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Abstract 17 
While RNA folding was originally seen as a simple problem to solve, it has been 18 

shown that the promiscuous interactions of the nucleobases result in structural 19 
polymorphism, with several competing structures generally observed for non-coding 20 
RNA. This inherent complexity limits our understanding of these molecules from 21 
experiments alone, and computational methods are commonly used to study RNA. 22 
Here, we discuss three advanced sampling schemes, namely Hamiltonian-replica 23 
exchange molecular dynamics, ratchet-and-pawl molecular dynamics and discrete 24 
pathsampling, as well as the HiRE-RNA coarse-graining scheme, and highlight how 25 
these approaches are complementary with reference to recent case studies. While all 26 
computational methods have their shortcomings, the plurality of simulation methods 27 
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leads to a better understanding of experimental findings and can inform and guide 28 
experimental work on RNA polymorphism. 29 

 30 

The complexity of RNA folding 31 

After the seminal experiments showing the hierarchical folding of RNA, RNA folding was 32 

thought to be an easier problem to solve than protein folding (Li, Vieregg, et al. 2008; 33 

Tinoco and Bustamante 1999). With an alphabet composed of only four letters, and with 34 

key interactions leading to the observed secondary structure dictated by canonical base 35 

pairing (G with C and A with T/U), what remained to be solved was “only” a combinatorial 36 

problem of finding the best pairing scheme for a given sequence. 37 

About two decades later, we know that the problem is much more complex. Even 38 

searching for the optimal secondary structure remains a challenge as exhaustive sampling 39 

of all relevant conformations is unfeasible for most systems of biological interest, even 40 

though the advent of machine learning and the extensive use of chemical probing data are 41 

contributing to making the problem more tractable (Lorenz et al. 2016; Zhao et al. 2021). 42 

A common feature in complex RNA architectures are pseudoknots – non-nested 43 

arrangements of base pairs. Traditional secondary structure prediction algorithms do not 44 

treat these structures well and combining these approaches with machine learning has led 45 

to some progress (Sato and Kato 2022; Wang, Liu, et al. 2019). The situation is even more 46 

complex considering that canonical base pairing, even though dominant, is not the only 47 

form of base pairing. The multiple hydrogen bond donor and acceptor sites of the 48 

nucleobases allow for a multitude of base pairs, which have been reported experimentally. 49 

Around 150 non-canonical base pairs have been found and classified in terms of 50 

interaction “edges” (Watson-Crick, Hoogsteen and Sugar) (Leontis and Westhof 2001; 51 

Stombaugh et al. 2009). The full list can be found in the RNA Basepair Catalog of the 52 

Nucleic Acids Databank. 53 

As it is the case in general for heteropolymers, a smaller alphabet results in an increase 54 

of frustration of the conformational space accessible to the molecule. In the case of RNA, 55 

the alphabet composed of only four different nucleobases, further complicated by the 56 

multitude of possible base pairs, results in a folding process possibly more complex to 57 

predict than for proteins (Ferreiro et al. 2014). The observation that proteins fold reliably 58 

and fast into their native confirmation has been explained by the principle of minimal 59 

frustration (Bryngelson and Wolynes 1987). Every sequence defines interactions between 60 

different parts of the molecule. The more of these are formed, the lower the frustration 61 

and the more stable the resulting structure. The native state exhibits a conformation that 62 

fulfils all packing requirements, i.e. the system shows minimal frustration. Minimal 63 

frustration is linked to the topography of the energy landscape, and in the case of globular 64 

proteins a single funnel anchored around the native fold is observed (Bryngelson, Onuchic, 65 
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et al. 1995; Leopold et al. 1992). 1 As a result, the number of native contacts observed is a 66 

good proxy for the progress of the highly cooperative folding of proteins. 67 

In contrast, RNA is characterized by the existence of several stable structural 68 

ensembles with different secondary structures, and many of these systems are highly 69 

dynamic (Brillet et al. 2020). The number of alternative contacts in RNA lead to large 70 

frustration and disorder, as the sequence allows for multiple competing interactions. This 71 

higher frustration has been highlighted both by experiments (Burge et al. 2006; Garst et 72 

al. 2011; Kolesnikova and Curtis 2019; Lightfoot et al. 2019; Martinez-Zapien et al. 2017; 73 

Saldi et al. 2021; Yu et al. 2021) and by simulations (Cragnolini, Laurin, et al. 2015; 74 

