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In this paper, a novel discrete algebra is presented which follows by combining the SU(2) Lie-Poisson
bracket with the discrete Frenet equation. Physically, the construction describes a discrete piecewise
linear string in R

3. The starting point of our derivation is the discrete Frenet frame assigned at each
vertix of the string. Then the link vector that connect the neighbouring vertices assigns the SU(2)
Lie-Poisson bracket. Moreover, the same bracket defines the transfer matrices of the discrete Frenet
equation which relates two neighbouring frames along the string. The procedure extends in a self-
similar manner to an infinite hierarchy of Poisson structures. As an example, the first descendant
of the SU(2) Lie-Poisson structure is presented in detail. For this, the spinor representation of
the discrete Frenet equation is employed, as it converts the brackets into a computationally more
manageable form. The final result is a nonlinear, nontrivial and novel Poisson structure that engages
four neighbouring vertices.

I. INTRODUCTION

The SU(2) Lie-Poisson bracket is an example of a Poisson structure that is also a Lie algebra. The bracket was
originally introduced by Lie [1]. A systematic investigation started much later, with seminal contributions in particular
by Lichnerowicz [2], Kirillov [3] and Weinstein [4]. Subsequently Lie-Poisson structures [5] have been investigated
widely, with a large number of fundamental physics applications from string theory and integrable systems to conformal
and topological field theories [6, 7].
This paper proves that Poisson structures can also be relevant in connection of effective theory descriptions of

discrete stringlike objects. Discrete piecewise linear strings have appeared from models of proteins in terms of the Cα
backbone [8] to considerations of segmented string evolution in de Sitter and anti-de Sitter spaces [9]. In addition,
they have important applications in robotics and 3D virtual reality [10].
The paper is arranged as follows. Initially, the descendants of the SU(2) Lie-Poisson structure that relates to

the structure of a discrete piecewise linear polygonal string are considered. In addition, the model space and its
reduction in the case of the standard SU(2) Lie-Poisson bracket is reviewed. Then the formalism of the discrete
Frenet frames [11] and its self-similar hierarchical structure is presented. Finally, following the results of [12], the
self-similar structure is converted into a spinor representation, while the Poisson brackets in terms of the SU(2) Lie-
Poisson structure are introduced. That way, an infinite hierarchy of Poisson structures can be assigned to piecewise
linear string as descendants of the canonical SU(2) Lie-Poisson structure. To conclude, an explicit construction of the
first level descendant in this hierarchy is presented in detail.

II. THE MODEL SPACE AND THE LIE-POISSON STRUCTURE

This preparatory section summarises known results on the model space of SU(2) representations and the SU(2)
Lie-Poisson structure. The starting point is a four dimensional phase space R

4 equipped with a canonical symplectic
structure and Darboux coordinates (q1, p1, q2, p2)

{pα, qβ} = −δαβ,
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combined into two complex ones

wα =
1√
2
(pα + iqα), (α = 1, 2). (1)

Their norm is set to be ρ, ie.

||w1||2 + ||w2||2 = 2ρ, (2)

while the associated Poisson brackets have the simple form,

{wα, w̄β} = iδαβ, {wα, wβ} = {w̄α, w̄β} = 0. (3)

Next define the three component unit length vector

ta = − 1

2ρ

(

w̄1 w̄2
)

σa

(

w1

w2

)

, (a = 1, 2, 3), (4)

where σa are the Pauli matrices. Then, the ta components obey the SU(2) Lie-Poisson bracket

{ta, tb} =
1

ρ
ǫabctc, (5)

associated with the identity

{ta, ρ} = 0. (6)

Therefore, ρ is a Casimir element while the phase space (1) is a model space of SU(2) representations. Note that,
different values of ρ correspond to different representations. The bracket (5) determines a Poisson structure since:

It is antisymmetric, ie., any two functions A and B satisfy

{A,B} = −{B,A}. (7)

It obeys both the Jacobi identity

{A, {B,C}}+ {B, {C,A}}+ {C, {A,B}} = 0 (8)

and the Leibnitz rule

{A,BC} = {A,B}C +B{A,C}. (9)

Note that the Jacobi identity coincides with the Schouten bracket of the Poisson bi-vector field

Λ = ǫabctc∂a ∧ ∂b, (10)

from which the Leibnitz rule follows directly.

