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The Kinetoplast DNA (kDNA) is a two-dimensional Olympic-ring-like network of
mutually linked 2.5 kb-long DNA minicircles found in certain parasites called Try-
panosomes. Understanding the self-assembly and replication of this structure are not
only major open questions in biology but can also inform the design of synthetic topo-
logical materials. Here we report the first high-resolution, single-molecule study of
kDNA network topology using AFM and steered molecular dynamics simulations. We
map out the DNA density within the network and the distribution of linking number
and valence of the minicircles. We also characterise the DNA hubs that surround the
network and show that they cause a buckling transition akin to that of a 2D elastic
thermal sheet in the bulk. Intriguingly, we observe a broad distribution of density
and valence of the minicircles, indicating heterogeneous network structure and indi-
vidualism of different kDNA structures. Our findings explain outstanding questions in
the field and offer single-molecule insights into the properties of a unique topological
material.

Introduction

The Kinetoplast DNA (kDNA) is one of the most
fascinating naturally occurring genomes [1–7]. It is
formed in the mitochondrion of unicelluar parasites of
the class Kinetoplastida and it is composed by an in-
terlinked two-dimensional network of small DNA circles,
or “mini-circles” and larger DNA rings called “maxi-
circles”. Maxicircles contain the genetic information for
the synthesis of mitochondrial proteins, while the minicir-
cles display somewhat redundant genetic information and
are mainly necessary to perform extensive RNA editing
on the maxicircles mRNA [8]. The precise composition
of the network depends on the organism; for instance,
Crithidia fasciculata (C. fasciculata) kDNA is contained
within a 1µm × 0.5µm disk-shaped organelle and made
of about 5000 mini-circles (2.5 kb, or 850 nm long) and
30 maxicircles (about 30 kb, or 10 µm long). The mecha-
nisms through which kDNA self-assembles and replicates
are poorly understood [4, 9, 10].

The evolutionary benefit of a linked mitochondrial
genome remains a major open question in Trypanosome
biology [9, 11]. It has been speculated that the inter-
connected structure of linked rings provides genomic sta-
bility and a means to mechanically preserve genetic ma-
terial, i.e. to avoid losing minicircles during cell divi-
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sion [9]. A common feature of kDNA is that it is found
in the basal body, near the parasite flagellum. For this
reason, it has also been speculated that the linkedness
of the network may serve to provide mechanical stability
to the organelle [6]. Taken outside the parasite, kDNA
expands to assume a “shower-cap” buckled shape about
5µm in size [12–14]. Once adsorbed onto a surface for
Electron Microscopy (EM) or atomic force microscopy
(AFM), kDNA stretches to an oval shape 8µm × 10µm
in size and displays a thick border which is characterised
by rosettes and brighter nodes [15–18].

In 1995, Cozzarelli and coauthors designed an elegant,
albeit indirect, bulk method based on gel electrophoresis
of digestion products to show that C. fasciculata kDNA
topology is compatible with a two-dimensional hexagonal
network where each ring is linked to other three minicir-
cles, on average [19, 20]. These results have also been
recently independently confirmed using the same bulk
method [21]. In spite of this, recent microscopy experi-
ments indicate that kDNAs assume highly heterogeneous
shapes, suggesting a broad spectrum of topologies [12].

Alongside experiments, computational and theoretical
work have provided evidence that this type of linked net-
work may be formed as a result of a percolation tran-
sition [21–23]. Beyond the percolation transition, over-
lapping rings form a system-spanning network of inter-
locks. At the onset percolation the mean valence v, i.e.
the number of rings that are linked to any one ring on
average, was found to be 3 [23], in agreement with gel
electrophoresis experiments [19].
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FIG. 1: A AFM images of kDNA from C. fasciculata. The scale bar is 2 µm and the yellow color scale ranges from 0 (black)
to 3.5 nm height (white). B-C Zoom ins of the rim and cap respectively. D Sketch of the network of minicircles from B where
we color-coded the minicircles forming the rim in red. E Simplified sketch where we schematically show that the network is
formed by linked rings. F Boxplot of minicircle density in the cap and the rim of the network (obtained from selected regions
and averaged across 3 kDNA networks). The rim density is computed by taking a circular region of radius r = 100 nm (about
the size of a minicircle, see below) centred at the hubs. D Boxplots of the density of minicircles as a function of distance from
the centre.

Arguably, the minicircles acquire their valence in vivo,
where the kDNA is under large confinement. Given a
minicircles number density ρ ' 5000rings/(π(0.5µm)3) '
12700 rings/µm3 and a radius of gyration of a minicircles

Rg ' lp
√
L/12lp ' 60 nm, one would expect a num-

ber of overlaps per minicircle P = 4ρ/3πR3
g ' 11.5.

Even if only half of the overlapping minicircles became
linked to each other via Topoisomerase-mediated strand-
crossing [3] or the linking effectively occurred in 2D due
to stacking and alignment [22, 24], this overlapping num-
ber would still yield a valence much larger than v = 3 es-
timated by Cozzarelli [19]. These arguments suggest that
the kDNA cannot be thought of a gas of freely crossable
rings, and instead regulates its topology via, e.g., pack-
aging proteins such as KAP [17] or by tuning the activity
of Topoisomerases.