Denesyuk and Thirumalai 2011; Rissone et al. 2022; Röder, Barker, et al. 2022; Röder, 75 

Stirnemann, et al. 2020; Schlick et al. 2021; Šponer et al. 2018; Yan et al. 2022), and its 76 

main manifestation is structural polymorphism. Within these distinct structures, there 77 

must not necessarily be a distinct global minimum, and therefore a native state does not 78 

necessarily exist, as has been noticed by others (Vicens and Kieft 2022). 79 

Therefore, in our opinion, an ensemble approach should be chosen when talking about 80 

RNA. The relative population of these structural ensembles depends on experimental 81 

conditions, as observed for riboswithches and several other non-coding regulatory RNAs 82 

(Brillet et al. 2020; Fay et al. 2017; Halvorsen et al. 2010; Kolesnikova and Curtis 2019). 83 

Post-transcriptional modifications and single point mutations also can shift the 84 

equilibrium between the alternative structures (Liu et al. 2017; Martinez-Zapien et al. 85 

2017; Röder, Barker, et al. 2022; Schlick et al. 2021). Finally, many RNAs interact with 86 

proteins and these interactions often lead to changes to the observed fold (Jaeger et al. 87 

2009). Which structure is detected in experiments therefore depends on the details of the 88 

experiment itself, and at times more than one structure is detected in the same experiment 89 

(Martinez-Zapien et al. 2017). 90 

Given this plurality of possible structures, simulations cannot be limited to the 91 

prediction of a single structure (which is what is achieved by most bioinformatic 92 

approaches), and focus must shift to a global view, which centres around the molecular 93 

energy landscape. All information about the structures, their energy, and interconversion 94 

pathways between them can be calculated from knowledge of the energy landscape (EL). 95 

Insight can also be obtained on the influence of external factors such as ionic conditions, 96 

pH, temperature, presence of ligands, and chemical changes in the sequence by 97 

considering the EL. Any experiment or simulation probes the energy landscape directly or 98 

indirectly. Various methods do so in different ways, and often the EL is not directly 99 

mapped. 100 

The most common simulation method is molecular dynamics (MD) simulations. 101 

However, due to the broken ergodicity exhibited biomolecular energy landscapes (Wales 102 

and Salamon 2014) there are many practical difficulties. In brief, the structural ensembles 103 

are separated by high barriers, making transitions between them rare events. This kinetic 104 

                                                                    
1 This description extends to proteins that exhibit more than one structural ensemble, and which have a 

multifunnel energy landscape. Such landscapes are also governed by the principle of minimal frustration (Röder 
and Wales 2018). 
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partition between different regions will make observation of transitions in standard MD 105 

simulations very unlikely. As a result, so called enhanced sampling approaches have been 106 

developed, which for example include pathsampling methods. 107 

Here, we present our perspective on how simulations can be used to gather information 108 

on RNA energy landscapes and structural polymorphism. There are two approaches 109 

commonly employed. The first option is the use of enhanced sampling methods (Mlýnský 110 

and Bussi 2018), and here we briefly present three of these, namely Hamiltonian Replica 111 

Exchange (H-REX, REST2) simulations (Wang, Friesner, et al. 2011), discrete 112 

pathsampling (DPS) (Wales 2002; Wales 2004) and a variationally optimized ratchet-and-113 

pawl molecular dynamics (rMD) simulation scheme (Tiana and Camilloni 2012) called 114 

Bias Functional approach (A Beccara et al. 2015). The second option is to smooth the 115 

energy landscape through coarse-graining (Papoian 2018). A pictorial illustration on how 116 

each of these methods samples the energy landscape is given in Fig.1. By considering 117 

several examples, we show that these approaches are complementary, and that the best 118 

results are obtained when combining multiple simulation methods. 119 

 120 
Figure 1: Left: Illustration of how the energy landscape of a polymorphic RNA might look like (the 121 

vertical axis represents the energy or free energy of the system). At the top of the landscape, 122 
we find high energy unfolded conformations, while we note several deep minima, separated 123 
by high barriers, all corresponding to substantially different structures of the molecule. One 124 
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of these minima might be observed experimentally and referred to as the “native structure”. 125 
Right panel (A-D): illustration of how each of the method presented samples the landscape. 126 

