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The thermal properties of coarse grained knotted polymers containing two kinds

of monomers A and B fluctuating in a solution are investigated on a simple cubic

lattice using the Wang-Landau MC algorithm. These knots have a more complex

phase diagram than knots formed by homopolymers, including the possible presence

of metastable states. Two different setups are considered: i) charged block copoly-

mers in a ion solution and ii) neutral copolymers with the A monomers above and the

B monomers below the theta point. A precise interpretation of the peaks observed

in the plots of the specific heat capacity is provided. In view of possible applications

in medicine and the construction of intelligent materials, it is also shown that the

behavior of copolymer rings can be tuned by changing both their monomer config-

uration and topology. We find that the most stable compact states are formed by

charged copolymers in which very short segments with A monomers are alternated

by short segments with B monomers. In such knots the transition from the compact

to the expanded state is very fast, leading to a narrow and high peak in the specific

heat capacity which appears at very high temperatures. The effects of topology allow

to tune the radius of gyration of the knotted polymer ring and to increase or decrease

the temperatures at which the observed phase transitions or rearrangements of the

system occur. While we observe a general fading out of the influence of topology in

longer polymers, our simulations have captured a few exceptions to this rule.
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I. INTRODUCTION

Polymer knots are abundant in nature and in artificial polymer materials1–5. They can

be created in the laboratory4–6 and have attracted a considerable attention both from

experimentalists and theoreticians of several different disciplines including chemistry7–9,

engineering10, mathematics11,12 and physics13–17. In this work we consider the static prop-

erties of knots made by copolymers. We study in particular diblock copolymers consisting

of polymers with two different kinds of monomers A and B. Part of the motivations for

this work come from biology. In fact, DNA and other biomolecules are characterized by

regions that have different properties and can thus be regarded as copolymers. Recently,

a diblock copolymer approximation of a piece of DNA has been used in order to under-

stand how the dishomogeneities in the flexibility affect the localization of knots on a piece

of circular DNA18,19. The study of diblock copolymers can be helpful also in technological

applications. For instance, it is already known that the presence of knots affects the behavior

of polymer materials. Indeed, the elasticity response of elastomers cannot be understood

without considering the fact that the polymer chains inside these materials form knots and

links. The effects of the presence of knots in the conformational properties of ring AB

diblock-copolymers have already been noted for instance in Ref.20.

The statistical mechanics of open or circular diblock copolymers has been thouroghly

investigated in the past, see e. g.21–25. Polyelectrolytes similar to those treated here in

Setup I (see below) have been considered in26. Setup II has some similarities with the

Hydrophilic-Polar (HP) protein model27, however in our case the B monomers are subjected

to attractive forces. The HP model has been studied using the Wang-Landau algorithm

in28,29. More recently, there has been some interest on circular diblock copolymers with

non-trivial topologies18–20,30–34. For example, in33 it has been investigated how the stiffness

heterogeneity or the presence of charges influence the localization of the knot. The role

of stiffness and heterogeneity in knot production has been explored in Ref.35. Other as-

pects of the topology of diblock-copolymers have been treated in34. With the help of the

Wang-Landau algorithm36, the statistical mechanics of knotted diblock copolymers has been

studied in Refs.37–39. The goal of the present work is to extend the results of37,39 to longer

polymers, showing that remarkable properties emerge in this case. Knotted copolymers are

defined here on a simple cubic lattice. Their monomers are subjected to different kinds
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FIG. 1. This figure summarises the main features of the Setups I and II considered in this paper.

Particles in Setup I have a charge Q. Apart from a proportionality factor, we have that Q ∝
√
ε.

The exact value of the proportionality constant is not relevant for performing the calculations.

Arrows explain if the interactions are repulsive or attractive. In Setup II the A and B monomers

are subjected only to excluded-volume interactions, so that arrows are not necessary in this case.

of very short-range interactions reproducing different physical setups. In one setup, called

hereafter Setup I, a charged polymer is fluctuating in an ion solution that screens the long-

range Coulomb interactions. Monomers of type A have a positive charge, while monomers

of type B are negatively charged. The upshot is that monomers of the same kind repel

themselves, while the interactions between the A and B monomers are attractive. Setup I

is also relevant for the case of polymers in water. In water at room temperature, in fact,

the Bjerrum length lB amounts to just 7Å. Let us recall that the constant lB measures

the length scale at which the strength of the Coulomb interactions in a dielectric medium

becomes equal to the thermal energy kBT , where kB is the Boltzmann constant and T is

the temperature40. In the second studied setup, that will be named Setup II, the solvent is

good for the monomers of type A, which thus repel themselves, while monomers of type B

are below the theta point and attract themselves. Between monomers of type A and B we

suppose that only excluded volume forces are acting. Fig. 1 summarises the main features

of both setups. Other setups are possible, see for instance22.

Multiblock copolymers with different monomer distributions and interactions are consid-

ered. We construct knots containing alternating units with nA monomers of type A and

nB monomers of type B until the total number of monomers N is obtained. If N is not a
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multiple of nA + nB, a slight excess of monomers of type A is allowed. In the following, it

will be convenient to introduce the total number NA of A−monomers and the total num-

ber NB of B−monomers. Of course NA + NB = N . Multiblock copolymers of this kind

will be denoted with the symbols MI(N, nA, nB) and MII(N, nA, nB). The subscripts I and

II refer the two setups discussed before. A particularly interesting subcase is that of the

AB−diblock copolymers composed by two segments, one with A monomers and the other

with B monomers. AB−diblock copolymers will be distinguished within the more general

class of multiblock copolymers introducing the new symbols DI(NA, NB) and DII(NA, NB).

Of course, DI/II(NA, NB) = MI/II(N,NA, NB), where I/II means Setup I or II. Following

the above conventions, uncharged homopolymer knots with N monomers can be listed under

Setup II. A homopolymer knot in a good solvent corresponds to the AB−diblock copolymer

DII(N, 0) with zero monomers of type B, while a homopolymer knot in a bad solvent can

be described with the symbol DII(0, N). To further characterize the analyzed knots, also

their monomer composition f = NA/(NA +NB) will be used.

The rationale for investigating knots made by copolymers is to obtain macromolecules

with different properties by changing the knot topology, the A/B monomer ratio and the

monomer distribution along the chain. We show here that this goal can indeed be achieved

and that copolymer knots exhibit a variety of behaviors that are absent in knots formed by

homopolymers. In a nutshell, it turns out that the relevant parameters of a polymer ring,

like gyration radius, heights and temperatures of the peaks of the heat capacity, specific

energy and number of contacts (non-contiguous monomers that are at the distance of one

lattice unit, see below for a more precise definition), are highly affected by the monomer

distribution. Topology has strong effects on the behaviour of short polymers. In the case of

longer polymers, these effects fade out, but still the properties of the knot may be tuned by

choosing knots with the same length and monomer distribution, but different topology. De-

spite the vanishing influence of topology with increasing polymer lengths, we have observed

that, in particular cases, the thermal behaviour may drastically change depending on the

type of the knot even in longer polymers.