Since the rank of the antisymmetric matrix ǫabctc is two, the bracket in (5) does not determine a symplectic
structure. However, the Poisson bracket (3) is symplectic with the closed and non-degenerate two-form

ω = dp1 ∧ dq1 + dp2 ∧ dq2 = idw1 ∧ dw⋆
1 + idw2 ∧ dw⋆

2 . (11)

Therefore, a Darboux coordinate representation of (5) can be derived by introducing the harmonic coordinates

(

w1

w2

)

=
√

2ρ

(

cos θ
2 e

i(ϕ+φ)/2

sin θ
2 e

i(ϕ−φ)/2

)

, (12)

and thus, the unit length vector (4) simplifies to

t =





t1

t2

t3



 =





cosφ sin θ
sinφ sin θ

cos θ



 . (13)
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These coordinates foliate R
4 ∼ R

1 × S
3 ∼ R

1 × S
1 × S

2 where (ϕ, φ, θ) are the angular coordinates and
√
2ρ the

radii. That way, the symplectic two-form (11) becomes

ω = dρ ∧ dϕ+ cos θdρ ∧ dφ+ ρ d cos θ ∧ dφ ≡ dρ ∧ dϕ+ d(ρ cos θ) ∧ dφ, (14)

with the only non-vanishing Poisson brackets given by

{ρ, ϕ} = −1, {ρ cos θ, φ} = −1. (15)

Finally, by setting

χ = ǫϕ, (16)

and taking the Inönü-Wigner contraction limit (ǫ → 0) of the system (15), only the second bracket survives. The
latter corresponds to the symplectic Poisson bracket on S

2 together with its closed two-form (unique up to coordinate
changes), that coincides with the last term in (14). Note that the coordinate ρ appears only as a Casimir element of
the Lie-Poisson bracket. Thus, for simplicity, in what follows ρ = 1.

III. DISCRETE FRENET EQUATION AND SELF-SIMILARITY

A. Vector representation of the discrete Frenet frames

In this section descendants of the SU(2) Lie-Poisson bracket defined by (5), that arise in connection of open and
piecewise linear polygonal strings x(s) ∈ R

3, are constructed. To set the stage, let s be the arc length parameter with
values s ∈ [0, L] while L is the length of the string. Also, Vi with i = 0, ..., n are the vertices that characterise the
string located at the points x(si) = xi. Then, neighbouring vertices are connected by the line segments

x(s) =
s− si

si+1 − si
xi+1 − s− si+1

si+1 − si
xi, s ∈ (si, si+1),

and are separated by the distances

|xi+1 − xi| = si+1 − si ≡ ∆i.

The discrete Frenet frames are defined by the orthogonal triplets (t,n,b)i at the vertices Vi as follows: The unit
length tangent vectors ti point from Vi to Vi+1

ti =
1

∆i
(xi+1 − xi), (17)

the unit length binormal vectors are

bi =
ti−1 × ti

|ti−1 × ti|
, (18)

and the unit length normal vectors ni are computed from

ni = bi × ti =
−ti−1 + (ti−1 · ti) ti
|ti−1 + (ti−1 · ti) ti|

. (19)

In addition, the transfer matrix Ri+1,i maps the discrete Frenet frames between the neighbouring vertices Vi and
Vi+1





n

b

t





i+1

= Ri+1,i





n

b

t





i

=





cos τ cosκ sin τ cosκ − sinκ
− sin τ cos τ 0

cos τ sinκ sin τ sinκ cosκ





i





n

b

t





i

. (20)

Here κi+1 is the bond angle and τi+1 is the torsion angle. [Note that, the transfer matrix Ri+1,i ∈SO(3) engages only
two of the Euler angles (κ, τ)i since the third Euler angle becomes removed by the orthogonality of bi and ti−1.]
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The torsion and bond angles (κi, τi) are expressible in terms of the tangent vectors only. This observation follows
directly from equation (20) since

cosκi = ti+1 · ti, (21)

while

cos τi = bi+1 · bi =
ti × ti+1

|ti × ti+1|
· ti−1 × ti

|ti−1 × ti|
. (22)

In addition, the bond angle engages three vertices while the torsion angle engages four vertices along the string.
The aforementioned construction can be extended into an infinite hierarchy (for an infinite length string) in a

self-similar manner. To do so the transfer matrix (20) is used to introduce a 2nd level orthonormal triplet of vectors
(T,N,B)i. The components of the vector Ti are defined in terms of the last row of (20)