All of the quantitative evidence on kDNA network
topology comes from indirect, bulk measurements [19–
21] and recent microscopy work suggests that differ-
ent kDNA networks have very different shape and be-
haviours, suggesting heterogeneity in the self-assembly
of this fascinating structure [12]. To shed more light
into this, here we study C. fasciculata kDNA networks
using single-molecule techniques (AFM) and Molecular
Dynamics Simulations. More specifically, we first quan-
titatively map the density of minicircles in the network
as a function of their position and quantify the network
structure by measuring its porosity. We also identify the
characteristic rosettes at the rim of the network as origi-
nating from the localisation of essential crossings. Impos-
ing a constraint on the size of the rim, we show that the
network undergoes a buckling transition that explains
recent in vitro observations. Then, we employ steered
molecular dynamics simulations to reconstruct the topol-
ogy of the network at the single-molecule level. We thus
obtain the full distribution of the valence in the network:
we find it to be compatible with a valence 3 but at the

same time displays a broad distribution suggesting het-
erogeneity in the network topology and across networks.
Notably, our findings are not compatible with a perfect
hexagonal network thus refusing the classical model by
Cozzarelli [19]. Finally, we discuss our findings in light of
the work done on sub-isostatic floppy networks [25] and
2D elastic thermal sheets [26] and predict that the kDNA
should display a Young modulus much lower than that
of common 2D materials such as lipid membranes.

Results

The density of minicircles is not uniform

We perform dry, high-resolution AFM on C. fascicu-
lata kDNA (TopoGen). A representative image, zoom
ins and sketches are shown in Fig. 1B-E. We first no-
ticed that the networks displayed fluctuations in the den-
sity of minicircles (bright/dim areas within the kDNA
“cap”). At the edge of the networks, we noticed bright
and regularly spaced nodes along its edge, as previously
reported [16–18] (see Fig. 1B-E). To quantify the density
of minicircles in different regions of the kDNA we first
measured the volume of isolated minicircles outside the
kDNA network (see also Fig. 2). These provided an inter-
nal control in our experiments, as minicircles outside the
kDNA network are subjected to the same experimental
artefacts (e.g. sample dehydration) than the ones within
the network. In turn, we obtained an average volume for
the single mini-circles Imc which we used to normalise
the volume found in regions within the kDNA. We then
randomly sampled selected regions within the cap of the
network and normalised their total volume I(r) by Imc.
The quantity ρ(r) ≡ I(r)/(ImcA), where A is the area of
the sampled region, is the number density of minicircles
at location r in the image.
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By averaging over 3 independent kDNA networks (see
SI for raw images), we find that there are ρ = 94 ± 17
rings/µm2 in the cap (see Fig. 1F). Given that the mean
short and long axes of our kDNAs are l = 7.8 µm and
L = 9.1 µm, respectively, we find a corresponding total
number of minicircles Ntot = ρπlL = 5296. Consider-
ing the limits of the pixel resolution and the assumptions
made for the conversion of signal intensity to DNA mass,
this number is in excellent agreement with that reported
in the literature, i.e. 5000 [19] for C. fasciculata kDNA.
It should be highlighted that we could have arrived at a
similar value of ρ by simply assuming that the network
is formed by 5000 rings uniformly distributed in the net-
work, yet using our method we have (i) verified indepen-
dently that the network has around 5000 rings and (ii)
developed a way to measure ring density as a function of
position r in the kDNA. By applying the same method
to the hubs along the rim of the kDNA, which we define
as the region within one one minicircle size (r ' 100 nm,
see below) from the centre of the brightest nodes (see
Fig. 1B), we find that the average ring density is signifi-
cantly larger, with mean ρrim = 153.1± 27.0 rings/µm2.

We then asked if there was a dependence of minicir-
cle density as a function of position in the network. We
sampled about 200 small regions in 3 different kDNA net-
works and computed ρ(r) as above. We then plotted this
as a function of the radial distance r = |r− rc| from the
centre of the network. We discovered that the density
displays a smooth decrease by ∼ 13% from the centre
to the periphery (Fig. 1D). Since a uniformly filled disk
that is stretched isotropically will still display a uniform
mass distribution we argue that the observed density gra-
dient is a feature of the network rather than an artefact
of the imaging method. We hypothesise that this den-
sity gradient may be locked in at the end of replication –
which occurs at the antipodal points positioned outside
the kDNA in this Trypanosome species – as the mini-
circles can no longer unlink from the neighbours and re-
distribute within the network due to the absence of type
2 Topoisomerase.

The gradient in minicircle density suggests that the
topology of the kDNA may not be uniform as minicircles
in the middle of the cap may be more connected than the
ones at the periphery (excluding the rim). The density
gradient and the difference between DNA density in cap
and rim has not been reported nor quantified before and
we argue that these are potentially important to account
for in future models of kDNA self-assembly [19, 21–23,
27].