Concluding this Introduction, we would like to stress that the present analysis requires

the sampling of knot conformations that are very compact, so that the density of monomers

is very high. These compact states often include conformations that are extremely rare and

thus very difficult to be sampled using Monte Carlo algorithms. Such conformations may
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act as bottlenecks in a Monte Carlo simulation, relevantly increasing the computation time.

The problem of handling rare events is not only related to the case of polymer systems.

In the Wang-Landau Monte Carlo algorithm, which we will adopt for our simulations, this

issue has been already treated in several previous publications, see e. g.41,42. Following43, in

this work we have used parallelization techniques to speed up the Wang-Landau algorithm

allowing to study the lowest energy conformations. The latter are important because they

are dominating at extremely low temperatures. Some of these techniques have been discussed

in more details in44. In large systems the number of states to be sampled is enormous. In a

knot with N = 500, for instance, a conformation with the lowest observed energy value can

appear once in a set of 1011 samples. In the case of a knot with N = 1000, the Wang-Landau

sampling process requires a few months.

With the inclusion in our calculations of extremely rare configurations, it has been pos-

sible to show that the phase diagram of knots formed by block copolymers is more complex

than that of homolymers. New peaks appear in the heat capacity corresponding to different

transition processes. Particularly interesting is the situation in which most of the monomers

are subjected to repulsive interactions apart form a small number of monomers that are

able to form contacts with each other. At the lowest temperatures, such knots are found in

compact conformations which get soon destroyed upon heating leading to a fast expansion

of the knot. With growing temperatures, this expansion continues at a lower pace in Setup

I. Finally, at high temperatures these knots behave as their homopolymer counterparts in a

good solvent. In some longer knots, metastable compact states have been observed at low

temperatures, signalising that knots can be subjected to relevant rearrangements of their

structure when heated.

The material presented in this paper is organised as follows. In Section II the used

methodology is briefly explained. The obtained results are discussed in Section III. The

thermal properties of knots in Setup I and Setup II are presented separately in Subsections

III A and III B respectively. Finally, the conclusions and open problems are the subject of

Section IV.
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II. METHODOLOGY

Polymer rings are modeled as self avoiding loops on a simple cubic lattice. Monomers are

located on the lattice sites and each lattice side can be occupied by at most one monomer.

Two consecutive monomers on the loop are linked by one lattice bond, so that the total

length of the knot in lattice units is equal to N . The energy of a given knot conformation

X is expressed in Setup I and Setup II by the following Hamiltonians respectively:

HI(X) = ε(mAA +mBB −mAB) Setup I (1)

and

HII(X) = ε(+mAA −mBB) Setup II (2)

In Eqs. (1) and (2) the quantities mMM ′ ’s count the numbers of contacts between monomers

of the kind M and M ′, where M,M ′ = A,B. Let R1, . . . ,RN denote the locations of the N

monomers. Two monomers i and j are said to be in contact if i 6= j ± 1 and |Ri −Rj| = 1.

ε > 0 is an energy scale measuring the cost of one contact, which can be positive or negative

depending on the setup and on the monomer types. We note that the Hamiltonian HII(X)

of setup II is a variation of the HP protein model27 with the B monomers being identified

with the polar (P) aminoacid residues. The difference is that in setup II we have that the

A monomers are repelling themselves due to the short-range interaction +εmAA, while in

the HP model they are only subjected to excluded volume interactions. For convenience,

we will introduce the rescaled temperature T = kBT
ε

. To go back from T to the usual

temperature T measured in Kelvins some assumptions on ε are needed. For instance, we

suppose that the strength ε of the interactions is a multiple of the energy associated with

thermal fluctuations at room temperature T0, i. e. ε = qkBT0, where T0 ∼ 298K◦ and q is a

positive real constant. At this point it is easy to see that the temperature T is expressed in

terms of T as follows: qTT0 = T . For example, if q ∼ 1.5, the point T = 1 corresponds to

the temperature T = 1.5T0 ∼ 447K◦. After the passage T −→ T , it is possible to eliminate

the ε factor in the Hamiltonians of Eqs. (1) and (2). The upshot is that we obtain the

following rescaled Hamiltonians: HI,II(X) =
HI,II(X)

ε
. Here HI,II can be either of the two

Hamiltonians defined in Eqs. (1) and (2).

The simulations are performed using the Wang-Landau Monte Carlo algorithm36. The

initial knot conformations are obtained by elongating the existing conformations of minimal
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length knots45,46 until the desired final length is attained. Knots up to six crossing according

to the Rolfsen table are studied, though there is no restriction against including more com-

plicated knots. The details on the sampling and the treatment of the topological constraints

can be found in Refs.47 and48. The random transformations that are necessary for sampling

the different knot conformations are the pivot moves of Ref.49. In order to preserve the

topological state of the system, the pivot algorithm and excluded area (PAEA) method of

Ref.47 is applied.

The partition function of the polymer knot is given by:

Z(T ) =
Emax∑

E=Emin

e−E/T g(E) (3)

where g(E) denotes the density of states:

g(E) =
∑
X

δ(HI,II(X)− E) (4)

g(E) is the quantity to be evaluated via Monte Carlo methods. Emin and Emax represent

respectively the minimum and maximum values of the energy. The whole energy range

I = [Emin, Emax] over which the sampling is performed depends on the used setup, the length

of the knot, its topology and the selected monomer distribution. To determine the values of

Emin and Emax, a preliminary run without specifying any energy limit is performed. In doing

that we exploit the fact that the Wang-Landau algorithm is very efficient in exploring the

whole energy range of the system. The preliminary run is stopped when no new values of the

energy are found. After that, the averages of the observables are computed by a second run

with the values of Emin and Emax calculated from the preliminary run. Also in this second

run the energy range is kept open, but for the convergence of the Wang-Landau algorithm

only the energy values in the interval [Emin, Emax are considered. For the convergence of

the Wang-Landau algorithm the sampling of an order of 1012 conformations is necessary.

If new values of Emin and Emax appear during the sampling, the run is repeated with the

new, extended energy range. In the case of long polymers with N ≥ 300, cuts in the energy

range are necessary in order to obtain the corvergence of the Wang-Landau algorithm in

a reasonable time. In this case, several runs are repeated by slightly changing the energy

range to check that the results are independent of the energy range despite these small

variations. It turn out that the Wang-Landau algorithm is very robust in this sense. For
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FIG. 2. While the specific energy is relevant for understanding the behavior of homopolymers, in

the case of copolymers the numbers of contacts formed by the A and B monomers and the total

number of contacts ntot = mAA + mBB + mAB are very useful quantities too. The pictures show

how the numbers ntot,mAA,mAB and mBB change with the temperature in the case of a knot 31

with monomer distributions DII(45, 45) (left panel) and DII(71, 19) (right panel).

instance, small variations of the energy range do not have relevant influences on the height

and the position of the peaks of the specific heat capacity. The averages of the observables

are particularly insensitive under changes of Emax, while variations of a few percent occur at

very low temperatures by changing Emin in the case of block copolymers in setup I, which

is the most critical with respect to the computational time.