 127 

An overview of the simulation methods 128 

Hamiltonian-Replica Exchange simulations 129 

Despite the increased time scales that can be probed with unperturbed MD simulations – 130 

now routinely on the order of µs – the relevant conformational motions cannot be sampled 131 

as the associated time scales still exceed computational feasibility, prompting interest for 132 

enhanced sampling strategies that have been developed and widely applied to 133 

biomolecules, including RNA (see e.g. Mlýnský and Bussi 2018 for a recent review). 134 

One way to improve sampling in an unguided way (i.e. without assuming or imposing 135 

predetermined collective variables along which the transitions will occur) is through the 136 

use of replica exchange MD simulations (Sugita and Okamoto 1999). Multiple copies of the 137 

system are simulated at different temperatures, increasing the accessible time scales. 138 

However, this approach is very sensitive to the overlap between the replicas, which 139 

depends on the number of degrees of freedom, and at the moment it is hardly applicable 140 

at an all-atom resolution for nucleic acids exceeding a handful of residues in explicit 141 

solvent. 142 

This problem may be overcome by using Hamiltonian replica-exchange (H-REX) 143 

simulation schemes. In particular, we used the Replica-Exchange with Solute Tempering 144 

(REST2) strategy (Wang, Friesner, et al. 2011), where all replicas evolve at the same 145 

physical temperature, but they can exchange their Hamiltonian with a scaled potential 146 

energy for the biomolecule (Fig.1A), decreasing the number of degrees of freedom. As a 147 

result, fewer replicas are required, and sampling is enhanced. For example, for proteins 148 

containing 100-200 residues, one to two dozen replicas were shown to lead to satisfactory 149 

exchange probabilities (Maffucci, Laage, Sterpone, et al. 2020; Maffucci, Laage, 150 

Stirnemann, et al. 2020; Stirnemann and Sterpone 2017). However, this technique has 151 

mostly been applied to short oligonucleotides, and in particular to the sampling of 152 

tetraloops conformational space (Bottaro et al. 2020; Kührová et al. 2016; Mlýnský, 153 

Janecek, et al. 2022). While a recent work pointed to limitations in the ability of such an 154 

approach to actually fold even short RNAs (Mlýnský, Janeček, et al. 2022), REST2 remains 155 

a very attractive strategy to ease and to accelerate conformational sampling, which 156 

eventually enables to escape the kinetic traps in which brute-force simulations may be 157 

stuck for long times. 158 

In this short perspective, we exclusively focus on REST2, which we have applied to an 159 

RNA much larger than these tetraloops (Röder, Stirnemann, et al. 2020), but other 160 

applications to reasonably large biomolecules are mostly limited to DNAs and proteins. 161 

For these applications, recent success of REST2 in identifying important conformations 162 

that were not revealed by long brute-force MD (Gillet et al. 2021; Maffucci, Laage, 163 

Sterpone, et al. 2020; Maffucci, Laage, Stirnemann, et al. 2020; Stirnemann and Sterpone 164 
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2017) offer promising perspectives for the RNA field. However, it should be noted that 165 

when employed with atomistic resolution models, the computational costs remain high. 166 

This shortcoming may be overcome by focusing on a specific region of the system under 167 

investigation, reducing the size of the perturbed region, and thus the number of required 168 

replicas. 169 

Ratchet-and-pawl molecular dynamics (rMD) and the Bias Functional 170 

approach 171 

Ratchet-and-pawl (rMD) simulations are based on introducing a soft history-dependent 172 

biasing force to enhance the generation of productive folding trajectories towards a given 173 

target structure (Paci and Karplus 1999). In practice, once a target structure is known 174 

experimentally, it is possible to extract some features characteristics of its configuration 175 

and define a collective variable that can be used to guide unfolded structures toward it in 176 

a biased molecular dynamic simulation. In the literature, many collective variables exist 177 

for biomolecules, ranging from a simple atomic distance or dihedral angle to the radius of 178 

gyration, the RMSD and many more depending on the specific feature relevant for the fold 179 

of the molecule (Fiorini et al. 2013). The system is free to explore the energy landscape, as 180 

long as it follows broadly this predetermined collective variable (CV), which is a proxy for 181 

the reaction coordinate. An external biasing force is switched on when the system 182 

backtracks with respect to the CV (see Fig.1B). In RNA and protein folding simulations, 183 

one choice for the predetermined CV is obtained from the overlap of the instantaneous 184 

and the target atomistic contact map (Camilloni et al. 2011). This approach produces 185 

folding trajectories efficiently but requires structural information about the target. 186 

