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Abstract Myriad viruses use positive-strand RNA molecules as their genomes. Far
from being only a repository of genetic material, viral RNA performs numerous other
functions mediated by its physical structure and chemical properties. In this chapter,
we focus on its structure and discuss how long RNA molecules can be treated as
branched polymers through planar graphs. We describe the major results that can
be obtained by this approach, in particular the observation that viral RNA genomes
have a characteristic compactness that sets them aside from similar random RNAs.
We also discuss how different parameters used in the current RNA folding software
influence the resulting structures and how they can be related to experimentally
observable quantities. Finally, we show how the connection to branched polymers
can be extended to take advantage of known results from polymer physics and can
be further moulded to include additional interactions, such as excluded volume or
electrostatics.
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1 Introduction

RNA is an incredibly versatile biological macromolecule: not only does it act as a
messenger between the DNA genome and the protein product, but it also assumes
various roles in the form of transfer RNA, ribosomal RNA, microRNA, guide RNA,
and long non-coding RNA, to name just a few [1,2]. Its function is carried out not only
on the level of its primary sequence of nucleotides, but also by the local and global
structures that are formed when the constituent nucleotides form base pairs with
each other [3, 4]. Many RNA structures are thus involved in translational control,
RNA localization, gene regulation, RNA stability, and more [5]. RNA structure
folding is hierarchical, with the formation of base pairs—described by secondary
structure—dominating the contribution to the folding energy and leading into its
embedding in three-dimensional space, described by tertiary structure [6,7]. In spite
of recent improvements in the prediction of the tertiary structure of RNA molecules,
it remains restricted to relatively short, individual sequences [8–10]. It is therefore of
great advantage that RNA structure and its function can often be understood well by
modelling it on the level of secondary structure, which can be further complemented
by experimental methods such as SHAPE and its derivations [11–13].

In a large number of bacterial, plant, animal, and human viruses, positive-strand
RNA (+ssRNA) takes on the role of their genomes [14]. Far from simply coding for
the protein products, both local structural elements as well as long-range structural
interactions in the genomes of +ssRNA viruses are involved in many fundamen-
tal viral processes such as virus disassembly, translation, genome replication, and
packaging, and are thus in general important for viral fitness [15–18]. In particular,
the genomes self-assemble together with capsid proteins to form a functional virion
in an interplay of RNA sequence, length, and structure, further influenced by en-
vironmental variables such as pH and salt concentration [19–22]. For instance, in
certain viruses, local structural elements called packaging signals—typically one or
several hairpin loops with a more or less defined structure and nucleotide pattern—
are responsible for specific interactions with the capsid proteins, initiating assembly
through several possible pathways [22–24].

At the same time, non-specific electrostatic interactions between highly negatively
charged RNA and positively charged domains of capsid proteins dominate the self-
assembly of many +ssRNA viruses [25, 26]. Here, a number of experiments have
demonstrated that viral capsids can assemble not only with their native RNA genomes
but also with non-cognate RNA genomes of other viruses, other RNA molecules, and
even linear polyelectrolytes [27, 28]. Success of the self-assembly and the resulting
capsid(-like) structure, however, both depend on the length and structure of the
cargo as well as on environmental variables [29–31]. Varying the salt concentration
of the solution, for instance, changes the strength of RNA-protein interaction [32],
and varying the strength of the interaction between RNA and an adsorbing substrate
can change the latter’s preference for adsorbing either single- or double-stranded
RNA [33].

Branching structure of viral RNA, in particular, plays an important role in RNA-
capsid interaction and virus assembly. Experiments have demonstrated that RNA
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structure and topology influence both packaging efficiency and the resulting capsid
size and shape [29, 30, 34], while theoretical studies have shown that the degree
of branching can greatly increase the amount of RNA that can be packaged into a
capsid [35, 36]. Moreover, branching patterns of different RNAs have been shown
to influence their size [37, 38], with genomes of +ssRNA viruses with icosahedral
capsids being significantly more compact compared to those with helical capsids [39,
40]—with the former capsid type providing more severe spatial restrictions than the
latter. This characteristic compactness appears to be a global structural property,
and while even ∼ 5% of synonymous mutations were shown to destroy it [40], the
question remains of where in the genome sequence these topological and structural
properties are encoded [41]. Understanding the topological properties of the genomes
of +ssRNA viruses is thus essential to understand their ability to self-assemble and
consequently to design strategies to modify or interfere with their function [42].