The expectation values of any observable O may be computed using the formula:

〈O〉(T ) =
1

Z(T )

Emax∑
E=Emin

e−E/T g(E)OE (5)

Here OE denotes the average of O over all sampled states with rescaled energy E. The

observables that will be considered in this work are the mean specific energy

〈E(T )〉
N

=
Emax∑

E=Emin

Ee−E/T g(E) (6)

the specific heat capacity C/N = 1
N

∂〈E(T )〉
∂T

and the mean square average of the gyration

radius R2
G. Additional information on the shape of the knot at different temperatures and

energies has been gathered studying the number of contacts formed by the monomers and

by closed inspection of the generated conformations.
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FIG. 3. The gyration radius of the knot 31 with N = 90 in various monomer distributions is

plotted as a function of T .

III. THERMAL PROPERTIES OF KNOTTED DIBLOCK COPOLYMER RINGS

Both Setups I and II are characterised by the coexistence of the attractive and repulsive

interactions. The monomers of type A or B may attract or repel themselves or the monomers

of the other type. In Setup II only the excluded-volume forces are acting between the A and

B monomers. In this situation, depending on the temperature, a particular interaction can

become more relevant than the others in shaping the behavior of knotted block copolymers

and lead to different regimes. The averages of the numbers mAA,mBB,mAB of the contacts

formed by the monomers of a specific type with themselves or with the other type together

with the averaged total number of contacts ntot = mAA + mBB + mAB provide some hint

about the knot’s conformations in these regimes. An example of such plots is given in Fig. 2,

in which a knot 31 in Setup II with different monomer distributions is considered. Another

quantity that is important is the specific energy. It turns out that, as it is expected, at any

given temperature the specific energy of a copolymer knot never exceeds the specific energy

of a homopolymer knot of equal length and topology in a good solvent, where all monomers

repel themselves. On the other side, it will always be bigger than that of a homopolymer in

bad solvents. A similar trend is observed in the case of the gyration radius as shown in Fig. 3:

At any given temperature, the gyration radii of 31 knots with different monomer composi-

tions range between a minimum provided by the the gyration radius of the 31 homolymer

knot DII(0, 90) and an upper limit given by the 31 homopolymer knot DII(90, 0). Another
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FIG. 4. The probability P (E) of obtaining a state of energy E for a knot 31 with N = 90 in various

monomer distributions is plotted as a function of the energy E.

feature which is visible in Fig. 3 is that the swelling process under increasing temperatures

may become much more rapid when the knot contains monomers of different kinds. For

example, the gyration radius of the knot 31 with monomer distribution DI(75, 15) changes

faster than that of the homopolymer DII(0, 90) and the diblock copolymer DII(15, 75). We

also note that the diblock copolymer DI(75, 15) exhibits a swelling phase at lower temper-

atures followed by a mild shrinking phase at higher temperatures. This behavior becomes

stronger with growing topological complexity. In the following, we will discuss the results

obtained for knots in Setup I and Setup II separately.

To conclude the discussion on the general features of knots formed by copolymers, we

stress that the Monte Carlo sampling is much more difficult for knots in Setup I than in

Setup II. The reason can be understood by looking at Fig. 4 where the probability P (E) of

states of energy E has been computed for a few knots in both setups. That figure shows

that knots admit in Setup I conformations in the lowest part of the energy spectrum that

are much more rare than any knot conformation in Setup II. This makes the sampling of

the lowest energy states in Setup I very difficult, especially for long knots. Of course, the

energy spectrum, and thus also the existence of rare ultralow energy conformations, strongly

depends on the monomer composition of a knot. This is visible by looking in Fig. 4 at the

differences between the same knot 31 with N = 90 in the monomer distributions DI(80, 10)

and DI(70, 20). However, even in the case in which the monomer distribution is fixed, the

energy range grows considerably when passing from Setup I to Setup II. For example, the
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FIG. 5. The specific heat capacity C/N of a knot 31 with N = 90 in various monomer distributins

is plotted as a function of T . The peak of C/N is highest in the case of the monomer distribution

MI(90, 2, 2) (panel b) and lowest in the case of the homopolymer DII(90, 0) (plot with crosses at

the bottom of the picture in panel a).

most compact state of a 31 knot with N = 90 and monomer distribution DI(70, 20) has an

energy E < −60 and a probability that is below 10−30. In the same knot 31 with N = 90

and the similar monomer distribution DII(71, 19), the probability of the lowest energy state

is higher of more than 15 orders. In a knot 41 with N = 1000 with monomer distribution

DI(800, 200) the lowest energy state has a probability lower than 10−256.

A. Results for Setup I

The variety of behaviors that it is possible to obtain in the case of short copolymer knots

is shown in Figs. 5 and 656. Both figures refer to the same trefoil knot 31 of length N = 90.

In Fig. 5 the range of temperatures has been restricted to the interval 0.00 ≤ T ≤ 2.00 in

order to display in details the features of the peaks of the specific heat capacity C/N . The

different plots of the specific heat capacity and the mean square gyration radius R2
G have

been obtained only by varying the distribution of the A and B monomers. It is possible

to realize from Fig. 5 that the heights of the peaks of the specific heat capacity and the

temperatures at which this peak occurs are very sensitive to the momomer distribution.

The peaks’ heights range in fact from about 0.11 for the homopolymer DII(90, 0) (see plot

with crosses at the bottom of Fig. 5, panel a, and comments in the caption) up to about
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TABLE I. In the second column of this table are reported the values of the height of the peaks of

the specific heat capacity for a knot 31 with different monomer distributions. In the third column

it is shown the temperature TMAX , at which the heat capacity is at its maximum. The plots of

the specific heat capacity are displayed in Fig. 5.

Monomer Peak Temperature

distribution height TMAX

DII(0, 90) 0.33 1.22

MI(2, 2) 3.99 1.03

DI(45, 45) 0.87 0.94

DI(60, 30) 0.72 0.94

DII(90, 0) 0.11 0.69

DI(70, 20) 0.85 0.56

DI(80, 10) 0.49 0.51

DI(75, 15) 0.70 0.48

4.00 in the case of the multiblock copolymer MI(90, 2, 2) in Fig. 5, panel b. In general,

we observe that the swelling process when the temperature increases is much more abrupt

in knots with monomer distributions MI(N, 2, 2) than in those with any other monomer

distribution. Consequently, the specific heat capacities in knots with monomer distribution

MI(N, 2, 2) are characterised by high and narrow peaks as it can be seen by comparing the

plot of C/N in Fig. 5, panel b for the distribution MI(90, 2, 2) with the plots of the other

distributions in panel a. By gradually increasing the size of the basic unit in the multiblock

copolymer, for instance choosing MI(90, 4, 4), MI(90, 8, 8) etc., the peak of the heat capacity

becomes gradually lower and wider. We also note that the temperature at which the peak

of the specific heat appears can be fine-tuned by choosing the monomer distribution. The

temperatures and the height of the peaks related to different distributions are displayed in

Table I. The data in the table are ordered according to decreasing temperatures TMAX ,

whose values range in the wide interval 0.48 ≤ Tmax ≤ 1.22.