In the ideal case in which CV coincides with the reaction coordinate (the committor 187 

function (E and Vanden-Eijnden 2010)), rMD trajectories sample the correct region of 188 

configuration space (Bartolucci et al. 2018; Cameron and Vanden-Eijnden 2014). 189 

However, the choice of CV used in RNA folding simulations is only a proxy of the ideal 190 

reaction coordinate. Therefore, with rMD it is only possible to obtain an approximate 191 

reconstruction of the folding energy landscape. Systematic errors from the biasing force 192 

can be minimised by applying Bias Functional (BF) filtering procedure (A Beccara et al. 193 

2015). In this approach, a variational principle derived from the path integral 194 

representation of Langevin dynamics (Onsager and Machlup 1951) is used to select the 195 

folding trajectories generated by rMD that have the highest probability of occurring in the 196 

absence of any biasing force. 197 

Apart from the requirement to use structural information about the folded structure, 198 

another drawback of rMD simulations is that the generated trajectories only explore part 199 

of the energy landscape, namely the region most likely traversed by productive pathways 200 

towards the predetermined target structure. While this approach greatly enhances 201 

computational efficiency, it prevents the method from exploring other parts of the 202 

landscape that may be associated with kinetic trapping. 203 
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Discrete pathsampling for RNA 204 

H-REX and rMD simulations compute trajectories of molecules moving on the energy 205 

landscape. Discrete pathsampling (DPS) (Wales 2002; Wales 2004) focuses on the 206 

topography of the energy landscape. The energy landscape is considered coarse-grained, 207 

where only the local minima and transition states that connect them are used as 208 

representation. Each transition state connects two local minima, and between any pair of 209 

minima, we can identify a discrete path consisting of a series of minima connected by 210 

transition states. This representation results in a kinetic transition network, which can 211 

then be analysed to obtain kinetic and thermodynamic characteristic, including the 212 

associated structures and transition mechanisms. 213 

Through this approach, the topography of the energy landscape is obtained, and this 214 

information allows readily for interpretation of mutational data (Röder, Stirnemann, et al. 215 

2020). As local minima and transition states are well-defined geometrically, they can be 216 

located by geometry optimisation, overcoming the dependence on long time scales other 217 

simulations suffer from. A shortcoming of the method is the use of implicit solvent 218 

representations, which introduces a source of error (Šponer et al. 2018). While it is 219 

theoretically possible to use explicit solvent, the increased computational cost currently 220 

prevents such setups. While free energies can be readily obtained, explorations of higher 221 

entropy configurations are difficult. As such, structural transitions between folded 222 

structures are generally well resolved, while unfolding events are not. More information 223 

and details on how the energy landscapes are explored with DPS can be found in various 224 

reviews (Joseph et al. 2017; Röder, Joseph, et al. 2019). 225 

While DPS is most efficient when folded structures are known, the methodology can 226 

locate unknown folded structures and new funnels, as demonstrated in the exploration of 227 

mutational changes for example in 7SK RNA (Röder, Stirnemann, et al. 2020). However, 228 

currently there is no algorithm to guarantee the location of all structures. A useful way 229 

around this limitation is to create several possible alternative structures and connect 230 

them. Importantly, this approach does not require the structures to be optimised as long 231 

as key interactions, such as base pairs are formed. 232 

Coarse-grained RNA representations 233 

By grouping several atoms into larger particles (grains), the computational exploration of 234 

the energy landscape is aided in two ways. Firstly, the coarse-graining smooths the energy 235 

landscape (see Fig.1D), which removes kinetic traps for the exploration. Secondly, the 236 

number of degrees of freedom is reduced, making the computations more tractable. The 237 

choice of the mapping between atoms and grains depends on the level of details required 238 

and on the kind of interactions that are considered relevant (see (Li and Chen 2021) for a 239 

recent review on the different existing RNA coarse-grained models). For RNA structures, 240 

key elements are base pairing, stacking and electrostatic interactions. In the HiRE-RNA 241 

model (High-Resolution Energy model for RNA) (Cragnolini, Laurin, et al. 2015; Pasquali 242 

and Derreumaux 2010), we have chosen to preserve a relatively high resolution with each 243 