In this chapter, we describe how the secondary structure of viral RNA can be
mapped to a branched polymer, which properties can be extracted, what are some
of the major results that can be obtained using this approach, and some pitfalls to
be considered. To this purpose, we first introduce the main properties of branched
polymers and demonstrate how RNA can be treated as one by being mapped onto a
graph. We then describe some of the topological and structural properties that can
be gleaned from this approach. Next, we illustrate this approach on random RNA
sequences of different length and nucleotide composition, which provides a baseline
for comparison of different biological RNAs. Focusing on the genomes of +ssRNA
viruses, we explore the differences among them by comparing them to random RNAs
as well as shuffled versions of themselves. We also show how model parameters used
in the prediction of RNA secondary structure—specifically, multiloop energy and
maximum base pair span—influence these predictions. Lastly, we briefly overview
the field-theoretical description of RNA as a branched polymer, which makes use
of the derived topological parameters and allows for a self-consistent inclusion of
additional short- and long-range interactions in the analysis of interactions between
the RNA genome and the capsid proteins.

2 RNA as a branched polymer

2.1 Secondary structure of RNA as a graph

Secondary structure prediction

Description of RNA structure on the intermediate level of its secondary structure
forms a conceptually important step and explains the dominant part of the free energy
of structure formation [43]. Modelling RNA on this level allows for analysis of large
numbers of very long RNA sequences—which would be prohibitively expensive to
model on the level of their tertiary structure—while retaining the majority of the
pertinent information about its local and global structure resulting from base-pairing.
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Numerous software packages exist for the prediction of RNA secondary structure,
the most popular ones including ViennaRNA [44] and RNAstructure [45], based on
energy models of base-pairing, and CONTRAfold [46] and EternaFold [47], learning
model parameters using stochastic context-free grammar. All of these algorithms
necessarily come with limitations [47–49], but due to the complexity of structure
prediction for long RNA molecules, they remain the tool of choice for studies of
+ssRNA viral genomes, which can range anywhere from ∼ 1000–30000 nt in length
(Sec. 3). While some of the uncertainty in the prediction of RNA secondary structure
can be alleviated by taking into account experimental data [12], such data is not
widely available for most viral genomes.

Since the energy landscape of RNA structures is very shallow, predicting only
the minimum free energy structure is typically insufficient, as the RNA can sample
different conformations and several functional structures can co-exist in vivo [50].
The benefit of using energy-based folding algorithms for the prediction of secondary
structure is that they enable generation and sampling of thermal ensembles of rep-
resentative structures at a given temperature [51]. In the examples presented in this
chapter, we use ViennaRNA v2.4 [44] to predict thermal ensembles of 500 struc-
tures at 𝑇 = 37◦ C for each RNA sequence and denote any quantity O averaged over
this thermal ensemble of structures by 〈O〉. As we show later on, this sample size
produces sufficient statistics for each quantity we consider.

RNA as a graph

The idea that the complexity of base pairs and sequence-structure patterns in a
folded RNA sequence can be reduced by mapping its secondary structure onto
a graph is not new (Ref. [52] provides a detailed overview of the topic). In the
absence of pseudoknots—a typical, and usually justified simplification [53]—the
secondary structure can be described as a planar tree (Fig. 1). The simplest way to
construct such a tree is by mapping double-stranded regions (base pairs) to edges with
weights corresponding to the stem lengths, while single-stranded regions (unpaired
nucleotides) are mapped to nodes connecting the edges.1 In the rest of the chapter,

Fig. 1 Mapping (a part of)
RNA secondary structure
onto a planar tree. Double-
stranded (base-paired) regions
are mapped to graph edges,
weighted with the stem length,
while single-stranded regions
are mapped to graph nodes. C
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1 Further modifications are possible, such as weighing the nodes with the size of single-stranded
regions or excluding certain structures such as single-nucleotide bulges [54], but can simultaneously
lead to peculiar behaviour, even resulting in disconnected graphs.
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when we will refer to RNA trees, we will have in mind this procedure. This mapping
is independent of the base-pairing model used to predict the structure (apart from
the assumption of the absence of pseudoknots), and we discuss some differences that
arise from using different model parameters in Sec. 4.

Once RNA secondary structure is mapped onto a tree composed of 𝑁 + 1 nodes
𝑣𝑖 ∈ V, 𝑖 = 0, . . . , 𝑁 , connecting 𝑁 (undirected) edges 𝑒𝑖 = (𝑣 𝑗 , 𝑣𝑘 ) ∈ E with
weights (stem lengths) 𝑏𝑖 , it is possible to derive various parameters describing its
topology and structure [55–57], including:

• The distribution of ladder distances 𝑝(ℓ), where the ladder distance ℓ(𝑣𝑖 , 𝑣 𝑗 ) is
defined as the shortest path between a pair of nodes 𝑣𝑖 and 𝑣 𝑗 . The most important
derived measures are the maximum ladder distance (MLD),