The distribution of the A and B monomers greatly influences also the allowed range

of possible sizes as shown in Fig. 6. For example, in the 31 copolymer knot in the setup
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FIG. 6. The mean square gyration radii R2
G of a knot 31 with N = 90 in various monomer

configurations is plotted as a function of T . Going from the top to the bottom it is possible to

distinguish the plots of the gyration radii for the following monomer distributions: DII(90, 0),

DI(80, 10), DI(75, 15) and DI(70, 20). Below, there is a partial overlapping of the plots of the

mean square gyration radii for the distributions DI(60, 30) (line with black squares), MI(90, 2, 2)

(line with white circles) and DI(45, 45) (line with black circles). The plot in the bottom part of

the figure is that of the homopolymer in a bad solvent DII(0, 90) (white triangles).

DI(80, 10) the values of the mean square gyration radius are restricted to the narrow interval

13 ≤ R2
G ≤ 16. By passing to the DI(75, 15) distribution, a change that requires just the

substitution of five monomers of type A with monomers of type B, the new range in which

R2
G can take its values is 8.86 ≤ R2

G ≤ 14.89. Thus even little variations in the monomer

distribution are able to introduce significant changes in the expectation values of the gyration

radius. Let us note that all gyration radii in Fig. 6 converge to a common limit at very

high temperatures as it is expected, because at high temperatures the interactions between

the monomers are no longer relevant due to the strong thermal fluctuations. From Fig. 6

it turns also out that, as expected, at any temperature the self-attracting homopolymer

31 knot DII(0, 90) is always much smaller than all other trefoil knots in which repulsive

interactions are present.

One goal of this work is to investigate how the topology of a knot influences its thermal

behavior. In the case of homopolymers it is known that the topological effects are particularly

strong in short knots and gradually fade out with increasing length, see e. g.48. This is

true also in the case of copolymers. The plots in Fig. 7 show the gyration radii of a few



14

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 0  1  2  3  4  5  6  7  8

R
G

2

T

31, DI(45,45)
31, DI(75,15)
41, DI(45,45)
41, DI(75,15)
51, DI(45,45)
51, DI(75,15)

FIG. 7. Presented are the plots of R2
G in the case of the knots 31, 41 and 51 with N = 90. For

each knot two values of f are considered: f = 0.50, corresponding to the monomer distribution

DI(45, 45) and f ∼ 0.83, corresponding to the monomer distribution DI(75, 15).

AB−diblock copolymers of knot types 31, 41 and 51. For each knot type two different

monomer distributions have been taken into account, namely DI(45, 45) and DI(75, 15).

Fixing the monomer distribution and the knot length, which is equal to N = 90, we expect

the differences in the plots to be due to pure topological effects. The latter are quite evident

in the figure. For instance, by looking at the gyration radii of the knots with monomer

distributionDI(45, 45), it is clear that the sizes of these knots are changing with the topology.

The same conclusion is valid if we look at the plots with monomer distribution DI(75, 15).

It should be noticed that topological effects are less marked than those connected with the

modification of the monomer distribution. This fact is well illustrated also by the plots

of the specific heat capacity. Fig. 8 shows that by changing the topology of a knot while

keeping its monomer distribution fixed, it is possible to shift significantly the peaks of the

specific heat capacity but to a smaller extent than in the case in which the topology is fixed

and the monomer distribution is modified.

The above comments concerning the topological effects are valid also in the case of longer

polymers. The plots in Figs. 9 and 10 of the gyration radius and heat capacity respectively

illustrate the influence of both topology and monomer distribution on the thermal behaviour

of various knots of length N = 200. Fig. 9 shows that topology is affecting the knot size.

Moreover, the shape of the peaks of the specific heat capacity changes with the topology

of the knot, as it is possible to see in Fig. 10. These changes cannot be attributed to
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FIG. 8. Dependence of the specific heat capacity C/N on the topology and on the monomer

composition f for AB−diblock copolymers. Presented are the plots of C/N in the case of the

knots 31, 41 and 51 with N = 90. For each knots two values of f are considered: f = 0.50 (case

DI(45, 45)) and f ∼ 0.83 (case DI(75, 15)).

statistical errors, as it has been verified by repeating the simulations starting from different

seeds. Of course, with increasing polymer lengths the topological effects start to fade out.

In particular, the range of temperature in which the peaks of the specific heat capacity are

appearing is approximately the same independently of topology for all knots considered in

Fig. 10. This is not the case of the shorter knots with N = 90, see Fig. 8.

The novelty when N = 200 with respect to shorter polymers is the appearance of double

peaks or of a peak with a shoulder in the specific heat capacities of the knots with monomer

distribution DI(167, 33), see Fig. 10. A double peak is characterising also the specific heat

capacity of the knots 01 and 61 with N = 200 and monomer distribution DI(167, 33) (not

shown in the figure). This phenomenon is accompanied by a pattern that is visible in the

behaviour of the mean square gyration radius R2
G at low temperatures. An example of

this behaviour is shown in the inset of Fig. 9, in which the plot of R2
G of a knot 41 with

monomer distribution DI(167, 33) is displayed in greater detail. As it is possible to see,

there is a rapid increase of R2
G in the range of temperatures 0.4 ≤ T ≤ 0.6. This range

coincides approximately with that in which the peak of the specific heat capacity of the knot

41 centered at about T = 0.50 is appearing, see the line with empty squares in Fig. 10.

The appearance of double peaks and peaks with shoulders in the plots of the heat capacity

of chains has been shown to be related to the occurrence of two different phase transitions
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in a small interval of temperatures, see50–53 and26 in the case of polyelectrolytes. To under-

stand what happens in the present context, we recall the behaviour of homopolymers upon

heating. In homopolymers in a good solvent all monomers are subjected to purely repulsive

interactions. At the lowest temperatures, the number of contacts between the monomers is

minimal and the knot attains its maximally swollen size. When the temperature is rising,

the increasingly strong thermal fluctuations become energetic enough to break the potential

barrier that prevents the formation of contacts between the monomers. As a consequence,

the size of the knot moderately shrinks with growing temperatures. This shrinking is mod-

erate and the related process causes just a small peak in the heat capacity, see the examples

of Fig. 10, right panel. In homopolymers in a bad solvent, on the contrary, the minimal

size conformations are found when the temperature is very low. The compact states that

arise in this case consist of a large number of contacts. With growing temperatures, the

number of contacts decreases and the knot continues to swell up to high temperatures until

the thermal fluctuations dominate over the interactions. At this point, the gyration radius

and the number of contacts of the ring are completely determined by entropy and the knot’s

topology. This swelling process in a bad solvent generates in the plots of the specific heat

capacity a broad peak extending over a large interval of temperatures.