https://doi.org/10.1017/qrd.2022.19 Published online by Cambridge University Press

https://doi.org/10.1017/qrd.2022.19


Accepted manuscript 

8 

nucleotide described by 6 or 7 beads. This level of detail, while significantly reducing the 244 

number of particles, allows the definition of planes for the nucleobases, reflecting the 245 

aromatic rings stacking, and distinguishes different edges of the bases to account for both 246 

canonical and non-canonical pairings. While using an implicit solvent, long-range 247 

electrostatic effects are accounted for by a Debye-Hückel potential energy term dependent 248 

on experimental ionic concentrations in solution. While the development of this coarse-249 

grained model is still on-going, its usefulness for small systems (Cragnolini, Chakraborty, 250 

et al. 2017; Stadlbauer et al. 2016) and when coupled to experimental data (Mazzanti et 251 

al. 2021; Pasquali, Frezza, et al. 2019) has been demonstrated. 252 

The obvious shortcoming of any coarse-graining (CG) methodology is the loss of detail, 253 

due to the lower model resolution. In addition, the implicit nature of solvent and ions will 254 

impact the observed features. These drawbacks mean the entropy is not faithfully 255 

produced within coarse grained simulations. However, the reduced complexity will allow 256 

the study of larger systems and larger scale rearrangements, providing otherwise 257 

inaccessible insights. 258 

Despite the fewer degrees of freedom, our coarse-grained MD simulations can still be 259 

expensive, with several days of CPU needed to achieve folding of a small molecule of 20-260 

30 nucleotides, although we will be able to achieve much greater speed once the force-261 

field will be ported to parallel MD computing. 262 

A small showcase 263 

In this section, we discuss a few illustrative applications of these methods, emphasising 264 

their complementary nature. 265 

 266 

 267 

Figure 2: Folding of the human telomerase triple helix performed with unbiased coarse-grained 268 
simulations (REMD), allowing to widely explore alternative conformations (A) and with 269 
biased atomistic simulations allowing to explore the details of intermediate states (B). 270 
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Folding pathway of the human telomerase H-pseudoknot triple helix 271 

This example is a 47-nucleotide RNA, exhibiting a H-pseudoknot (two-interlacing strands) 272 

further stabilized by a triple helix (PDB ID 2K96). The system has been studied extensively 273 

experimentally (Gavory et al. 2006; Kim et al. 2008; Theimer et al. 2005) and has become 274 

a benchmark for modelling (Biyun et al. 2011; Cho et al. 2009; Denesyuk and Thirumalai 275 

2011), as it contains a pseudoknot, a challenging structural feature, and non-canonical 276 

interactions leading to triplet formation in the triple helix. This system was also used as 277 

test case for the HiRE-RNA model (Cragnolini, Laurin, et al. 2015), and, more recently, to 278 

validate the application of variationally optimized rMD to RNAs (Lazzeri et al. 2022). 279 

Folding simulations were performed in both instances starting from fully unfolded 280 

conformations. 281 

The coarse-grained simulations consisted of a long run with the HiRE-RNA model and 282 

replica exchange MD simulations at 64 different temperatures. rMD folding simulations 283 

consisted of 100 short runs (each lasting a nominal time interval of 5 ns) with the AMBER 284 

ff99 with the Barcelona α/γ backbone modification (Perez et al. 2007) and the χ 285 

modification (Zgarbova et al. 2011). It should be emphasized that the simulation time does 286 

not directly correlate with the physical transition path time, as the history-dependent bias 287 

brakes microscopic reversibility and alters the kinetics. CG simulations required two 288 

weeks of computation on local cluster in 2015 to achieve the native structure for the first 289 

time. rMD simulations required roughly a week of simulation to generate all trajectories 290 

on a GPU cluster in 2022. The results of the two simulations are shown in Fig.2. 291 

The HiRE-RNA simulations yielded the correct native state and identified a sensible 292 

folding pathway. Moreover, alternative states were observed, which constitute kinetic 293 

traps and are characterized by the formation of non-native secondary structures, leading 294 

to alternative folds. These results were in qualitative agreement with experimental 295 

evidence of the formation of metastable states and folding intermediates (Kim et al. 2008). 296 