MLD = max
𝑣𝑖 ,𝑣𝑗 ∈V

ℓ(𝑣𝑖 , 𝑣 𝑗 ), (1)

corresponding to the diameter of the graph, and the average ladder distance
(ALD),

ALD =
1

(𝑁 + 1)𝑁
∑︁

𝑣𝑖≠𝑣𝑗 ∈V
ℓ(𝑣𝑖 , 𝑣 𝑗 ), (2)

and its related quantity, the Wiener index𝑊 =
∑

𝑣𝑖≠𝑣𝑗 ∈V ℓ(𝑣𝑖 , 𝑣 𝑗 ).
• The distribution of branch weights 𝑝(𝑁br), obtained by cutting the expanded tree

at each edge and taking the smaller of the two total weights of the resulting trees.
• The distribution of node degrees 𝑝(𝑑𝑖), indicating the presence of multiloops

(nodes of degree 𝑑𝑖 > 3), with the total number of nodes with degree 𝑘 given
by 𝐷𝑘 . Some derived quantities are, e.g., Zagreb indices 𝑀1 =

∑
𝑣𝑖 ∈V 𝑑

2
𝑖

and
𝑀2 =

∑
(𝑣𝑖 ,𝑣𝑗 ) ∈E 𝑑𝑖𝑑 𝑗 .

• The Laplacian spectrum, the eigenvalues _𝑖 of the Laplacian matrix L = D − A,
where D is the matrix of node degrees and A is the node adjacency matrix. The
second smallest eigenvalue _2 6 1 describes the connectivity of the graph, with
larger values indicating better connectivity or a more star-like structure.

Fig. 2 Illustration of some
topological quantities de-
scribed in the main text:
maximum (MLD) and average
ladder distance (ALD), second
Laplacian eigenvalue _2, and
Zagreb indices 𝑀1 and 𝑀2.
The values of these quantities
are shown for three different
types of polymers—linear,
branched, and star polymer—
all of them having the same
total number of monomers 𝑁

and unit edge weight.
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These quantities have the ability to distinguish, to various extents, between poly-
mers with different types of tree topology, as illustrated in Fig. 2. Figure 3 further
illustrates some of these quantities on an example of a (uniformly) random RNA
sequence, 𝑁nt = 2700 nt in length. From the distribution of node degrees (panel (b)),
one can for instance determine the Zagreb indices of the RNA tree, and from the
distribution of ladder distances (panel (e)), one can determine both the MLD and the
ALD. Panels (f) and (g) further show thermal ensemble distributions of MLD and
the total number of base pairs 𝐵, demonstrating that their averages are well-defined
quantities. As we will see in the following, combining different topological proper-
ties of RNA graphs with statistical mechanics of branched polymers can be used to
gain insight into their physical properties.
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Fig. 3 Topological properties of RNA as a graph. (a) Representative secondary structure of a
random RNA (𝑁nt = 2700 nt), overlaid with its graph representation. (b)–(e) Distributions of
node degrees 𝑑𝑖 , edge weights 𝑏𝑖 , branch weights 𝑁br, and path lengths ℓ (𝑣𝑖 , 𝑣𝑗 ) for the RNA
structure shown in panel (a). Also shown are the values of 𝑀1 and 𝑀2, _2, MLD, and ALD. (f)–(g)
Distributions of the total number of base pairs 𝐵 and of MLD for 500 structures of the same RNA
sequence drawn from a thermal ensemble. Also shown are the values of the thermal averages and
their standard deviation.

2.2 Properties of branched polymers

Statistical mechanics of polymers is a very powerful theoretical tool with wide
applications across biophysics, including, for instance, the scaling laws in the large-
scale eukaryotic chromosome organization [58] and liquid-liquid phase separation
in cells [59]. An important conceptual peculiarity of systems of branched polymers
(trees)—such as RNA—concerns the necessity to distinguish between annealed (or,
randomly branching) [60] and quenched (or, randomly branched) polymers [61].
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Quenched trees are those whose topology of branches (tree connectivity) is fixed
during the process of chemical synthesis and does not change afterwards. In contrast,
the topology of annealed trees is not fixed at synthesis but instead can vary, typically
in response to interactions (e.g., in the case of viral RNA, with capsid proteins)
and/or changes in external conditions, and may fluctuate due to thermal motion. The
class of annealed trees is particularly important as it is likely the most relevant for
RNA molecules [62].

Scaling exponents

A physical description of polymer conformations has to be formulated by adopting the
probabilistic language of statistical mechanics. In particular, since the total number
of accessible conformations of a polymer chain increases exponentially with the
number 𝑁 of bonds (edges) [63], polymers are best described in terms of averages
of corresponding observables.