Estimating the valence of minicircles

Based on our measurement of minicircle density within
the cap, we now estimate the valence v of the mini-
circles, i.e. the number of minicircles that are linked
to any one minicircle. To do this we first compute the
minicircles average size by tracing the contour of DNA

FIG. 2: A Examples of single rings used to compute the
perimeter and radius of gyration of single minicircles. Scale
bar is 500 nm. B-C Zoom ins of minicircles with supercoiled-
like (B) and open (C) conformations. Scale bars are 250 nm.
D Size of the minicircles, computed as the radius of gyra-
tion of the AFM traces, Rg, and the square root of the area,
A1/2. We find a mean Rg = 101.3±10.8 nm, compatible with
Ref. [28] reporting Rg = 109 nm for 2.6 kb-long plasmids, and

mean A1/2 = 154.4± 22.5 nm.

rings found outside the network (in Fig. 2A, we show ex-
amples of minicircles used for this analysis). We find
that isolated minicircles have a mean contour length
of Lc = 791 ± 66 nm and a mean radius of gyration
Rg = 101.3 ± 10.8 nm, which is compatible with the
size measured for DNA plasmids of similar length ab-
sorbed in 2D [29]. Since we observed heterogeneous con-
formations displaying plectonemic-like writhe (Fig. 2B),
we also computed the area of the minicircles and noticed
that it displays a broader distribution, compatible with
the presence of writhing and open minicircles in the AFM
images (Fig. 2B-D). From the number density of minicir-
cles per unit area ρ and their average size Rg, we esti-
mate that the number of overlapping minicircles in the
flattened kDNA is P ' ρπR2

g ' 3 (valid for isotropic and
randomly shaped minicircles). This number is about 4-
fold smaller than the number of overlaps expected in vivo
(where we recall that the kDNA is contained within a disk
1 µm diameter and 0.5 µm height) but is compatible with
the average valence v ' 3 measured by Cozzarelli [19].

At the rim, we may use an effectively larger minicircle
density, yielding P ' ρrimπR2

g ' 4.8 in turn suggesting a
larger valence of the minicircles at the hubs. However, we
note that the minicircles at the rim are stretched, in turn
increasing their Rg and potentially their real valence. In
the next section we shall characterise the minicircles at
the rim in more detail.

Finally, we note that the Rg we measured from the
2D absorbed minicircles is typically larger than the Rg
they would assume in bulk [30]. In the extreme case that
they assume the shape of ideal loops, we recall that we
would expect Rg ' 60 nm. In turn, we would expect a
valence of about 1 for a ring density ρ ' 95 µm2. On the
other hand, we know that in vivo the kDNA is packaged
at much larger density which will therefore increase the
maximum valence that each minicircle can reach up. In-
deed, if every minicircle were linked to every overlapping
neighbour we would expect v & 10. In spite of this, one
should bear in mind that DNA minicircles cannot link
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FIG. 3: A-B Zoomed in portions of kDNA showing hubs
at the periphery. Scale bars are 500 nm. C Distribution
of distances between nearest hubs. The dashed vertical line
represents the diameter of a minicircle if pulled taut, i.e. 1/2×
2500 bp ×0.34 nm/bp = 425 nm. D Distribution of number
of overlapping minicircles in the cap and in the hubs.

without the presence of (type 2) Topoisomerase; thus,
its activity within or at the periphery of the network
appears to be critical to regulate the catenation of the
network [9, 31, 32].

We should also note that the density of minicircles
we measured in the previous section, together with the
size of the minicircles, is a intimately related to the in-
herent topology of the network cap. If the minicircles
had a larger valence, we would inevitably expect a cor-
respondigly larger DNA density.

The kDNA hubs are sites of essential crossings
between linked minicircles

As mentioned above, a feature that stands out from
the AFM images is the rim, formed by nodes (or hubs)
connected by clear DNA tethers (Fig. 3A-B). By zooming
in these features one can appreciate that these nodes are
formed when several minicircles come together into so-
called “rosettes” [18] (Fig. 3A-B).

The average distance between nearest nodes in the
network is close to that of a minicircle pulled taut, i.e.
Lt = 0.5 × 2500 bp × 0.34 nm/bp = 425 nm (Fig. 3C).
Additionally, by directly measuring the density of strands
in a circular region with radius r = 100 nm (equal to
that of a minicircle in equilibrium outside the network)
and centered at the nodes, we find that average number
of overlapping minicircles per hub is Phub = 4.7 ± 0.8,

which should be compared with Pcap = 2.9±0.4 found in
the cap (Fig. 3D). This may still be an underestimate, as
the minicircles at the rim are stretched and their overlap
number may thus be larger. Our images (see Fig. 3A,B)
also suggest that nearest nodes are directly connected
by single minicircles, which are therefore redundantly
linked. When minicircles are stretched due to the kDNA
being absorbed, the essential crossings between minicir-
cles become localised in hot-spots [33], forming the hubs.
In the bulk, we expect the minicircles to relax and the
hubs to disappear, although a rim with higher DNA den-
sity can still be visualised [12].

The reason why C. fasciculata kDNA displays a larger
density of minicircles at the rim may be due to its repli-
cation mechanism, as newly replicated minicircles are
added at the periphery from the antipodal points located
just outside of a rotating kDNA network [20, 31]. We
also recall that in vivo, the kDNA is compressed in a
disk of radius 0.5µm while it reaches ∼ 10 µm when fully
adsorbed. This ∼20-fold compression effectively reduces
the distance between nodes so that we expect the es-
sential crossings to be within 1Rg of each other. This
redundancy in number of links is akin to that of replicat-
ing kDNA networks [20], and we thus argue that edge of
the network could be made by newly replicated minicir-
cles.