In block copolymers, the situation is different because there are simultaneously both

attractive and repulsive interactions. Knotted diblock copolymers with NA ∼ NB have a

behaviour similar to that of knotted homopolymers in a bad solvent. The reason is that,

when NA ∼ NB, the attractive forces are very strong because there is a large number of A

and B monomers that may build contacts with each other. As a consequence, for energy

reasons, at very low temperatures the number of contacts between the A and B monomers

is at its maximum and the volume occupied in space by the knot is very small, though

not so small as in the homopolymer case. With growing temperatures, similarly to what

happens for knotted homopolymers in a bad solvent, the number of contacts decreases and

the swelling process continues also when the temperature is high. In knots of length N = 90

and N = 200 the expansion is completed at a temperature of T ∼ 3 when NA = NB. The

result is a broad peak in the specific heat capacity with the maximum of the peak at a

temperature of T ∼ 1 (see Figs. 8 and 10) or higher like in the case of the knot 51 with

length N = 500 and monomer distribution DI(250, 250) of Fig. 14. A thorough investigation

with a knot 41 of length N = 200 has shown that the behaviour of knots with NA ∼ NB
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described before still persists at least until NA = 150 and NB = 50. This means that the

heat capacity is characterised only by a single peak. Of course, the heights of this peak will

decrease with decreasing values of NB because less and less contacts between the A and B

monomers are possible.

Below a certain threshold of the number NB of available B monomers, knots depart

significantly from the behaviour described above. To fix the ideas, we will say that such

knots have monomer configurations of the type NA >> NB. In this case the number of B

monomers that are able to form contacts with the A monomers is extremely limited. This

explains why the heights of the peaks of the specific heat capacity are decidedly lower than

those of knots in which the monomer distribution is NA ∼ NB, see Fig. 10. Despite the

fact that NB << NA, at very low temperatures the number of contacts mAB between the

monomers of types A and B is quite high in order to minimise the energy according to the

Hamiltonian (1). Indeed, a knot 41 with N = 200 and monomer distribution DI(167, 33) has

been studied in details in order to understand the origin of the double peak when NA >> NB.

It turns out that at the minimum energy value Emin = −111, the average total number of

contacts formed by this knot is 〈ntot〉 = 122. The overwhelming majority of these contacts

is due to the A and B monomers, because at T ∼ 0 we have that 〈mAB ∼ 118, 〈mAA〉 ∼ 4

and 〈mBB〉 = 0. Of course, with rising temperatures mAB will decrease similarly as in the

case NA ∼ NB illustrated before. The striking difference between the cases NA ∼ NB and

NA >> NB is however that knots with NA >> NB undergo an extra rearrangement of their

structures at very low temperatures. More precisely, knots with NA >> NB are approaching

a very compact state when the temperature becomes very low like their counterparts with

NA ∼ NB. In the case of the prototype knot 41 mentioned above, this state contains

〈mAB〉 ∼ 103 contacts between the A and B monomers. The breaking of these contacts

causes a swelling process that produces in the plot of the specific heat capacity a peak

around the temperature T ∼ 0.7, see Fig. 10, left panel, plot with white circles. This is

the origin of the second peak in the heat capacities of the knots with monomer distribution

DI(167, 33) in Fig. 10. When the temperature further decreases, the quantity R2
G of the 41

knot changes very rapidly from 30 to 24, see the inset of Fig. 9. This points to the fact

that a rearrangement of the structure of the knot has taken place. This rearrangment is

connected with the formation of only a small number of new contacts. Unfortunately, the

close inspection of very rare conformations at the lowest energies is very difficult, but it has
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been possible to capture conformations at the energies E = −105 and E = −100 of the

knot 41 with N = 200 and monomer distribution DI(167, 33), see Fig. 11. Basing on the

available data, our interpretation of the phenomena associated with the presence of the two

peaks in the specific heat capacity of knots in which NA >> NB is as follows. The second

peak, appearing in all observed cases at temperatures T > 0.5, is due to the breaking of the

contacts that are responsible for a bulk compact state that arises due to the attractive forces

between the A and B monomers. The first peak, observed at temperatures T < 0.5, is due

to a rearrangement of the knot, or at least a part of it, involving the formation of just a few

additional contacts. We suspect that the rearrangement is mostly concerning the segment

with the A monomers. Above the transition, there is a bulk compact state which is held

together by the portion of the A monomers that are in contact with the B monomers. The

other A monomers cannot form contacts because of the few B monomers available. As a

consequence, these A monomers form a long tail departing from the bulk compact state and

fluctuating almost freely. Below thetransition, a rearrangement leading to the formation of

additional contacts with more A monomers becomes possible and the tail disappears or is

reduced. A close inspection of the conformations of the knot 41 that have been captured

confirms the above claim, see Fig. 11 and comments in the related captions.

Other rearrangements could become possible in longer polymers. They give rise to

metastable states that may appear when the temperature is low, so that the formation

of contacts between the A and B monomers is energetically convenient. Such metastable

states and also the double peak are not observed in short knots, like for instance those with

N = 90. The main reason is that in a short knot, the interactions between the monomers

are more frequent than in a longer one. As a consequence, the rearrangements such that

more monomers of the A type will be in contact with monomers of the B type will lead

unavoidably also to contacts between the A and B monomers with themselves. This will

increase the energy of the obtained conformation due to the repulsive interactions to which

monomers of the same type are subjected.

One additional transition is related to a process analogous to the shrinking taking place

at high temperatures in the case of homopolymers in a good solvent. Indeed, since the A

monomers are numerous in the case NA >> NB and they are subjected to repulsive interac-

tions, we expect that, at high temperatures, the knot will slightly shrink as homopolymers

do. This shrinking process causes in homopolymers just a small peak in the heat capacity,
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see Fig. 10, right panel, so that in knotted diblock copolymers the effect on the plots of the

heat capacity will be limited. However, the shrinking is visible in the plots of the gyration

radius.

The general picture presented above fits very well with the results obtained for knots of

length N = 200. The plots of the specific heat capacity of Fig. 10, left panel, clearly show

that the knots with monomer composition f ∼ 0.83 (NA >> NB) have much lower peaks

than those with f = 0.50 (NA ∼ NB). Moreover, the peaks of the specific heat capacity of

the knots with f ∼ 0.83 occur at significantly lower temperatures (T ≤ 0.50 the first peak

and T ≤ 0.70 the second peak) than the peak of the specific heat capacity of the knots with

f ∼ 0.50 (T ∼ 1.00). The sharp increase of the gyration radius following the Interestingly,

out of all investigated knots 01, 31, 41, 51 and 61 with monomer composition f ∼ 0.83 (the

plots of 01 and 61 are not reported), the second peak has been replaced by a shoulder only

in the heat capacity of the knot 51.

Let’s now discuss the results of the knots with monomer distribution DI(100, 100). As

previously discussed, in this case double peaks and shoulders are absent from the plots

of diblock copolymers when NA ∼ NB. The plots with the heat capacities of knots with

DI(100, 100) pointed out in Fig. 10 confirm this expectation. Moreover, the peaks of the

specific heat capacity are much higher than those of knots with DI(167, 33).