The most distinct feature of a polymer conformation is its linear size, which can
be expressed in terms of the radius of gyration, defined as

𝑅2
𝑔 ≡ 1

𝑁

𝑁∑︁
𝑖=1

(𝒓𝑖 − 𝒓cm)2, (3)

where 𝒓𝑖 is the spatial coordinate of the 𝑖-th monomer and 𝒓cm ≡ 𝑁−1 ∑𝑁
𝑖=1 𝒓𝑖 is

the centre-of-mass of the chain. The characteristic mean polymer size (i.e., its mean
gyration radius) is given by the square root of the statistical average of Eq. (3) over
the ensemble of all accessible conformations,

〈𝑅𝑔 (𝑁)〉 ≡
√︃
〈𝑅2

𝑔〉 ≈ 𝑏𝑁a . (4)

The quantity 𝑏 is the mean bond length, while the scaling exponent a is a fundamental
parameter which—as we will shortly see—depends on several factors, particularly on
monomer-monomer interactions [64]. While many fundamental works in polymer
physics have dealt with determining the exponent a for various polymer ensem-
bles, exact values are known only for a very few cases [62]. In most—and often
the most relevant—cases, though, only approximate (albeit accurate) results can be
obtained by computationally extensive numerical methods or sophisticated mathe-
matical tools [62]. Values of a for polymer ensembles most relevant in the context of
RNA are shown in Table 1; for other contexts, see the review by Everaers et al. [62].

While the exponent a is sufficient to understand the physical properties of linear
polymers (see Fig. 2), to completely understand an ensemble of branching polymers,
such as viral RNAs, it is also necessary to characterize the topology of branching
(or, equivalently, the tree connectivity) [62]. This is a particularly central problem
for RNA secondary structure, since its mean gyration radius (Eq. (4)) and hence the
exponent a are not easily accessible.
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Table 1 Best known values for scaling exponents of common polymer models in three dimensions.
Here, the “ideal” and “self-avoiding” refer to either a complete neglect or inclusion of excluded-
volume effects, respectively (cf. Flory theory in Sec. 2.2). The values shown as fractions are exact,
while others are approximate (obtained either from numerical simulations or by analytical methods).
For linear polymers, we have trivially 𝜌 = Y = 1.

Polymer model a 𝜌 Y aFlory 𝜌Flory Refs.

Ideal linear 1/2 1 1 1/2 1 [65]
Self-avoiding linear 0.5877 1 1 3/5 1 [66]
Ideal branching 1/4 1/2 1/2 1/4 1/2 [65]
Self-avoiding branching 1/2 0.654 0.651 7/13 9/13 [67, 68]

The problem of characterizing the connectivity of various ensembles of branching
polymers has been theoretically addressed numerous times [68–70]. In the context of
RNA, it is useful to introduce as a proper measure of chain connectivity the ensemble
average of either the MLD or the ALD (Eqs. (1) and (2)) as a function of the number
of monomers 𝑁 ,

〈MLD(𝑁)〉 ∼ 〈ALD(𝑁)〉 ∼ 𝑏𝑁𝜌, (5)

both of which account for the average length of linear paths on the tree. While
originally defined for characterizing the connectivity and introduced independently
from a, the exponent 𝜌 in Eq. (5) is related to it, and consequently also provides a
fundamental insight into RNA folding in physical space.

Last but not least, we can also consider the average branch weight [68]:

〈𝑁br (𝑁)〉 ∼ 𝑁 Y , (6)

which is defined as the average weight of the smallest of the two sub-trees obtained
by systematically removing—one at time—the edges connecting two neighbouring
nodes of the original tree [69]. Note that while the two scaling exponents 𝜌 and 𝜖
describe very different quantities, they are not independent from each other. In fact,
the relation

Y = 𝜌 (7)

is expected to hold in general [68]. Equation (7) is particularly appealing because
it can be used to validate a posteriori the initial hypothesis that RNA behaves as
a randomly branching polymer: In fact, it is “sufficient” to measure 〈ALD〉 and
〈𝑁br〉 as a function of 𝑁 and compare the estimates for the corresponding scaling
exponents. Table 1 again summarizes the known values of 𝜌 and Y for selected
polymer ensembles.