Despite the coarse-graining, these simulations were computationally expensive and the 297 

sampling was not optimal. In particular, it was not possible to give a full assessment of the 298 

relative populations of the observed states. The rMD simulations produced more insight 299 

into the productive folding pathway to the experimentally observed target structure. It 300 

was possible to collect statistically relevant populations for the different conformations 301 

and generate a heatmap illustrating the folding in terms of formation of native contacts 302 

and RMSD with respect to target (see Fig.2B). The results highlighted the ruggedness of 303 

the folding landscape, characterized by a multitude of intermediate states. Moreover, we 304 

were able to infer the existence a pronounced bottleneck towards the final stage of folding, 305 

when the formation of the pseudoknot takes place. It was also possible to characterize the 306 

order of the events of folding in terms of formation of stems and loops and the main path 307 

found by our simulations corresponded well with the experimental evidence from 308 

thermodynamic studies (Kim et al. 2008) and by simulations by other groups (Cho et al. 309 

2009). 310 
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Importantly, both methods lead to the correct folding path and folding intermediates, 311 

giving credibility to both methods. In addition, the unbiased CG simulations also identified 312 

alternative structures, which are not on the folding pathway. The rMD simulations can 313 

provide statistics of the explored states and detailed insight into the interactions along the 314 

folding pathway. 315 

Energy landscape and folding pathway of a small H-pseudoknot 316 

For the 22-nucleotide long tmRNA pseudoknot taken from Aquifex aeolicus (PDB ID 317 

2G1W) (Nonin-Lecomte et al. 2006), we performed both a full exploration of the energy 318 

landscape with discrete pathsampling and an exploration of the folding pathway with rMD 319 

(see Fig.3). Both sets of simulations used the atomistic AMBER ff99 force field with the 320 

Barcelona α/γ backbone modification and the χ modification (Zgarbova et al. 2011). The 321 

energy landscape exploration used an implicit solvent model, while the rMD simulations 322 

were in explicit solvent. 323 

As the system is small (in fact, it is the smallest known pseudoknot), it was possible to 324 

exhaustively explore the energy landscape (Ma et al. 2021). From these simulations, we 325 

can again appreciate the presence of a rugged folding funnel (see Fig.3A). The energy 326 

landscape is characterized by one main funnel anchored by the native, experimentally 327 

observed structure. Some smaller subfunnels exist on the energy landscape, but only small 328 

barriers separate them from the main funnel. When analysing the ensemble of structures 329 

corresponding to these subfunnels, we detect partially folded states, but no states with 330 

alternative secondary structure competing with the native fold. The rMD simulations 331 

provided insight into the folding mechanism. As in the previous case, the folding pathways 332 

cross a multitude of metastable intermediate states (see Fig.3B). 333 

 334 

 335 

 336 
Figure 3: folding of the small H-pseudoknot PK1 studied with path sampling to obtain its energy 337 
landscape (A) and with biased folding simulations to study the native folding mechanism (B). 338 
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The two approaches support each other in this conclusion. While DPS provides a 339 

complete view of the energy landscape, the interaction with the solvent and the high 340 

entropy regions are not fully resolved, and rMD provided the missing details for the 341 

folding pathway. 342 

Exploring polymorphism: 7SK RNA and KSHV’s ORF50 transcript 343 

7SK RNA is a non-coding RNA and part of a ribonucleoprotein complex, which is crucial to 344 

transcription regulation by RNA polymerase II (Wassarman and Steitz 1991). Its 5′ hairpin 345 

(HP1) was characterized experimentally by different methods including X-ray 346 

crystallography (Martinez-Zapien et al. 2017), NMR (Bourbigot et al. 2016), SAXS (Brillet 347 

et al. 2020), and chemical probing (Lebars et al. 2010; Olson et al. 2022). As a perfect 348 

example of RNA polymorphism, the high-resolution methods (NMR and X-ray) detected 349 

substantially different structures for this hairpin, including two distinct structures within 350 

the same crystal. 351 

The three alternative structures are characterized by a reorganization of base pairing 352 

in the upper portion of the stem. The NMR structure is a hairpin with bulges and only 353 

canonical base pairing, while the X-ray structures exhibit non-canonical pairings and some 354 

triplets, organized differently in the two structures. The hairpin is the binding site for an 355 

affector protein (Egloff et al. 2018), which is crucial to the important biological function of 356 