The data of longer knots with N = 300 and N = 500 agree with the previous conclusions,

see Figs. 12–14. In longer polymers, a third small peak appears in the case of knot 41 with

N = 300 and monomer distribution DI(250, 50), see Fig. 13, left panel. As explained before,

this extra peak could be related to the presence of a metastable state. In the inset of Fig. 12

it is shown that the rapid growth of the gyration radius at about T ∼ 0.35 corresponds to

the first peak in the specific heat capacity. The middle peak at about T ∼ 0.6 corresponds

to a temperature in which the swelling rate is slowing down considerably, see the inset. We

interpret this with the fact that the knot is captured into a metastable state, which stabilises

the size of the knot over a small interval of temperatures. One should keep in mind that the

detection of metastable states in long knots is particularly difficult. Indeed, there are hints

that the energy landscape for long polymers could be funnel-like like in proteins54. Thus,

long knots are complex systems and the search for metastable states requires an extended

sampling before they are found.

Finally, also the data of the gyration radius in the case of polymers with N = 500
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FIG. 9. Dependence of the mean square gyration radius R2
G on the topology and on the monomer

composition f in the case of AB−diblock copolymers. Presented are the plots of R2
G in the

case of the knots 31, 41 and 51 with N = 200. For each knots two values of f are considered:

f = 0.50, corresponding to the monomer distribution DI(100, 100) and f ∼ 0.83, corresponding to

the monomer distribution DI(167, 33). In the inset it is shown the detail of the behavior of R2
G for

the knot 41 with monomer distribution DI(167, 33).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.5  1  1.5  2

C
/N

T

31, DI(100,100)
41, DI(100,100)
51, DI(100,100)

31, DI(167,33)
41, DI(167,33)
51, DI(167,33)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0  0.5  1  1.5  2

C
/N

T

41, DII(200,0)
51, DII(200,0)

FIG. 10. The left panel shows the dependence of the specific heat capacity C/N on the topology

and on the monomer composition f for AB−diblock copolymers. The plots of C/N are presented

in the case of the knots 31, 41 and 51 with N = 200. For each knot two values of f are considered:

f = 0.50 (case DI(100, 100)) and f ∼ 0.83 (case DI(167, 33)). The right panel shows the specific

heat capacity of the homopolymer version of the knots 41 and 51 with N = 200 fluctuating in a

good solvent.
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FIG. 11. This figure shows two sample conformations of a knot 41 with length N = 200 and

monomer distribution DI(167, 33). The left conformation has energy E = −100. It is charac-

terised by a partially ordered portion located in the upper part of the knot in which some of the

A−monomers are in contact with the B−monomers. Other A−monomers form a ”tail” on the

bottom of the knot. At the just slightly higher energy of E = −105, the sample conformation of

the knot appears very different. The chain containing the B−monomers is more stretched than

in the case E = −100. This allows the formation of two partially ordered portions of the knot

concentrated at both ends of the chain with the B−monomers. In both pictures the knots have

been rescaled in the same way to fit into the page and no different rescaling has been applied to

different axes.

confirm the general picture presented before, see Fig. 14. Again, knots with f ∼ 0.50

(NA ∼ NB) behave differently from those with f ∼ 1 (NA >> NB) or, equivalently, f ∼ 0

(NB >> NA). As a curiosity, from the performed numerical experiments it turns out that

the minimal energy state created by a knot at the lowest temperature is not always the most

compact one. Indeed, the size of the knot in two cases (knots 51 with monomer distribution

DI(420, 80) and 31 with monomer distribution DI(400, 100)) decreases at about T ∼ 0.6.

This is probably due to the excess of monomers of a given type. Indeed, when temperatures

are low there are two competing conditions that should be fulfilled in order to minimise the

energy. First, the largest possible number of A monomers should be in contact with the

few avaliable NB monomers. At the same time, however, the A monomers cannot get near

to each other, as this is energetically expensive due to the repulsive interactions between
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FIG. 12. The data of the gyration radius R2
G of knots 01, 41, 51 and 62 of length N = 300 and

monomer distribution DI(250, 50) are presented. In the case of knot 51 it is shown the plot of R2
G

also for the monomer distribution DI(200, 100). In the inset the behaviour of the gyration radius

of knots 01 and 41 is displayed in more details at low temperatures. Note the characteristic saddle

point in the plot of the gyration radius of knot 41 at T ∼ 0.45.

monomers of equal type. This last requirement is responsible for the fact that the minimal

energy state could be not the most compact one. If the temperature is rising, in fact, more

energy will be available to the system, so that conformations of the knot in which more A

monomers are in contact with themselves become possible. As a consequence, certain knots

may attain at higher temperatures a total gyration radius which is smaller than that of the

lowest energy state.

To conclude this subsection, we would like to stress that, while homopolymers are simple

systems whose size steadily increases (in bad solvents) or decreases (in good solvents) with

growing temperatures, diblock copolymers with f ∼ 1 (or f ∼ 0), exhibit a more complex

behavior. Their mean square gyration radius is smallest at low temperatures and increases

up to its maximum value at intermediate temperatures. After that, it starts to decrease

and finally stabilizes to some value between the maximum and the minimum at high tem-

peratures. The presence of three different regimes, compact, ultra swollen and swollen is

strongly dependent on the monomer composition.
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FIG. 13. Left panel: Plots of the specific heat capacity of diblock copolymers with N = 300

for knots: 01, 41, 51 and 62 with monomer configuration DI(250, 50). The plot of knot 51 with

configuration DI(200, 100) (black squares) has been added to show the differences when the number

of monomers of type A and B become comparable. As we see, the specific heat capacity of this knot

exhibits just a single peak that is higher than those of the knots with DI(250, 50). Moreover, the

peak appears at a much higher temperature with respect to all other knots in which NA = 250 and

NB = 50. The strongest observed compact states have been observed in the case of the monomer

distribution MI(N, 2, 2) (right panel).

B. Results for Setup II

In Setup II the monomers of type A repel themselves, while monomers of type A and B

are subjected to excluded volume forces. Only the monomers of type B attract themselves.

For that reason, it could be expected that the behavior of knots in Setup II will be similar to

that of the purely repulsive case (i. e. they attain the largest size at very low temperatures

to minimize the energy and then shrink upon heating) unless the number NB of monomers B

will be sufficiently high to trigger some behavior typical of attractive interactions (i. e. they

swell when heated). This expectation is only partially true. For instance, knots formed by

diblock-copolymers with NB << NA exhibit a phase of fast, but moderate expansion when

heated, so in this sense they share some properties of knots in a bad solvent despite the

fact that the monomers of type A subjected to repulsive forces constitute an overwhelming

majority. On the contrary, when NA = NB the size of the knot does not exhibit any

significant change. If instead NB >> NA, attractive interactions are overwhelming and
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FIG. 14. Plots of the gyration radius (left panel) and specific heat capacity (right panel) of a few

knots with length N = 500 in three different monomer distributions.
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FIG. 15. The mean square gyration radius R2
G (left panel) and the heat capacity (right panel) for

a knot 51 in Setup II with N = 90 and different types of monomer distributions.

the behavior of the knot becomes similar to that of a polymer in a bad solvent. In all

cases, including the monomer distribution MII(N, 2, 2), the swelling is much less marked

than in Setup I. It takes place in a limited range of temperatures and it is soon followed

by the shrinking which is typical of homopolymers in a good solvent. The situation is

well summarized by Fig. 15 in which the mean square gyration radii and the specific heat

capacities of a knot 51 of length N = 90 are displayed for different monomer distributions. A

possible explanation of the different behaviours between the cases NA >> NB and NA ∼ NB

is that in the latter case the B monomers form a larger number of contacts. The compact
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state that arises in this way is stable under temperature changes and it starts to melt only

at high temperatures, i. e. when T ∼ 1.00 similarly as the powerful compact states built

by homopolymers in a bad solvent. At such high temperatures the melting process and

the shrinking process are no longer well distinguishable in the plots of the specific heat

capacity, while this is possible when the monomer distribution is such that NA >> NB and

the melting of the compat state takes places at much lower temperatures.