Simulations of kDNA with redundantly linked rim
explain the buckling seen in bulk

Our data suggests that the minicircles at the rim are
both redundantly linked and stretched upon adsorption
on the mica. In the bulk, these minicircles will tend to
relax to their equilibrium diameter, i.e. reducing their
size from ' 350 nm to ' 170 nm. This yields a >2-fold
decrease in perimeter length as the essential crossings will
become delocalised due to the minicircles’ entropy in turn
leading to a certain degree of overlap in between the mini-
circles [33]. If we thus treat the perimeter of the kDNA
as a poly-catenane (a polymer made of linked rings [34])
we can study the behaviour of a two-dimensional patch of
linked rings under a varying constraint on its perimeter.
In other words, we can study the behaviour of the kDNA
under a variable degree of constraint on the length of its
perimeter (due to minicircles relaxing to equilibrium con-
formations) by imposing a constraint on the size (radius
of gyration) of the rim.

To do this we simulated a circular patch of an hexago-
nal (in line with Refs. [19, 27]) network and constrained
its border to have a radius of gyration Rg,rim different
from that assumed when the patch is completely planar,
called Rg,max. We considered a system made of n = 604
rings, each made of m = 60 self-avoiding beads connected
by FENE springs. For computational efficiency we con-
sidered semi-rigid rings, with persistence length lp = 120
beads but we expect a similar result for flexible rings (see
Fig 4A-B and SM). The network is constructed by placing
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FIG. 4: A An in vitro kDNA with hexagonal structure of rings. The border is highlighted in red. B Zoom in portion of A
showing the hexagonal lattice linkages. See SM for details on how the network was built. C Absolute value of the sum of the
mean curvature of the triangular mesh, |Σ|, calculated by joining the center of mass of the rings and plotted as a function
of the constriction c = Rg,max/Rg,rim. In these simulations Rg,rim is user-defined and steered using an harmonic potential.
The plot shows an abrupt buckling transition. Different symbols correspond to different network topologies chosen by random
linking of neighbouring rings while preserving the hexagonal structure. D Snapshots of the network at four different values of
constriction c.

the rings on the nodes of a circular patch of hexagonal
lattice [35], and then linking each ring with its neigh-
bours choosing randomly between a +1 and a −1 Hopf
link. We identify the border of the network as the set of
rings having only two neighbours, or being directly linked
to a ring having 2 neighbours only, and constrain its ra-
dius of gyration Rg to a user-defined value Rg,rim with
an additional harmonic potential in the Hamiltonian

Vconstr = K(Rg −Rg,rim)2 . (1)

We then simulate the equilibrium behaviour of three
different network topologies (distinguished by the sign
of the linking numbers between neigbouring rings) for
different values of Rg,rim via Langevin dynamics in
LAMMPS [36] (see SM for details). To characterize the
equilibrium geometrical properties of the network we first
map the hexagonal lattice of rings to a triangular mesh
with edges connecting the center of mass of half of the
rings and then compute the mean curvature as [37]

Σ =

N∑
i=1

1

2
(K1,i +K2,i) (2)

where K1,i and K2,i are the principal curvatures at facet
i (see SM for the details). The results, reported in
Fig 4C, show that when the constraint at the perime-
ter is Rg,max/Rg,rim > 2, the equilibrium conformations
display a buckled, “shower-cap” shape, as seen in ex-
periments [12] (see Fig. 4D). Interestingly, the absolute
mean curvature |Σ| increases abruptly from 0 (saddle-like

surface) to ' 1σ−1 (buckled) and eventually to ' 3σ−1

(shower-cap).
We recall that according to our measurements in the

previous section, we expect the minicircles at the nodes to
reduce their size from ' 350 nm to ' 170 nm when non-
adsorbed to the mica. This implies a> 2 fold shrinking in
perimeter length (accounting for the fact that the essen-
tial crossings are localised when minicircles are stretched
on the mica but partially delocalised when in bulk). Our
simulations thus strongly suggest that the way minicir-
cles are redundantly linked at the periphery is enough to
induce the observed buckling.

Mesh size distribution

Having quantified the distribution of minicircles in the
network, we now quantify its mesh size. Given that the
minicircle density is around ρ = 94 rings/µm2, the inter-
minicircle separation is λ = 1/

√
ρ = 103 nm. In turn, we

can estimate the mesh size as ξ = |λ − 2Rg| ' 100 nm
(recall that Rg = 101.3 nm, see Fig. 2).

To quantify the mesh size more precisely, we employed
morphological segmentation [38] to quantify the distribu-
tion of mesh sizes from our images. We first manually re-
moved both imaging artefacts and the redundantly linked
rim from within the region of interest (see Fig. 5A to be
compared with Fig. 1A). We then applied morphological
segmentation to obtain a map of watershed basins, as
shown in Fig. 5A-C. We then measure the area of each
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FIG. 5: A Morphological segmentation of the AFM image show in Fig. 1A. Scale bar is 1µm. B A zoomed in region showing
side-by-side the AFM picture and in C the result of morphological segmentation. D Probability density function (PDF) of
mesh size. Inset shows a log-linear plot of the same PDF, with an exponential decay reported as a guide for the eye. E Average
pore size as a function of radial distance from the centre of the network.

basin a and estimate their size ξ =
√
a. We find that the

values of pore sizes are broadly distributed and range be-
tween 10 and 200 nm with a peak (median) around 20
nm and mean ξ = 34.0± 16.6 nm.

The distribution of mesh sizes appears to follow an
exponential behaviour for values larger than 50 nm
(Fig. 5D). These values are small compared with the typi-
cal 100-500 nm of agarose gels and closer to those of DNA
nanostar gels [39].