RNA 7SK (Nguyen et al. 2001; Yang et al. 2001). Hence, understanding this structural 357 

polymorphism and its implication is of significant importance. 358 

We used DPS and H-REX simulations to study the upper portion of HP1 (27 359 

nucleotides), and further studied a set of mutations (Röder, Stirnemann, et al. 2020), 360 

reported to affect the binding affinity of HP1 (Martinez-Zapien et al. 2017). DPS was 361 

initiated from the experimentally observed  362 

 363 

 364 
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 365 
Figure 4: Energy landscape obtained from DPS for the 7SK RNA HP1 hairpin with key structures shown. 366 

The structural polymorphism is clearly observable, with three main funnels corresponding 367 
to more compact stem loops as observed in X-ray crystallography (blue and green), and more 368 
extended structures as observed by NMR experiments (red). Encircled structures correspond 369 
to the main clusters observed in H-REX simulations. 370 

 371 

crystal structures and a multifunnel energy landscape was obtained from sampling, 372 

including descriptions of the relative stability and interconversion pathways (see Fig.4).2 373 

The energy landscape revealed the polymorphic character of the HP1 hairpin, and 374 

based on the observed structures and their relative energies, we formulated a hypothesis 375 

relating the lowest energy X-ray hairpin structure to the binding of the affector protein. 376 

From our exploration of the energy landscapes for various mutants, we were able to draw 377 

a correlation between specific mutations and protein binding affinity, providing a 378 

mechanical explanation of the observed mutational effects. 379 

Two sets of H-REX simulations complemented the energy landscape exploration with 380 

DPS, each starting from one of the observed crystal structures. Simulations were 381 

performed for 100ns using 20 replicas, with a Hamiltonian coupling λ ranging from 1 to 0. 382 

Due to the large size of the solvated system (roughly 30,000 atoms), convergence for such 383 

simulations is difficult to achieve. Nonetheless, the findings from the extended trajectories 384 

agree with the observations from pathsampling. The clusters of structures corresponded 385 

well to the structures found in the main funnels of the energy landscape. The agreement 386 

between the simulations enabled us to exclude a prominent role of structural water 387 

molecules or ions, which is not possible from the implicit solvent representation in used 388 

                                                                    
2 A detailed description of how this computational study was conducted is reported in (Röder and Pasquali 

2021). 
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in DPS. While DPS did not necessarily explore the high-energy portions of the landscape, 389 

which would require  390 

Figure 5: EL of wild type and methylated sequence for ORF50. One of the lowest energies structures is 391 
shown with the site of methylation highlighted in red. 392 

 393 

unfolding and potential refolding into different structures, the H-REX simulations did 394 

explore these regions. We would therefore expect H-REX to be able to depart more 395 

significantly from the initial structures and possibly find new structures with a full 396 

reorganization of the molecule. In our simulations, however, we only located states 397 

already explored by discrete pathsampling. The experimental evidence combined with the 398 

exploration of two different kind of simulations, give us some confidence that we have 399 

probably explored all the biologically relevant structures of the system. 400 

Another area of growing interest is the study of post-translational modifications. In a 401 

recent study we investigated a post-translational methylation of an RNA hairpin (Röder, 402 

Barker, et al. 2022). As many RNAs are subject to methylation (Zaccara et al. 2019), it is 403 

important to understand how this modification impacts the adopted structures and how 404 

the equilibrium between possible alternative structures is altered. In the case of the RNA 405 

transcript of open reading frame 50 (ORF50) of Kaposi’s sarcoma-associated herpes virus, 406 

which encodes the replication and transcription activator protein required for viral 407 

activation (Guito and Lukac 2012), methylation stabilises the RNA transcript, leading to 408 

effective viral replication (Baquero-Perez et al. 2019). Here, discrete pathsampling was 409 

used based on experimentally observed secondary structures (Baquero-Perez et al. 2019) 410 

only. 411 

Our study revealed the existence of several structural basins, with the native structure 412 

occupying the lowest energy states. A set of higher energy structures, which allow 413 

interactions of the transcript with proteins (in this case a m6A reader), is found as well. In 414 

the unmethylated system, these structures are effectively inaccessible, while the 415 

methylation reduces the energy difference significantly, leading higher occupation of 416 

these states, which can recruit the m6A reader (see Fig.5). 417 
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These results highlight the importance of studies of mutations and chemical 418 

modifications, as the unmodified sequence might exhibit polymorphism, but it cannot be 419 

