. 8 we plot the nor-
malized distributions P (rb) for different values of Pe
with N = 380 for the steady-state conformations. We
see that the distributions for the lower activities are

FIG. 8. Plots of the normalized distributions of bond lengths
P (rb) versus rb for different values of Pe for the steady-state
conformations.

quite similar to that for the passive case. For much
higher activities, i.e., with Pe = 62.5 and 68.7 the dis-
tributions look very different. They become more asym-
metric around their mean. Also the heights of the dis-
tributions increase and their widths decrease indicating
lesser fluctuations in the variation of rb. The shift of
the peak positions of P (rb) to the right indicates the
increase of the average bond length for the conforma-
tions. For lower values of Pe the peak occurs around
rb ≈ r0 = 0.7 whereas for higher Pe the corresponding
values of rb appear to be ≈ 0.92, slightly smaller than
the upper limiting value r0 + R = 1.0 of the FENE
bonds.

As observed, the steady state changes from a globu-
lar to an extended one with increasing Pe. We already
got an idea regarding this from Fig. 4(a) which shows
that Pe = 62.5 is high enough for our considered chain
lengths here (i.e., up to a maximum of N = 380) to
overcome the attractive forces and to make the confor-
mations more extended. We want to explore further the
scaling behavior of 〈R2

g〉s with N . Note that, in absence
of self-propulsion of the beads, for the passive polymer
this corresponds to an equilibrium state. In this case,
the spatial extension of the polymer is related to N via
the scaling form [43]

〈R2
g〉s ∼ N2ν , (17)

where ν is known as the Flory exponent. For a pas-
sive chain with self-avoidance, the Flory approxima-
tion yields for extended coil conformations the value
of ν = 3/(d + 2), with d being the spatial dimen-
sionality. For d = 3, ν = 3/5 = 0.6 agrees well
with the precise self-avoiding random walk exponent
ν = 0.58759700(40) [66]. On the other hand, ν = 1/d,
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FIG. 9. Plots of the steady-state values of the squared gy-
ration radius 〈R2

g〉s of the polymer versus the chain length
N for the passive and a few active cases. The continuous
and dashed black lines correspond to power-laws for which
the exponents are mentioned next to them.

if the conformation of the chain is a globular one. In
Fig. 9 we plot 〈R2

g〉s versus N for a few values of Pe. For
the passive as well as for lower activity, for which the
final conformation is a globule, the exponent is ν ≈ 1/3.
As expected from Fig. 7(a), for the higher activities, the
values of 〈R2

g〉s are much larger compared to the other
cases. For both of them, data look consistent with a
power-law behavior with the exponent ν ≈ 3/5 similar
to that for a self-avoiding random walk. This quanti-
tatively confirms that for higher activities the pseudo-

equilibrium steady-state conformations of the polymer
are extended coils.

Finally we investigated whether the basis for such
a conformational change is embedded in our protocol
used for changing the activity. In this regard, we try to
understand the relative importance of different energy
scales present in the system. For the ABPo, along with
the “ballistic” energy fpσ and the thermal energy kBT ,
also the interaction energy ǫ is important. Alongside
with Pe = fpσ/kBT , already defined as the activity
parameter, one can define another dimensionless ratio
dr = fpσ/ǫ. Within the so far employed measurement
protocol of changing fp at fixed T and ǫ (keeping σ fixed
by default), not only Pe but also dr changes. In Fig. 10
we plot the variation of dr versus Pe while changing fp
for fixed values of ǫ = 1 and T = 0.1. dr and Pe are
linearly related as

dr =
kBT

ǫ
Pe , (18)

with a slope kBT/ǫ = 0.1. The origin with both dr =

FIG. 10. Plot showing the variation of dr versus Pe. The
line has a slope kBT/ǫ = 0.1. The stars mark the corre-
sponding steady-state conformations of the polymer shown
in Fig. 11.

Pe = 0 corresponds to the passive polymer case.