Even the simplest theory of branching polymers thus has to deal with the three
distinct observables introduced in Eqs. (4)–(6). Since we are primarily interested
in the secondary structure of random and viral RNAs, we will focus on topological
observables such as 〈MLD〉 and 〈𝑁br〉. Nonetheless, we will show that this has
important consequences for how RNA molecules fold in space, i.e., on the average
molecular size as given by 〈𝑅𝑔〉.
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Flory theory

Exact values for the scaling exponents a and 𝜌 are known only in few special
polymer cases. In this respect, Flory theories of polymers [62, 64, 71] provide a
simple framework for first—and yet remarkably accurate—approximations of both
a and 𝜌. Flory theory is formulated in terms of a balance between (i) an entropic
(elastic) term, given by a sum of two contributions coming from the classical entropy
of swelling (𝐹sw) and the entropy of reconfiguration of the tree architecture (𝐹tree)
due to swelling and interaction, and (ii) an interaction term (𝐹inter) arising from
monomer-monomer collisions. Taken together, the Flory free energy (in units of
𝛽−1 = 𝑘𝐵𝑇) reads [62, 64, 71]:

𝐹 = 𝐹sw (𝑁, 〈𝑅𝑔〉, 〈ALD〉) + 𝐹tree (𝑁, 〈ALD〉) + 𝐹inter (𝑁, 〈𝑅𝑔〉)

=
〈𝑅𝑔〉2

〈ALD〉𝑏 + 〈ALD〉2

𝑁𝑏2 + 𝜐2
𝑁2

〈𝑅𝑔〉3 , (8)

where 𝜐2 ∼ 𝑏3 is on the order of the second virial coefficient [62], accounting for
the excluded-volume interaction between any two monomers. Although physically
appealing, this representation of the free energy is itself an approximation, since the
terms in the free energy are not independent from one another. Nonetheless, Flory
theories turn out to be quite accurate [62, 64, 71].

A key feature of the free energy in Eq. (8) is that the interaction term does not
depend on 〈ALD〉, which likely remains valid even in other ensembles with different
forms of interaction energy 𝐹inter [62]. Consequently, we can balance the first two
terms without worrying about the third, and connect 〈𝑅𝑔〉, 〈ALD〉 and 𝑁:

〈ALD〉 ∼ 𝑏1/3𝑁1/3〈𝑅𝑔〉2/3, (9)

or, conversely (see Eqs. (4) and (5)),

𝜌 =
1 + 2a

3
⇐⇒ a =

3𝜌 − 1
2

. (10)

By reinserting Eq. 10 into Eq. (8) and balancing the remaining terms, we finally
get the estimates for a and 𝜌 shown in Table 1, which, when compared to the exact
ones, are remarkably accurate. In general, the relation between a and 𝜌 in Eq. (10)
has been compared in various ensembles of randomly branching polymers and has
been found to be very accurate in all cases [62]. Its practical implications are quite
remarkable, as it allows us to connect branching (𝜌) to 3𝐷 conformations (a) by
determining either of the two exponents in terms of the other. In the context of RNA,
this relation is particularly useful, since we can determine 𝜌 from the topological
properties of its structure and extract a afterwards.
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3 Branching properties of viral RNAs

3.1 Random RNAs

Unlike viral RNA genomes which have a well-defined sequence length, random
RNAs can be used to generate sequences of (in principle) arbitrary length and
nucleotide composition. This enables one to explore how their topological properties
change with both length and composition and obtain different scaling relationships
(Sec. 2.2). It is important to note here that RNA sequence length 𝑁nt is, on average,
directly proportional to the tree size 𝑁 of its structure, and the two quantities can be
used interchangeably.

Figure 4 shows some examples of scaling laws for uniformly random RNA se-
quences, 𝑓 (A) = 𝑓 (C) = 𝑓 (U) = 𝑓 (G) = 0.25, where 𝑓 (𝑛) is the frequency of a
nucleotide in the sequence. While some properties, such as 〈MLD〉 and 〈𝑁br〉, follow
a scaling law with a well-defined exponent, others, such as the ratio of the number of
degree 1 nodes (leaves of the tree—corresponding to hairpin configurations of RNA)
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Fig. 4 Scaling of topological properties of (uniformly) random RNA sequences with their length:
(a) maximum ladder distance 〈MLD〉, (b) branch weight 〈𝑁br 〉, (c) ratio of the number of degree
1 and degree 3 nodes 𝐷1/𝐷3, and (d) ratio of the number of degree 3 and all multiloop (> 3)
nodes, 𝐷>3/𝐷3. Each point in the plots represents an average over 200 random sequences and the
error bars show the standard deviation. Insets in panels (a) and (b) show how the scaling exponents
change with the starting point of the fit, with the black point corresponding to a fit over the shaded
region in the panel.
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and degree 3 nodes, 𝐷1/𝐷3, tend towards a constant value. The scaling exponents
are of course asymptotic properties valid for large RNA structures, as seen in the
insets in panels (a) and (b) of Fig. 4, which show how the fitted values of exponents
change as shorter sequences are progressively removed from the fit.