Interestingly, by computing the distance of all the
basins from the centre of the network we observe that
the average pore size increases towards the periphery
(Fig. 5D). This is in line with our previous finding that
the DNA density decreases towards the periphery. More
specifically, we find pore sizes around 30 ±0.7 nm within
the centre and around 35 ±0.7 nm near the periphery
(where the redundantly rim was excluded). We note that
this smaller than the crude calculation we made above,
which is valid only for perfectly rigid minicircles. This
is most likely due to the fact that the minicircles are
writhing onto themselves thereby yielding smaller pore
sizes overall.

Finally, we note that in a lattice of rigid rings where
every overlap is a link, one can map the number of pores
(basins in the morphological segmentation) to the num-
ber of rings and their valence as Npores > Nrings(1+v/2).
With flexible rings and non-connected overlaps, we ex-
pect more pores formed. We can therefore set an upper
bound on the valence in the networks that we analyze,
v < 2(Npores −Nrings)/Nrings. From the morphological
segmentation we find Npores = 19644± 2404 in turn im-
plying v < 6. This large upper bound is likely due to
overlaps which do not result in linking, yet still create
mesh pores. Arguably, and contrary to common chemi-
cally crosslinked gels, the observed pores only mildly con-
tribute to the network elasticity, as these overlaps can be
easily removed by pulling the rings past each other.

AFM-steered simulations

Despite the high-resolution AFM images, it is still chal-
lenging to identify single minicircles inside the cap of the
network, and even less clear is to identify over/under-
crossings between chains (see for example Fig. 5B). Be-
cause of this, it is impossible to unambiguously compute
the topology of the network. More specifically, we aim
to quantify the distribution of linking number, Lk (de-
fined as the number of times a minicircles wraps around
one other) and the valence, v (defined as the number of
minicircles that are linked with any other one). To mea-
sure these, we perform molecular dynamics simulations
steered by our AFM data, with the aim of obtaining XYZ
coordinates of the DNA segments making up minicircles
within the network.

To do this we select 1 µm x 1 µm region (ROI) within
the kDNA cap (Fig. 6A). We then binarise the image
by selecting the pixels whose intensity is larger than the
mean background intensity plus 3 standard deviations.
We then use this binarised image as a mask on the origi-
nal ROI to extract the intensity of the pixels correspond-
ing to DNA strands in the AFM image. These pixels
are transformed into three types of phantom (non ster-
ically interacting) and static (non moving) beads which
attract the simulated DNA rings (see SI for details of the
potentials used).

We initialise a molecular dynamics simulation by plac-
ing M perfectly circular minicircles within the 1 µm2 re-
gion (see Fig.6B). Each minicircle is modelled as a semi-
flexible bead-spring polymer where each bead is σ = 10
nm (the AFM pixel resolution); in turn, the 2.5 kb-long
or 850 nm-long minicircles are simulated with 85 beads
and a persistence length lp = 5σ = 50 nm. The in-
teraction between rings is modelled via a soft potential.
Finally, the simulation is performed within a slab con-
finement in the z direction with height h = 3.0σ. The
steered simulation is split in 3 parts: (i) equilibration,
(ii) steering and (iii) resolving crossings. In part (i) we
homogenise the distribution of rings in the system. We
thus set a low energy barrier for crossing and the rings are
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FIG. 6: A Figure showing a kDNA image (scale bar is 2 µm) and a zoomed in 1 µm2 region with the corresponding thresholded
image (black and white). B Starting configuration of the AFM steered MD: 90 rings are placed randomly in a quasi two-
dimensional simulation box. Phantom beads (yellow, orange and red in the figure) are static and act as Gaussian attracting
basins. C At the end of the MD simulation, we obtain ensembles of conformations that capture the correct length and size of
minicircles, display no ambiguous crossings with other rings and are compatible with the underlying AFM image. D Snapshot
of the resulting network after having removed the slab confinement. E Distributions of Rg of the minicircles from AFM (picked
from outside the kDNA) and of the simulated ones (both from the centre and periphery). F Network representation of D,
where each node is a minicircle and an edge between nodes represents that they are linked. Our simulated networks typically
have all the nodes in one large connected component. G Distribution of valence, showing that the central minicirlces are on
average more connected that the peripheral ones. H Distribution of linking number, showing that the most linked pairs are
singly linked, and about 10% of them are doubly linked.

let to equilibrate. In part (ii) we steer the rings’ coordi-
nates by turning on attraction between the beads form-
ing the DNA rings and the “phantom” beads obtained
from the AFM image (see Fig. 6B-C, see SI for details).
This phase ensures that the simulated minicircle assume
conformations that are compatible with the underlying
AFM image. In part (iii) we resolve overlaps between
rings by ramping up the height of the soft repulsive po-
tential between polymer beads. The final output of this
procedure is an ensemble of minicircle coordinates that
do not display overlaps, with well-defined over/under-
crossings, and whose 2D projection is compatible with
the underlying AFM (Fig. 6C,D).

Motivated by our previous findings, we perform the
procedure just described in a region near the centre, and
one at the periphery (rim excluded) of the kDNA. In the
former, we initialise M = 90 rings while at the periphery
we initialise M = 80 rings within the 1µm2 ROI, in line
with the values of minicircle density reported in Fig. 1.
To benchmark our steered simulations with experiments,
we first compare the distribution of ring sizes. We find
that the distribution is close to the one obtained from
isolated kDNA minicircles in the AFM images (Fig. 2)
with the caveat that the simulated rings display a broader

size distribution and a smaller mean, which is reasonable
given that they are in dense conditions whereas the AFM
minicircles over which we compute the Rg are isolated,
outside the network. The experimental mean is Rg =
83 ± 4 nm, while the simulations give Rg = 71 ± 15 at
the centre and Rg = 72± 15 at the periphery (Fig.6F).