It is worth noticing that in the knot 51 the swelling and shrinking phases are well rec-

ognizable only when the number of B monomers is small. This is the case of the monomer

distributions DII(71, 19) or DII(60, 30), see left panel of Fig. 15. This fact is also visible

in the plots of the specific heat capacity of this knot (lines with black squares and black

triangles in the right panel of Fig. 15 which are characterised by a double peak. The first

peak can be associated to the swelling process with the melting of the compact state formed

by the B monomers and the second, at higher temperatures, to the shrinking process. In-

deed, the first peaks in the case of the monomer distributions DII(71, 19) and DII(60, 30)

are centered more or less at the temperatures in which the swelling phase is taking place.

The second peaks are instead much broader and appear in the range of temperatures in

which shrinking takes place. Finally, the heights of the peaks are of the expected order,

with higher peaks in the case of swelling and lower in the case of shrinking.

To check the effects of topology, in Fig. 17 we have displayed the gyration radii of dif-

ferent knots with two monomer compositions, namely f = 0.50 (DII(45, 45) and f = 0.79

(DII(71, 19)). As it is possible to see, also the knots 31 and 41 exhibit the same behaviors

already observed in Fig. 15 in the case of knot 51. However, as a general trend, it turns

out that the swelling process taking place in knots with monomer composition f = 0.79

becomes increasingly more abrupt and start at lower temperatures with growing topological

complexity. This influence of topology is also visible in the plots of C/N of Fig. 18. As

a matter of fact, when f = 0.79, the heights of the peaks of the specific heat capacity is

gradually rising passing from the knot 31 to the knot 61. Moreover, the temperature around

which the peak of C/N is centered is decreasing with increasing knot complexity. We notice

in Fig. 18 that knot 41 with monomer distribution MII(90, 2, 2) undergoes a swelling process

that is much milder than that of the same knot in Setup I.

Going to longer knots, we see in general a fading out of the effects of topology. This

is for instance visible in the fact that the knots with monomer distributions DII(100, 100)
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FIG. 16. This figure summarises the situation of knotted diblock copolymers in Setup II: Two

chains, one with A−type monomers and the other with B−type monomers, are attached together

at their ends to form a knot. Both chains share the same end-to-end distance R0. It turns out that

the equilibrium value of the length |R0| of R0 is determined not only by the monomer distribution,

but also by topology. The A monomers contribute to the increase of |Ro| because they are subjected

to repulsive interactions. On the contrary, the B monomers, subjected to attractive interactions,

and increasing topological complexities of the knot, both contribute to the decrease of |R0|.

in Fig. 19 have more or less the same behaviour. A remarkable exception is the knot 31

with monomer distribution DII(167, 33) whose values of the gyration radius are decidedly

greater than those of knots 41 and 51 with the same monomer distribution. This effect is

certainly due to topology and it has been observed also in the case of the knot 31 with

length N = 90 and monomer distribution DII(60, 30). A temptative explanation of this

phenomenon can be the following. Looking at the picture in Fig. 16, we see that in Setup II

knots consist into two open chains, one with monomers of type A and one with monomers of

type B, joined together at their ends. For this reason, the end-to-end distance R0 is common

for both chains. R0 determines to some extent also the gyration radii of these chains and

eventually the gyration radius of the whole knot. Clearly, the segment with the A monomers,

which are subjected to repulsive interactions, will try to increase the value of R0. On the

contrary, the segment with the B monomers which are attracting themselves, will tend to

have smaller values of its end-to-end distance. If the monomer distribution is DII(167, 33),

then the repulsive interactions will certainly be dominating because of the large number of

A monomers. This would imply that the value of R0 will be mainly determined by the part

with the A monomers. However, if the topology of the knot is complex, then the numbers
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FIG. 17. The mean square gyration radius R2
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butions in Setup II. The length of all knots is N = 90. The plots with black points (black squares,

circles and triangles) correspond to knots with monomer conformations such that NA >> NB,

while those with white points (white squares, circles and triangles) correspond to knots in which

NA ∼ NB. In the former case, it is possible to distinguish an expansion of the knot followed by a

shrinking phase. When NA ∼ NB, only shrinking is observed or, at most, small size fluctuations

(knot 31, white squares). There are strong effects of topology that may be easily detected by

looking separately at the plots with black and white points.
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FIG. 18. The specific heat capacity C/N of knots of different types and monomer distributions.

The length of all knot is N = 90. This picture shows that there are important effects of topology

in the behaviour of the knots.



28

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0  0.5  1  1.5  2  2.5  3  3.5  4

R
G

2

T

31, DII(100,100)
31, DII(167,33)

41,  DII(100,100)
41,DII(167,33)

51,DII(100,100)
51, DII(167,33)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  0.5  1  1.5  2  2.5  3  3.5  4

C
/N

T

31, DII(100,100)
41,  DII(100,100)

51,DII(100,100)
31, DII(167,33)
41,DII(167,33)

51, DII(167,33)

FIG. 19. The mean square gyration radius R2
G of knots of different types and monomer distribu-

tions. The length of all knots is N = 200.

of turns made by the path of the segment with the A monomers will be high. This will

make the knot more compact and thus also R0 will be relatively smaller than in simpler

topologies. In this situation it is very likely that the effects of the fluctuations to which the

A monomers are subjected will be hampered by the topological constraints and will not be

able to destroy the contacts made by the B monomers. If this happens, there is a chance

that the the B monomers will prevail and succeed to keep the value of R0 small as required

by the energy and entropy considerations for segment B. As far as it is possible to see from

our simulations, this topological mechanism to keep together the knot in a compact state is

working when the topology is more complex than that of a knot 31.

IV. CONCLUSIONS

The Wang-Landau algorithm has been applied here to study the thermal properties of

knotted copolymers in a solution. Two different types of monomers have been considered,

called type A and type B. The monomers are subjected to very short-range interactions.