Nucleotide composition can vary significantly between different viral species
(and biological RNAs in general) [72, 73], affecting their properties. Still, changing
the composition of random RNA sequences mainly influences the prefactor of the
〈MLD〉 scaling law (Fig. 5a) and only minimally its exponent (Fig. 5b), even when
their composition deviates significantly from a uniformly random one, as evaluated
by the Euclidean distance 𝛿2 =

∑
𝑛∈{A,C,G,U} [ 𝑓 (𝑛) − 0.25]2. The change in the

prefactor appears to be related to a decrease in the base pair percentage 2𝐵/𝑁nt
(Fig. 5c), which is perhaps unsurprising, as this leads to a smaller size of the RNA
graph 𝑁 at the same sequence length 𝑁nt.

0.0 0.1 0.2 0.3
δ

0.66

0.68

ρ

(b)

0.4 0.5 0.6
2B/Nnt

0.75

1.00

1.25

1.50
α

(c)

1000 2000 3000 4000
Nnt

100

200

300

400

〈M
L

D
〉

(a)

A C G U

δ = 0.14

A C G U

δ = 0.23

A C G U

δ = 0.23

Fig. 5 (a) Scaling of 〈MLD〉 with sequence length, 〈MLD〉 = 𝛼𝑁
𝜌

nt , for random RNA sequences
with different nucleotide compositions. Each point in the plots represents an average over 200
random sequences with 500 thermal ensemble folds for each. (b) Scaling exponent 𝜌 for random
RNAs as a function of the Euclidean distance from the uniform composition 𝛿. (c) Scaling prefactor
𝛼 for RNAs with different compositions as a function of the base pair percentage, 2𝐵/𝑁nt.

3.2 Viral RNAs

Random RNA sequences show what we can expect of biological and viral RNAs in
general [74, 75]. An important example of this is the compactness of the viral RNA
folds as captured by its proxy measure, the MLD (cf. Sec. 2.2). As already mentioned,
the MLD of the genomes of +ssRNA viruses with icosahedral capsids, which need
to pack the genome into a comparatively small capsid, was found to be significantly
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Fig. 6 (a) 〈MLD〉 of ∼ 1500 genomes of +ssRNA viruses of different lengths and capsid types.
Black line shows the scaling for random RNA sequences with uniform composition, 〈MLD〉 ∼
𝑁 0.676

nt , and the shaded area shows the region where |𝑍 | 6 1. (b)–(d) Number of base-pairs 𝐵,
logarithm of the second Laplacian eigenvalue log_2, and number of degree 1 nodes 𝐷1 of genomes
of two viruses indicated in panel (a), BQV (large square) and BlShV (large circle). (e) Distribution
of 〈MLD〉 𝑍 -scores in different viral families, calculated with respect to random RNA sequences
with uniform composition. Arrows indicate the shift in the median 𝑍 -score when the 〈MLD〉 is
calculated with respect to random RNA with closest viral-like composition. The number of genomes
included in each viral family is noted in parentheses next to its name.

smaller compared to random RNA sequences of viral-like composition [39, 40]. On
the other hand, the MLD of genomes of viruses with helical capsids, which can
in principle extend indefinitely, was indistinguishable from that of random RNAs.
Figure 6a demonstrates these differences on an extended set of ∼ 1500 genomes of
+ssRNA viruses from different families, obtained from the Virus Metadata Resource
of ICTV [76], highlighted by capsid type.

Such an analysis opens up the possibility of comparing other topological proper-
ties of compact and non-compact viruses, as illustrated in panels (b)–(d) of Fig. 6
for genomes of beet virus Q (BVQ) and blueberry shock virus (BlShV), which are
of comparable length but significantly less and more compact than random RNA,
respectively (Fig. 6a). The second Laplacian eigenvalue, for instance, identifies the
compact genome of BlShV as more star-like (cf. Fig. 2), but even more interesting is
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that the genome of BlShV forms more base pairs compared to the genome of BVQ
and is at the same time located lower than the scaling law for uniformly random
RNAs. This is in direct contrast to observations in random RNAs with different
nucleotide composition, where the scaling prefactor was reduced for those RNAs
which form fewer base pairs (Fig. 5), and indicates that the compactness of viral
RNAs goes beyond simple differences in nucleotide composition.

Difference in a quantity O between viral and random RNAs can also be evaluated
through the 𝑍-score,

𝑍 =
〈O〉viral − 〈O〉random

𝜎(O)random
. (11)

As Fig. 6e shows, this allows to study the properties of different sets of genomes, in
this case grouped by viral family. It is immediately obvious that genomes in certain
families are overall more compact than what would be expected of similar random
RNAs, while the compactness of genomes in other viral families is indistinguishable
from random RNAs. At the same time, there is also quite some degree of variation
within viral families. Importantly, the difference in compactness typically persists no
matter whether the genome 〈MLD〉 is compared to random RNA with a nucleotide
composition similar to the one of the genome or to a uniformly random RNA, as
indicated by the arrows in Fig. 6b. (Notable exception are Tymoviridae, which have
a significantly different composition [39, 40].) This implies that the difference in
nucleotide composition of various +ssRNA genomes does not suffice to explain the
resulting differences in their compactness as measured by the 〈MLD〉.