From the ensemble of conformations with resolved
overlaps, we can unambiguously compute the Gauss link-
ing number between pairs of minicircles as

Lk =
1

4π

∮
γ1

∮
γ2

(r1 − r2) · (dr1 × dr2)

|r1 − r2|3
(3)

where ri represents the 3D coordinate of curve γi. We
thus define a linking matrix Lk(i, j) where each en-
try is the number of times ring i is linked to ring j.
Additionally we define the valence of ring i as mi =∑
j θ(|Lk(i, j)|) where θ(x) = 1 if x > 0 and 0 other-

wise. Interestingly, we find that the distribution of the
valence depends, albeit weakly, on the distance from the
centre of the network. In the more central ROI we find
a mean valence 〈mcen〉 = 3.1 ± 1.5 while in the more
peripheral region we find 〈mper〉 = 2.5 ± 1.3 Fig. 6E).
Further, we measure the distribution of linking number
lk = Lk(i, j) across all pairs and find that among those
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that are linked, the majority are singly linked, around
10% doubly linked and less than 1% triply linked.

These numbers are in good agreement with the bulk,
indirect measures of Ref. [19] whereas here we can pro-
vide a single-molecule quantification. Importantly, our
method does not assume a priori an ordered lattice ar-
rangement of the rings. Indeed, we find that they form
connected, percolating components with valence 3 even in
absence of a precise hexagonal lattice structure. Instead,
we find a broad distribution of valences which overall re-
tain the percolating nature of the structure (Fig. 6F).
Our results thus confirm that the kDNA minicircles have
on average valence 3, as found in Ref. [19], but they also
indicate a broad valence distribution and no crystalline
order.

Elasticity of kDNA as a sub-isostatic network

In light of our results, kDNAs can be thought of as
a 2D elastic networks with nodes (the minicircles) that
have valence around 3. In general, a network is said to be
isostatic [25] when the number of constraints matches the
number of degrees of freedom. For 2D networks, the crit-
ical isostatic coordination number is vc = 4. Thus, the
kDNA is a sub-isostatic (floppy) network, with valence
comparable to that of other biological networks, such as
collagen [40]. The difference with collagen is that the
bonds between nodes are not made by stiff fibres but are
made by the linkages between minicircles, and their stiff-
ness is approximately (at least for small strain) that of
an entropic spring with constant κ0 = 3kBT/R

2
g. Sub-

isostatic networks display soft modes that cost zero en-
ergy even when weakly strained [41] and undergo stiffen-
ing when stretched beyond a critical strain γc(v) [40]. For
strains γ > γc, we can estimate the bulk (area) stretch
modulus as [40, 42]

Y =
5

48
ρκ0R

2
g|v − 4| ' 0.1

pN

µm
. (4)

In other words, we expect that it would take a modest
force, around 3 pN, to stretch/compress a flat kDNA by
10%. We note that this calculation does not account
for the redundantly linked and denser rim around the
network. The bending rigidity can then be approximated
as κbend ' Y (2Rg)

2 ' 3 10−21 J, being 2Rg about the
average thickness of the kDNA.

The bending rigidity κ was also recently estimated us-
ing microfluidic constriction experiments and, in anal-
ogy with vescicles deformation, it was found to be κ =
1.8 10−19 N m [12]. However, the combination of in-plane
and out-of-plane deformations in kDNA is expected to be
different from that of vescicles and, more importantly, we
expect drastically different area stretch modulus. Lipid
bilayers are liquid-like compositions of small molecules
with ∼ nm thickness and display large stretch moduli,
Y ' 0.1 − 1 N/m [43] and equally large bending stiff-
nesses κ ' 10−18 N m. In contrast, kDNA is made of 2.5

kbp-long DNA rings with an average sizeRg ' 85 nm and
the density of material inside the kDNA is low compared
with lipid bilayers, rendering the structure much easier to
deform both in-plane and out-of-plane. for these reasons,
we expect the stretch modulus and bending stiffness of
kDNA to be widely different from that of vescicles. Ac-
cording to Eq. (4) we expect these to be two/three orders
of magnitude smaller than lipid vescicles. A clear com-
plication, that yields an apparent long-time stability of
kDNA shapes (and thus apprently large bending rigid-
ity) is that kDNA networks in the bulk have undergone
a buckling transition due to the border constriction. In
fact, the autocorrelation of kDNA anisotropy shows fast,
sub-second rearrangements which are more in line with
far smaller and more flexible molecules [12].

Further, we note that the buckling behaviour of a 2D
elastic thermal sheet is typically controlled by the dimen-
sionless Föppl-von Kármán number vK = A/h2, where A
is the area of the sheet and h its height. The parameter
vK can also be expressed in terms of the Young modu-
lus and bending rigidity as vK = Y R2/κ, where R is a
characteristic linear dimension of the system. Taking h
to be the diameter of minicircles in their relaxed state in
vitro, we obtain for kDNA networks vK ' 1700 which is
far lower than other 2D materials (for instance graphene
has 109, being extremely thin). In this respect, kDNA
is considered to be “thick” and therefore easily stretch-
able/compressible before buckling. In the “thin” limit,
buckling occurs before any in-plane deformation.