Ti =





cos τi sinκi
sin τi sinκi

cosκi



 , (23)

while the corresponding 2nd level binormal and normal vectors, in analogy with (18) and (19), are defined as

Bi =
Ti−1 ×Ti

|Ti−1 ×Ti|
, Ni =

−Ti−1 + (Ti−1 ·Ti)Ti

|Ti−1 + (Ti−1 ·Ti)Ti|
. (24)

Then the corresponding equation (20) determines the 2nd-level transfer matrix




N

B

T





i+1

= Ri+1,i





N

B

T





i

≡





cosT cosK sinT cosK − sinK
− sinT cosT 0

cosT sinK sin T sinK cosK





i





N

B

T





i

. (25)

with (K, T )i the 2nd-level bond and torsion angles evaluated in terms of the 2nd-level Ti in analogy to equations (21)
and (22).
The construction can be extended to the next level. That is, using the last row of (25) the formulation (23) is used

to introduce the 3rd-level tangent vectors. From these, the 3rd level vectors (24) and transfer matrix (25) are obtained.
The construction can then be continued to higher levels (in a self-similar manner) and thus, an infinite hierarchy is
obtained. In particular, every vector and angle that appears in this self-similar hierarchy, can be expressed recursively
in terms of the initial tangent vectors ti.

B. Spinor representation of the discrete Frenet equation

In this section the spinorial form of the discrete Frenet equation (20) is presented. To do so, a two component
spinor is assigned to each link that connects the vertices Vi and Vi+1, that is,

ψi =

(

z1

z2

)i

. (26)

The ziα (for α = 1, 2) are complex variables assigned to the link. Then, the unit length tangent vectors ti can be
expressed in terms of the spinors from a relation akin that in (4)

ψ
†
i σ̂ψi =

√
gi ti, (27)

where σ̂ = (σ1, σ2, σ3) are the Pauli matrices, ti is the discrete tangent vector (17) and
√
gi is the scale factor,

√
gi ≡

(

|z1|2 + |z2|2
)i
. (28)

The difference to equation (2) should be noted. From the definition (27) and using (26) one can easily derive that

zi1 =

√

gi

2

[

√
t1 − it2

(

1 + t3

1− t3

)1/4
]i

,

zi2 =

√

gi

2

[

√
t1 + it2

(

1− t3

1 + t3

)1/4
]i

, (29)
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while in terms of the local coordinates (13) one obtains

(

z1
z2

)i

=
√
gi

(

cos θ
2 e

iφ/2

sin θ
2 e

−iφ/2

)i

. (30)

In analogy to (12) the value of the overall factor
√
gi can be changed and let us (for simplicity) set gi = 1.

Next the conjugation operation C is introduced to create the conjugate spinor ψ̄i,

Cψi = −iσ2ψ⋆
i =

(

−z̄2
z̄1

)i

≡ ψ̄i, (31)

so that

ψ
†
i ψ̄i = 0.

Together the two spinors ψi and ψ̄i define the 2×2 matrix

ui =

(

z1 −z̄2
z2 z̄1

)i

, (32)

where

ψi = ui

(

1
0

)

, ψ̄i = ui

(

0
1

)

.

Finally, to derive the spinorial discrete Fernet equation in a matrix form, a Majorana spinor is constructed from
the two spinors (26) and (31) by setting

Ψi =

(

−ψ̄
ψ

)i

,

one can now introduce a spinorial transfer matrix Ui+1,i that relates the Majorana spinors at the neighbouring links
as

Ψi+1 = U†
i+1 Ψi. (33)

Equation (33) is the so-called spinorial discrete Frenet equation. In analogy to (32) the matrix Ui+1,i can be expressed
in terms of the vertex variables Zi

a (for a = 1, 2):

Ui =

(

Z1 −Z̄2

Z2 Z̄1

)i

. (34)

The link (z1, z2)
i and the vertex (Z1, Z2)

i variables are connected through the discrete Frenet equation (33). In
particular,

Zi+1
1 = z̄i1 z

i+1
1 + z̄i2 z

i+1
2

Zi+1
2 = zi1 z

i+1
2 − zi2 z

i+1
1 . (35)

and the choice
√
gi = 1 in (28) gives (|Z1|2 + |Z2|2)i = 1.