𝑘-let shuffle of viral genomes

Both mononucleotide and dinucleotide frequencies of viral RNA genomes exhibit
biases among different viral species [72, 77], even if they share the same host [78].
These biases are reflected in other properties—for instance, dinucleotide frequencies
at codon position 2-3 were shown to explain the majority of codon usage bias [79].
Studies have made it clear that nucleotide composition alone does not suffice to
explain the observed differences in the 〈MLD〉 of viral genomes [39, 40] (see also
Fig. 6), which is further supported by computational observations that synonymous
mutations preserving both mononucleotide and dinucleotide frequencies easily erase
their characteristic compactness [40, 41].

One can thus take a step further and compare instead the topological properties
of viral RNAs with their shuffled versions which conserve higher-order nucleotide
frequencies of the original genomes. This can be achieved by using a 𝑘-let preserving
shuffling algorithm, such as implemented by uShuffle [80], to shuffle the original
genome sequences while exactly preserving 𝑘-let nucleotide frequencies. This means
that for 𝑘 = 1 we preserve mononucleotide frequencies (nucleotide composition),
for 𝑘 = 2 we preserve dinucleotide frequencies, and so on. Of course, as 𝑘 increases,
the number of possible shuffled sequences decreases. In the examples of BVQ and
BlShV, there are still ∼ 103–104 possible shuffled sequences available for 𝑘 = 10,
while the count drastically drops for 𝑘 = 11 where only . 10 different shuffled
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sequences exist (Fig. 7). For the non-compact genome of BVQ, 𝑘-let shuffling does
not produce drastic changes and the 〈MLD〉 of the shuffled sequences is comparable
to that of random RNA for all possible values of 𝑘 (Fig. 7b). On the other hand, for
the compact genome of BlShV, there is a drastic change in the range of 𝑘 = 8–10. For
lower values of 𝑘 , the shuffle completely destroys the compactness of the genome,
as was previously seen for 𝑘 = 1 and 𝑘 = 2 [39–41]. For 𝑘 = 9, however, the
〈MLD〉 remains close to the compactness of the original genome, and for 𝑘 = 10 it is
indistinguishable from it. There thus appears to be a particular length scale (𝑘 ≈ 10)
at which shuffling the compact viral genomes while preserving their 𝑘-let nucleotide
frequency also preserves their compactness. This observation could hold important
clues to the question of where at the sequence level the genome compactness is
encoded, but of course needs to be explored more carefully.

Fig. 7 〈MLD〉 of shuffled
sequences of (a) BlShV
and (b) BVQ genomes with
preserved 𝑘-let frequencies.
The genomes of these two
viruses are more and less
compact than comparable
random RNA, respectively
(Fig. 6a). The distributions
represent sequence ensembles,
with 200 shuffled sequences
used where possible (i.e.,
except for 𝑘 > 11 and the
wild-type genome).
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4 Influence of model parameters

RNA secondary structure treated as a branched polymer provides a lot of infor-
mation about the topological and structural nature of +ssRNA viral genomes and
random RNAs alike. The inability to exactly predict the base pair patterns in a folded
RNA sequence, however, can lead to differences in the predicted topology of the
secondary structure, with consequences also for the subsequent tertiary structure
prediction [81]. While prediction of thermal structure ensembles necessitates the
use of energy-based models, there is nonetheless a wide variety of model parameters
that can influence the resulting predicted structures. We will briefly comment on the
effect that two of the most important ones—namely, energy of multiloop formation
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and the maximum allowed base pair span—have on the topological measures of
secondary structure of viral RNA genomes.

4.1 Multiloop energy models

Energy-based folding algorithms predict both the minimum free energy fold of an
RNA sequence as well as its pairing probability matrix, from which an ensemble of
thermal folds can be obtained. These algorithms typically use a nearest neighbour
energy model that breaks down the energy of an RNA structure into a sum of en-
ergies of its constituent loops. Commonly used sets of energy parameters are based
on measurements provided by Turner [82], with two particular sets of parameters—
Turner1999 and Turner2004—used as a basis by different versions of the most
popular energy-based folding software such as ViennaRNA and RNAstructure. Sev-
eral efforts have also been made to improve on these parameter sets by using various
computational optimization techniques [83, 84].