The competition of compression and bending moduli
gives rise to a natural lengthscale called “thermal length-
scale” which dictates the behaviour of 2D elastic thermal
sheets [26, 44]. This lengthscale is found as

lth =

√
16π3κ2

3kBTY
. (5)

When compression deformations are larger than lth, it
is more energetically favourable for a 2D elastic sheet to
buckle. By using the values of Y and κ found above
we obtain a thermal length-scale lth ' 1.8 µm. This
value may be interpreted as the amount of compression
needed for the network to buckle. Interestingly, the ratio
of maximum radius of the kDNA to this thermal length-
scale is Rg,max/lth = 2.5, which is in the buckled phase
(see Fig. 4C). This implies that the buckling behaviour
of kDNA is well described by the physics of 2D elastic
thermal sheets and that, as we discussed above, the link-
ing properties of the nodes at the rim are such that their
relaxed state induces an in-plane compression beyond the
thermal lengthscale of the network lth, thereby inducing
buckling.

Conclusions

Overall, our study is the first to perform a quantita-
tive analysis of single-molecule data on the structure and
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topology of C. Fasciculata kinetopalst DNA networks.
While previous works used indirect methods to obtain
the kDNA topology [19] a single-molecule characterisa-
tion of kDNA structure and topology did not exist.

We have employed high-resolution AFM, quantitative
image analysis and MD simulations to discover that the
kDNA does not display a uniform DNA density but in-
stead it has more minicircles in the middle of the network
than the periphery (Fig. 1). On average, we find about
95 minicircles per µm2 in the cap of the network and 140
minicircles per µm2 at the rim. Additionally, we have
used morphological segmentation to quantify the pore
size of the network (Fig. 5) and found that the mesh size
is smaller in the middle (about 30 nm) compared with
the periphery (about 36 nm).

By noticing that the minicircles at the nodes appear
stretched under AFM (also seen in previous EM [18] and
AFM [16] images), we argued that when not adsorbed
onto a surface, the rim should shrink by ' 2 fold, due
to the entropic elasticity of the minicircles. Motivated
by this, we simulated the behaviour of a chainmail of
linked rigid rings under varying degrees of constraint on
the size Rg,rim of the border, and observed a buckling
transition when Rg,rim was set to be around 2.5-3 times
smaller than that of the fully flat kDNA (Fig. 4). The
buckling transition seen around Rg,max/Rg,rim & 2 is
in good agreement with the expected entropic shrink-
ing of the kDNA in bulk and thus explains the stable
“shower cap” buckled shape recently seen in confocal mi-
croscopy [12, 13]. Both our experiments and simulations
agree with the calculation of the thermal length-scale for
kDNA being (Eq. (5)) lth ' 1.8 µm; this is around 2.5
times smaller than the radius of fully flat kDNA and it
marks the transition where buckling (out-of-plane) defor-
mations are favoured over compression (in-plane) defor-
mations.

Finally, we have used steered molecular dynamics sim-
ulations to obtain ensembles of rings conformations that
are compatible with the DNA distributions in the AFM
images and can resolve certain topological ambiguities
that cannot be resolved in the AFM image. Using these
simulations we have independently measured the valence
of the minicircles in the network and found that it dis-
plays a broad distribution with mean around 3. This
finding is in remarkable good agreement with the mea-
sures by Cozzarelli [19] in spite of the fact that they are
obtained in two completely different methods. Differ-
ently from the indirect, bulk quantification of the network
topology done in the past, our high-resolution quantita-
tive imaging allowed us to discover that the the topol-
ogy and connectivity of the network (i) is heterogeneous
and broadly distributed and (ii) depends on the distance
from the centre of the network. It would be interesting
in the future to understand more about the mechanisms
leading to this gradient. Notably, our high-resolution
and MD approach yielded networks that do not resemble
perfect hexagonal arrangements but are instead random
(Fig. 6). In the work of Cozzarelli [19], the hexagonal ar-

rangement model was imposed due to the assumption of
a perfectly two dimensional network. We argue that this
approximation is too stringent, and that the percolating
nature of the kDNA can be achieved also allowing rings
to randomly link at the right density [22, 23].

We note that in the language of 2D random networks, a
valence (or coordination number) v = 3 is below the iso-
static value [25], that for 2D networks is vc = 4. This ren-
ders the kDNA a sub-isostatic, floppy network with soft
(zero energy) modes and zero stress response at strains
γ below a critical γc(v) [41]. At the same time, and al-
though kDNA networks may resemble suspended mem-
branes or lipid bilayers, they display a highly unusual
structure, made of DNA minicircles that are thousands
of base-pairs long. More specifically, compared with lipid
bilayers, kDNA displays a lower density and larger thick-
ness. For this reason, we expect its material properties
to be markedly different from that of lipid membranes,
which are essentially incompressible [43].Indeed, we esti-
mated the kDNA stretch modulus to be around (Eq. (4))
Y ' 0.1 pN/µm and its bending stiffness κ ' 1 pN nm,
both thousands of times smaller than those of lipid mem-
branes.