In analogy with (25), one can introduce a 2nd level spinor variables, with the ensuing 2nd level spinorial Frenet
equation. The construction can be repeated to higher levels, in a self-similar manner, to obtain an infinite hierarchy
of spinorial discrete Frenet equations. Notably, all quantities that appear in this hierarchy can be written in terms of
the complex variables (29), recursively.

IV. DESCENDANTS OF THE SU(2) LIE-POISSON BRACKET

In the case of the discrete Frenet frames, the entire self-similar hierarchy can be constructed recursively in terms
of the initial tangent vectors (17). As a consequence, one can also introduce Poisson structures at all levels of the
hierarchy; recall that the SU(2) Lie-Poisson brackets (5) imposed on the tangent vectors (17) take the simple form

{tai , tbj} =
1

∆i
δijǫ

abctci , (36)
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where ∆i are identified as Casimir elements and for convenience the value ∆i = 1 is chosen.
Equivalently, the spinor realisation of the hierarchy can be expressed recursively in terms of the complex link

variables (26). Indeed, from (36) it is straightforward to show that the link variables (29) satisfy the following algebra

{ziα, z̄jα} =
i

4
δij , α = 1, 2,

{zi1, zj2} = − i

8

(

|z1|2 − |z2|2
√

|z1|2|z2|2

)i

δij ,

{zi1, z̄j2} = − i

8

1

(z̄1z2)
i
δij . (37)

While it is clear that the Poisson brackets of all the quantities that appear in the self-similar hierarchy can be
evaluated recursively in terms of (36) it is not obvious that the Poisson brackets of all the components of Ti that
appear at a given higher level of the hierarchy, form a closed algebra. If this is the case, a method is obtained to
systematically generate new Poisson structures, as higher level descendants of the original SU(2) Lie-Poisson structure.
In what follows, starting from the spinor representation (37) of the SU(2) Lie-Poisson bracket it is demonstrated by an
explicit computation that this is the case. To do so, the Poisson brackets of the vertex variables (35) are evaluated. In
particular, they are employed as coordinates to define a Poisson structure in terms of the pertinent Poisson bi-vector,
that is,

Λ(Z, Z̄) = Ωµν(Zα
i , Z̄

α
i )∂µ ∧ ∂ν µ, ν ∼ (α, i). (38)

After some lengthy algebra it is found that the only non-vanishing brackets of the vertex variables (35) are the
following

{Zi+1
1 , Zi

1} =
i

2
Zi+1
2 Z̄i

2 −
i

8
Λi
(

Zi+1
1 Z̄i

2 − Zi+1
2 Zi

1

)

,

{Zi+1
1 , Zi

2} = − i

2
Zi+1
2 Z̄i

1 +
i

8
Λi
(

Zi+1
1 Z̄i

1 + Zi+1
2 Zi

2

)

,

{Zi+1
1 , Z̄i

1} = − i

8
Λi
(

Zi+1
1 Zi

2 + Zi+1
2 Z̄i

1

)

,

{Zi+1
1 , Z̄i

2} = −{Zi+1
2 , Zi

1},

{Zi+1
2 , Zi

1} = − i

8
Λi
(

Zi+1
1 Zi

1 − Zi+1
2 Z̄i

2

)

,

{Zi+1
2 , Zi

2} = {Zi+1
1 , Z̄i

1},

{Zi+1
2 , Z̄i

1} =
i

2
Zi+1
1 Zi

2 +
i

8
Λi
(

Zi+1
1 Z̄i

1 + Zi+1
2 Zi

2

)

,

{Zi+1
2 , Z̄i

2} = − i

2
Zi+1
1 Zi

1 +
i

8
Λi
(

Zi+1
1 Z̄i

2 − Zi+1
2 Zi

1

)

,

{Z1, Z̄1}i+1 =
i

8
Λi
(

Z1Z̄2 + Z̄1Z2

)i+1
+
i

8
Λi+1

(

Z1Z2 + Z̄1Z̄2

)i+1
,

{Z1, Z2}i+1 =
i

2
(Z1Z2)

i+1 − i

8
Λi+1 − i

8
Λi
(

Z2
1 − Z2

2

)i+1
,

{Z1, Z̄2}i+1 = − i

2

(

Z1Z̄2

)i+1 − i

8
Λi − i

8
Λi+1

(

Z2
1 − Z̄2

2

)i+1
,

{Z2, Z̄2}i+1 = i
∣

∣Zi+1
1

∣

∣

2
+
i

8
Λi
(

Z1Z̄2 + Z̄1Z2

)i+1 − i

8
Λi+1

(

Z1Z2 + Z̄1Z̄2

)i+1
. (39)

where the parameter Λi is real (ie., Λi = Λ̄i) and is defined by the dual form in terms of the vertex variables either
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at the ith or at the i+ 1th vertex[1]. That is,