detected in experiment, while small alterations lead to significant changes in the energy 420 

landscape, which may lead to detectable polymorphism. 421 

Conclusions and Perspectives 422 

From these case studies, we can draw some general conclusions on the specificity of RNA 423 

folding and on what can constitute a profitable strategy to tackle larger and more complex 424 

systems. For all systems we have studied, even the simplest, we find a rugged energy 425 

landscape, i.e it is characterized by the presence of many locally stabilised structures, 426 

corresponding to the subsequent formation of local secondary structures. These 427 

configurations may be part of a single funnel, most likely for small systems, or, if they 428 

exhibit significant difference in their secondary structure, belong to competing funnels, a 429 

feature likely observed for larger RNA molecules. 430 

A successful strategy to investigate the possible structures is the combination of 431 

several simulation methods. Secondary structure predictions based on bioinformatics 432 

may already reveal some of the complexity of the RNA folding problem. If a single 433 

dominant structure emerges, it is likely that the energy landscape is less complex and 434 

exhibits a single main funnel. In such cases, it is likely that canonical base pairs are 435 

adopted, and chemical probing may give further confidence in such predictions. Non-436 

canonical interactions may be important to local structural details. Of course, in these 437 

scenarios, complexity may arise from additional effects, such as post-translational 438 

modifications. 439 

If, on the other hand, multiple secondary structures are proposed, a multiscale 440 

approach can be useful. Using a coarse-grained model, initial scouting of the energy 441 

landscape can yield a survey of possible alternative structures, leading to an identification 442 

of the main folding funnels. Subsequent all atom simulations can then be used to 443 

investigate details on the energy landscape, seeded by the structures obtained from the 444 

coarse-grained simulations. 445 

With this approach in mind, we recently started investigating the frameshifting 446 

pseudoknot of SARS-CoV-2, for which a structure is known experimentally but for which 447 

both experimental and simulation data suggest the existence of alternative structures. We 448 

first simulated the system at a relatively high temperature with the CG model to generate 449 

seeds for DPS in order to speed up the energy landscape exploration. Then, using discrete 450 

pathsampling, a search for the conversion path between the native structure and a 451 

proposed structure lacking the characteristic pseudoknot was initiated with these seeds. 452 

Given the size of the system, simulations are computationally very demanding and still 453 

ongoing, but preliminary results show the possible conversion path between the two 454 

states (Fig.6). 455 

 456 
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 457 
Figure 6: Sample structures on the conversion pathway between the native state of the frameshifting 458 

pseudoknot of SARS-CoV-2 (left) and an alternative structure with no pseudoknot (right). 459 

Another research direction is based on the extensive conformational sampling and access 460 

to free-energy landscape explorations provided by H-REX, which could offer decisive 461 

insights into key phenomena related to the RNA World hypothesis and the origins of life, 462 

as currently studied by some of us. Previous studies on protein enzyme systems have 463 

shown the crucial importance of proper conformational sampling of the reactant and 464 

product states to understand the chemical reactivity of these biological objects (Maffucci, 465 

Laage, Sterpone, et al. 2020). We thus aim at understanding how a ribozyme’s accessible 466 

conformations can affect its reactivity. Secondly, the end product of template-based RNA 467 

replication in abiotic conditions is an RNA dimer. However, these are known to be very 468 

stable constructs, with high denaturation temperatures. Inspired by the use of the REST2 469 

strategy for the study of protein melting properties (Maffucci, Laage, Stirnemann, et al. 470 

2020; Stirnemann and Sterpone 2015; Stirnemann and Sterpone 2017), we are currently 471 

trying to understand how RNA duplexes separate upon temperature increase, and how 472 

this depends on the strand sequence. 473 

While many computational methods exist to study biomolecules, the challenges 474 

encountered by the complexity of RNA folding means that the best strategy for 475 

computational studies to yield useful biological insight, rests on the combination of 476 

multiple approaches to overcome individual shortcomings and access time and size scales 477 

otherwise inaccessible. While data-based structural predictions are important, they 478 

require the additional insight from physical modelling, especially to understanding the 479 

dynamic, polymorphic nature of RNA. Simulations of RNA have been used for decades, but 480 

the maturity of many methods and the growing understanding of RNA means that a new 481 

chapter of research has opened up, where computational approaches, if used properly, 482 

will routinely provide exciting insights into the nature of RNA. 483 
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