The evidence suggesting that the minicircles in the
kDNA have valence around 3 is intriguing. A random
network with valence 3 is poised near the critical per-
colation point [23, 45, 46] yet below the isostatic point
for the onset of rigidity [25]. Being poised closed to the
percolation point ensures that the network is overall con-
nected (thus preserving the integrity of the genome dur-
ing replication) yet avoids the generation of redundant
constraints or a topologically frustrated “over-linked”
and rigid network [23]. Perhaps even more intriguingly,
the volume fraction of kDNA in vivo suggests an overlap
number P ' 10, in turn suggesting that kDNA minicir-
cles should display a far larger valence if simply allowed
to cross each other freely. This argument suggests that
the topology of the network is controlled in vivo. In this
respect, packaging proteins such as KAP and controlling
Topoisomerase activity may play a key role [17].

We also mention that although different species of
Trypanosomes have different kDNA structures, they all
display an overall percolating network. We argue that
species with longer minicircles should display an even
larger valence, scaling as v ∼ ρL3ν−1 [47, 48] with
ν = 1/2 for short rings and ν = 1/3 for longer flexible
rings [49]. If this were not to be the case, it would be a
strong evidence for a biological control of kDNA topology
implying an evolutionary benefit in keeping v ' 3.

In summary, we have here reported here a single-
molecule high-resolution quantitative analysis of one of
the most fascinating genomes in nature. We hope that
our work will not only help to unveil the self-assembly
and topological regulation of generic Kinetoplast DNA
networks and their evolutionary pathway but also provide
some insights on how to synthetically design 2D topolog-
ical soft materials.
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Methods

In order to obtain high-resolution information on the
kDNA structure we perform Atomic Force Microscopy
(AFM) on kDNA samples purified from C. fasciculata
(Inspiralis). The kDNA sample was diluted to a concen-
tration of 50-100 ng/µL in a buffer solution containing
50 mM MgCl2 then a droplet of it was deposited onto the
mica surface for 1 min followed by 1 mL deionized water
flushing and nitrogen blowing. Imaging was performed
on a Bruker Multimode AFM in Peakforce-HR mode, us-
ing Bruker Scanasyst-air-HR cantilevers with a nominal
resonant frequency of 130 kHz and spring constant of 0.4
N/m.

In AFM images, the intensity of the pixel is a direct
measure of its height: brighter pixels correspond to cross-
ings and overlaps of DNA strands. Although the the ap-
parent DNA height and width is affected by the tip force,
tip radius and non-hydrated conditions, we use isolated
plasmids - similarly affected by artefacts - as a volume
reference. Thanks to this feature, we can directly map
height to DNA density in each pixel. There can be cases
in which DNA strands (about 2-5 nm wide depending
on salt conditions) lay side-by-side in a 10 nm pixel. In
these cases the intensity of the pixel is not directly pro-
portional to the underlying mass of DNA. The reference
volume is measured on isolated plasmids that are much
less likely to have multiple strands in one pixel. There-
fore, we expect to slightly underestimate the true DNA
density in the network.

A. Morphological segmentation

Used MorphoJLib with no noise reduction and toler-
ance 15. This plugin uses a modified watershed algo-
rithm to identify objects as basins (the pores) separated
by boundaries (the DNA strands). An image with over-
laid basins was then generated (see Fig. 5A-B) and anal-
ysed with the “analyse region” function of MorphoLibJ
which returns a list of the values of area, perimeter, cir-
cularity and centre of mass of all the basins. The values
of pore sizes were then obtained by taking the square
root of the areas. The artefacts inside the countour of
the kDNA were then removed by identifying the outliers
with very large area.

B. Simulations with border constriction

The networks are first built using the NetworkX [35]
Python package, and the corresponding meshes are an-
alyzed using libIGL [37] for Python. The networks are
built starting from a planar configuration by placing on
half the nodes of the network, corresponding to second
neighbours, planar rings and the joining those through
the random placement of a set of distorted rings on the

remaining nodes. This procedure ensures that the sign of
the Hopf link between any two rings is picked randomly
between −1 and +1, avoiding the onset of topological
phenomena such as those reported in [50]. Using this
strategy we produced three different topologies. The bor-
der is then identified with the set of rings that are linked
only to two more rings, or that are directly linked to one
such ring. More details are reported in the SI. The kDNA
minicircles are then modelled as semi-rigid Kremer-Grest
polymers [51] made of m = 60 beads having diameter σ
and connected by FENE bonds. The rings have a per-
sistence length lp = 120σ. Each network is a circular
hexagonal patch composed by n = 604 rings. Different
rings interact only by excluded volume, modelled through
a WCA potential. The system is evolved using an under-
damped Langevin Dynamics with timestep dt = 0.01τLJ
and damping γ = 0.1τ−1

LJ , where τLJ = is the character-
istic time of the simulation. At each timestep, we im-
pose the constraint potential Vconstr = K(Rg − Rg,hc)2.
These simulations are performed in LAMMPS [36]. the
codes can be found ope source at https://github.com/
luca-tubiana/kDNA-border-sims.

C. AFM-steered simulations

Briefly, we model kDNA minicircles as bead-spring
polymers with a persistence length of 50 nm. Each bead
is given a size equal to that of the resolution of the pixel,
i.e. σ = 10 nm. The AFM image is transformed (see
main text and SI) into a series of phantom, static beads
that act as attractors of the DNA beads. The system is
evolved using a velocity-Verlet algorithm and Langevin
dynamics (implicit solvent) with timestep dt = 0.01τBr,
where τBr = γσ2/kBT is the Brownian time. For more
details on the force fields used, see SI. These simula-
tions are also performed in LAMMPS. The codes can
be found open source at https://git.ecdf.ed.ac.uk/
taplab/kdna-afm-md.
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