Two different setups have been investigated. Setup I corresponds to the case of charged

monomers in an ion solution. The A−type monomers carry a positive charge and B−type

monomers a negative one. In Setup II the monomers are not charged, but the solvent is

good for type A monomers and bad for the B monomers. Block copolymers knots exhibit

a more complex behaviour than knotted homopolymers. The latter are in fact simple two-
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state systems. When they are in a bad solvent, they are found at very low temperatures

in extremely compact and ordered conformations, called crystallites following55. With the

increasing of the temperature, these knots start to swell until the state of expanded coils is

reached. The swelling process is much less violent than in the case of linear polymer chains

studied in55, whose specific heat capacity is characterized by a very sharp peak. In knotted

polymer rings, the peak caused by swelling is much broader. When the solvent is good,

instead, knots made by homopolymers are in an expanded state at low temperatures and

slightly shrink with increasing temperatures, see47,48.

The introduction of monomers of two kinds drastically changes this situation. For ex-

ample, for suitable values of the monomer composition f , knots formed by AB−diblock

copolymers in an ion solution (Setup I) perform as homopolymers in a bad solvent at low

temperatures, but exhibit features typical of homopolymers in a good solvent at high tem-

peratures. In practice, they become systems with several states in which at least three

different states can be distinguished. At low temperatures these knots are found in the

compact and ordered state of crystallites. With growing temperatures, they are swelling like

homopolymers in a bad solvent, but after a maximum gyration radius is reached, they start

to shrink like knotted homopolymer rings in a good solvent. Examples of this behaviour

are in Setup I the knot 31 with monomer distribution DI(75, 15) of Fig. 3 and in Setup II

the knot 51 with monomer distribution DII(60, 30) of Fig. 15. By choosing the topology

and the monomer composition of the knot, it is possible to tune both its size at different

temperatures and the temperature at which the maximum value of the gyration radius is

attained. Also the range in which the gyration radius is allowed to vary can be determined to

some extent. Knots with such features are clearly an advantage with respect to homopoly-

mers in potential medical applications and in the production of intelligent polymer materials

containing knots.

In Setup II, knots formed by AB−diblock copolymers have a behavior that is strongly

dependent on the monomer composition f . Following the intuition, if the number of A

monomers largely exceeds that of B monomers, i. e. NA >> NB, then it could be expected

that knots behave like knotted homopolymer rings in a good solvent, since the A monomers

are subjected to repulsive interactions. Conversely, if NB >> NA and the B monomers are

below the theta point, we would rather expect a behavior typical of a homopolymer knot in a

bad solvent. The performed simulations show however that the situation is more complicated
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than that. For instance, in the case NA >> NB we see from Fig. 17 that, in the case of the

knots 31, 41 and 51 with monomer distribution DII(71, 19), the less numerous B monomers

play the dominant role at very low temperature. Indeed, these knots exhibit features typical

of homopolymers in a bad solvent, i. e. they swell with growing temperatures.

Multiblock copolymers in the classes MI(N, nA, nB) and MII(N, nA, nB), where nA and

nB are small in comparison to N , have remarkable properties too. These properties are not

easily predictable by simply looking at the polymer composition. For example, we observe

a transition from the compact state to the swollen state which is much more abrupt than

that of knots realized using monomers of the same type or diblock copolymers.

The main conclusions of this work can be summarised as follows:

1. The strongest compact states due to the contacts formed by the monomers subjected

to attractive interactions have been observed in knots of various lengths with monomer

distribution MI(N, 2, 2), see Figs. 5, right panel and 13, right panel. The specific heat

capacity of these knots is characterised by a high peak concentrated in a very narrow

range of temperatures corresponding to the melting of these bound states. This inter-

pretation is corroborated by the fact that, exactly in the same range of temperatures,

the knot undergoes a sudden and rapid swelling process. When monomer distribu-

tions of the kind MI(N, nA, nB) are considered with increasing values of nA and nB

(nA, nB = 4, 8, ...), the peak widens and its height becomes lower, implying that strong

compact states are still present at least up to the tested value of nA = nB = 8, but

they become weaker and weaker.

2. Topological effects strongly influence the behaviour of knots in the case of short poly-

mers (N ∼ 90). Examples of these effects in Setup I can be observed in the plots of the

gyration radius and specific heat capacity reported in Fig. 7 and in Fig. 8 respectively.

Fig. 18 displays the changes due to topology of the heights and temperatures of the

peaks of the specific heat capacity in the case of Setup II. With increasing polymer

lengths these effects fade out and the choice of the monomer distribution becomes the

main factor influencing the properties of the knots. Yet, topology is still relevant for

longer polymers because it provides a way to fine tune their behaviour. For instance,

the effects of topology when N = 200 on the way in which the gyration radius changes

with different temperatures are reported in Fig. 9. A certain dependence on topology
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of the heights of the peaks of the specific heat capacity can also be spotted in the

plots of Fig. 10 where knots of length N = 200 are considered. However, in general

the influence of topology is more visible in the plots of the gyration radius. Let us

notice that topology plays some role even in the case of the longest polymers that

have been investigated here. For instance, the knot 31 with N = 500 and monomer

distribution DI(400, 100) is suddenly shrinking at a temperature of T ∼ 0.5 (the value

of R2
G goes from 75 to 52), a feature that is not so marked in the case of the other

knots whose plots have been displayed in Fig. 14, left panel, including the knot 51 with

the same monomer distribution.

3. Several exceptions to the rule that the influence of topology should fade out with

increasing polymer lengths have been observed. For instance, the gyration radius of

the knot 31 with length N = 200 and monomer distribution DII(167, 33) is much

larger than the gyration radii of knots 41 and 51 with the same lengths and monomer

distribution, see Fig. 19. This striking difference can be explained by the strong

entropic effects induced in Setup II by the fact that the paths of the knots are subjected

to topological constraints, see Fig 16 and related comments. Also when N = 90, it is

possible to see from Fig. 17 that, when the monomer distribution is DII(71, 19), the

swelling of the knot 31 with rising temperatures is much more limited than that of

knots 41 and 51.

4. A characteristics that emerges in knotted block copolymers and is not present in the

case of homopolymers, is the existence of rearrangements of the knot structures at low

temperature. In some cases, this leads to intermediate states. These rearrangements

can be detected by the appearance of extra peaks or shoulders in the specific heat

capacity of longer knots in Setup I. Metastable intermediate states have been observed

for instance in knot 31 with N = 500 and monomer distribution DI(400, 100), see

Fig. 14, right panel, and knot 41 with N = 300 and monomer distribution DI(250, 50),

see Fig. 13.

The simulations presented in this paper require the sampling of an extensive amount of

knot conformations. Despite major improvements in the sampling procedure, that of rare

events is still a problem in the case of very long polymers. Some of the conformations

appear after several hundred billions of trials and their inclusion extends enormously the
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calculation times. Moreover, in this work very short-range interactions have been considered.

This is enough to study the cases of flexible knots in a good or bad solutions, but it would

be interesting to add more complicated interactions. In this way it would be possible to

consider for instance also the polymer rigidity and the transition from bad to good solvents

at the theta point. Work is in progress to implement in our code the backbone rigidity and

the Lennard-Jones interactions.
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