In this context, we discuss another possible protocol:
If one changes Pe by varying the temperature T for
fixed values of fp and ǫ, then dr remains unchanged. In
this case one moves along a line parallel to the Pe axis
for any fixed dr. Thus it is not possible to see the effect
of the variation of dr on the polymer conformations. To
investigate the effect of increasing dr in such a proto-
col, we show in Fig. 11 the steady-state conformations
for different values of dr for a low and a high value of
Pe, i.e., Pe = 12.5 and 62.5. To perform these simula-
tions we fix fp = 2.0. Then the temperatures are fixed
at T = 0.1 and 0.02 to set the Pe values at 12.5 and
62.5, respectively. For each of them dr was changed by
varying the interaction strength ǫ. For both values of
Pe, the conformations change from an extended coil to
a globule with decreasing dr, i.e., increasing ǫ, as ob-
served from Fig. 11. We also checked whether for the
high Pe case with small values of dr the globule confor-
mation is generic or not for other combinations of the
energy scales. For a higher fp = 10.0 with T = 0.1
and ǫ = 5.0 (leading also to Pe = 62.5 and dr = 1.25)
we find that the steady state is also a globule. Now
it becomes clearer that Pe is not the only control pa-
rameter. Instead, irrespective of the choice of activity
strength fp, its relative importance compared to the
interaction strength ǫ, defined by dr, helps in deter-
mining the steady-state conformations. Since our way
of changing Pe also changes the value of dr we observe
the globule to coil transition of ABPo with the variation
of Pe.
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FIG. 11. Steady-state conformations of the active polymer
with a low (Pe = 12.5) and a high activity (Pe = 62.5) for
four different values of dr for N = 380.

IV. CONCLUSION

In this paper, we have studied the kinetics of a flexi-
ble polymer consisting of active Brownian beads in a
poor solvent. We considered a low enough temper-
ature to minimize the effect of thermal noise on the
dynamics of ABPo. The self-propelling force is var-
ied to increase the activity while keeping all other pa-
rameters fixed. One sees that with smaller activities,
the conformations are qualitatively similar to those for
the passive case, and the final conformations are glob-
ules. The exponent for the scaling of relaxation time for
small Pe becomes lower indicating a faster dynamics for
globule formation with increasing Pe. However, with
much higher activities the conformations become signifi-
cantly different and the radius of gyration increases with
time. This indicates that the polymer becomes more ex-
tended.Variation of the gyration radius for the steady-
state conformations versus the chain length shows that
with increasing activity the corresponding Flory expo-
nent changes from 1/3 to 3/5. This indicates a tran-
sition of the polymer from a globule to a self-avoiding
random walk.

We have understood such a conformational change

on the basis of interplay among the three energy scales
present in the system. According to our protocol, while
changing the self-propelling force fp, then along with
the variation of the Pe defined as the ratio of the active
or “ballistic” energy fpσ and the thermal energy kBT ,
another dimensionless ratio dr = fpσ/ǫ, where ǫ is the
interaction strength, also changes. Our analyses con-
firm that the ratio dr plays an important role, driving
a change of the steady-state conformation of the ABPo
from a globular to the coil state even though the condi-
tion is a poor solvent. It will be worthwhile to look at
the entire phase diagram for the steady-state conforma-
tions in the Pe-dr plane. This we intend to investigate
in a future work.

Here we considered the Langevin equation in its over-
damped limit to mimic the polymer moving in a viscous
medium. For active particles one already observed sig-
nificant differences in the clustering properties when re-
placing the overdamped Brownian dynamics with the
underdamped Langevin equation [20]. For the active
polymer also it can be interesting to look at its prop-
erties while the dynamics is mediated via the under-
damped Langevin equation which features inertial ef-
fects. In our model the ratio of the translational and ro-
tational diffusion constants as well as the self-propulsion
force on each bead are chosen as a constant through-
out the simulation. But for real systems, in any typ-
ical biological environment, the active forces on the
beads can have spatial and temporal dependencies as
all monomers may not experience the same force at all
times. The dependence of particle motility on its lo-
cal density has already been considered for the Vicsek
model [12]. By taking such a phenomenon into consider-
ation for the ABPo also, this can provide more insights
into its typical conformations for real situations. For
the ABPo one can also take into account the effect of
hydrodynamics which arises due to interaction among
the beads and the solvent particles [5, 59].
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