Λi =

(

Z̄1
2 − Z2

1 + Z̄2
2 − Z2

2

Z̄1Z2 − Z1Z̄2

)i

(40)

=

(

Z̄1
2 − Z2

1 − Z̄2
2
+ Z2

2

Z1Z2 − Z̄1Z̄2

)i+1

. (41)

Furthermore, one can check that the following identities are satisfied

{|Z1|2 + |Z2|2, Z1}i = {|Z1|2 + |Z2|2, Z̄1}i = 0,

{|Z1|2 + |Z2|2, Z2}i = {|Z1|2 + |Z2|2, Z̄2}i = 0,

{
(

|Z1|2 + |Z2|2
)i+1

, Zi
1} = {

(

|Z1|2 + |Z2|2
)i+1

, Z̄i
1} = 0,

{
(

|Z1|2 + |Z2|2
)i+1

, Zi
2} = {

(

|Z1|2 + |Z2|2
)i+1

, Z̄i
2} = 0,

{
(

|Z1|2 + |Z2|2
)i
, Zi+1

1 } = {
(

|Z1|2 + |Z2|2
)i
, Z̄i+1

1 } = 0,

{
(

|Z1|2 + |Z2|2
)i
, Zi+1

2 } = {
(

|Z1|2 + |Z2|2
)i
, Z̄i+1

2 } = 0.

Thus |Zi
1|2 + |Zi

2|2 are Casimir elements of the derived algebra (39). [Note that, this result is expected, due to the
form of the vertex variables defined in (35)].
To sum up, the relations (39) determine a closed, albeit nonlinear, Poisson bracket algebra that obeys the Jacobi

identity and the Leibnitz rule, as can be concluded either by general arguments or by explicit evaluation of the
Schouten bracket of the pertinent Poisson bi-vector (38). In particular, the Poisson brackets (39) determine a Poisson
structure that is a proper descendant of the initial SU(2) Lie-Poisson structure. The construction can be extended
to all levels of the hierarchy in a self-similar way as explained above. Therefore, an infinite hierarchy of Poisson
structures as descendants of the SU(2) Lie algebra can be constructed.

V. CONCLUDING REMARKS

In conclusion, it has been shown here that in the case of a piecewise linear polygonal string the SU(2) Lie-Poisson
structure gives rise to an infinite hierarchy of Poisson structures, as its descendants. Each level of Poisson structures
engages an increasingly number of vertices along the string, thus they are different. It has been shown by an explicit
construction of the first level descendant, that the spinor representation of the Lie-Poisson bracket is a computationally
tractable realisation. The novel Poisson structure that has been constructed explicitly, engages a chain of four vertices
along the string (three links), and the higher level descendants engage an increasing number of vertices.
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Appendix A: Link Vs Vertex Variables

Directly from (35) the following systems are also satisfied

zi+1
1 = zi1 Z

i+1
1 − z̄i2 Z

i+1
2

zi+1
2 = zi2 Z

i+1
1 + z̄i1 Z

i+1
2

⇔
zi1 =

(

z1 Z̄1 + z̄2 Z2

)i+1

zi2 =
(

z2 Z̄1 − z̄1 Z2

)i+1
,

(A1)

[1] This is proven in the Appendix A; due to (A2)
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where |zi1|2 + |zi2|2 = 1. Note that, by definition due to (29) the link variables satisfy the identity (z1z2)
i ≡ (z̄1z̄2)

i

which is not true for the vertex variables.
Due to (A1) it is easy to prove that

( |z1|2 − |z2|2
z1z2

)i+1

=

(

Z̄1
2 − Z2

1 + Z̄2
2 − Z2

2

Z̄1Z2 − Z1Z̄2

)i+1

,

( |z1|2 − |z2|2
z1z2

)i

=

(

Z̄1
2 − Z2

1 − Z̄2
2
+ Z2

2

Z1Z2 − Z̄1Z̄2

)i+1

. (A2)
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