Among the numerous energy parameters involved in structure prediction, mul-
tiloop energies are the least accurately known [85], even though occurrences of
multiloops of degree 10 or higher are not uncommon in various RNAs [86]. Since
allowing for an arbitrary size of a multiloop increases the computational complex-
ity of structure prediction, earliest energy-based structure prediction models simply
neglected multiloop contributions to the energy [87]. Most of the current structure
prediction software assumes that the energy of a multiloop depends only on the
amount of enclosed base pairs (number of branches) and the number of unpaired
nucleotides in it, and uses a linear model of the form

𝐸multiloop = 𝐸0 + 𝐸br × [branches] + 𝐸un × [unpaired nucleotides], (12)

where 𝐸0 is the energy contribution for multiloop initiation, and 𝐸br and 𝐸un are
the energy contributions for each enclosed base pair and unpaired nucleotide, re-
spectively. While this form has been chosen mostly for its computational simplicity,
improved models of multiloop energy that have been proposed seemingly do not
lead to improved multiloop predictions compared to the linear one [88, 89].

Table 2 Comparison of dif-
ferent energy parameters for
the linear multiloop energy
model [Eq. (12)] used in pre-
diction of RNA secondary
structure.

Energy model 𝐸0 𝐸un 𝐸br Ref.

Turner1999 10.1 −0.3 −0.3 [82]
Turner2004 9.25 NA 0.63 [82]
ViennaRNA (< v2.0) 3.4 0.0 0.4 [44]
ViennaRNA (v2.0+) 9.3 0.0 −0.9 [44]
RNAstructure 9.3 0.0 −0.6 [45]
Andronescu2007 4.4 0.04 0.03 [83]
Langdon2018 9.3 0.0 −0.8 [84]
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Table 2 gives an overview of some of the most commonly used energy parameters
for the linear multiloop model (Eq. (12)). A notable difference between the models
lies not only in the magnitude but in the sign of the parameter 𝐸br which controls the
number of branches stemming from the multiloop. Earlier versions of ViennaRNA
(until v2.0), for instance, used a positive value of this parameter, penalizing high-
degree nodes, while the latest versions of the software use a negative value, promoting
high-degree nodes.

These differences will of course reflect in the predicted structures of long RNAs
and their topological properties. Since the different energy models in Table 2 also
differ in other aspects, it is easiest to compare multiloop energy parameters by modi-
fying only the multiloop parameters in the current parameter set used by ViennaRNA
(v2.4) with the ones from older versions (< v2.0), resulting in a modified set of pa-
rameters ViennaRNA-mod. Differences in their predictions are illustrated in Fig. 8.
The opposite signs of the parameter 𝐸br clearly lead to very different distributions of
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Fig. 8 Number of nodes of different degrees 〈𝐷𝑖 〉 in the BlShV genome obtained using the energy
model in ViennaRNA (v2.4) with either (a) default multiloop energy parameters or (b) multiloop
energy parameters from older versions of ViennaRNA (< v2.0). For the values of these parameters,
see Table 2. Note the logarithmic scale in the histograms. Each panel also shows an example
structure of the genome. Scaling of (c) 〈MLD〉 and (d) the ratio of the number of degree 1 and
degree 3 nodes 𝐷1/𝐷3 with the sequence length of uniformly random RNA as predicted by the
two different sets of multiloop energy parameters.



Viral RNA as a branched polymer 17

node degrees in the genome of BlShV, with the modified set of parameters predicting
far fewer multiloops (𝐷>3). Interestingly enough, however, the different multiloop
energy parameters do not seem to lead to a different scaling behaviour of the 〈MLD〉
of uniformly random RNA (Fig. 8c), as the exponent 𝜌 becomes indistinguishable
between the two cases in the asymptotic limit of long sequences. On the other hand,
the ratio of the number of degree 1 and degree 3 nodes is completely different
(Fig. 8d). The choice of the multiloop energy parameters can thus lead to important
differences in the predicted RNA topology [88, 90], which needs to be taken into
account when comparing results obtained by existing studies on the branching prop-
erties of viral RNAs [37–40] that use different versions of folding software and thus
potentially different energy models.

4.2 Maximum base pair span

Parts of the folding process in very long RNA molecules (i.e., over several hundred
nucleotides in length) are influenced by various factors such as co-transcriptional
folding and the presence of other molecules in the cell [91, 92]. Consequently,
the accuracy of RNA secondary structure prediction in general decreases with the
span of a base pair—the length of the nucleotide sequence between two paired
bases [93]. This effect can be incorporated in the folding prediction by restricting
the maximum allowed base pair span [44, 93], which not only tends to yield more
plausible local structure predictions but also drastically increases the computational
efficiency. While restrictions on the maximum base pair span in the range of 200–600
nt are often made to improve the prediction of local structural elements [94,95], this
can neglect long-range base pairing and global structure which have been shown to be
important in numerous +ssRNA genomes, including that of SARS-CoV-2 [17,96,97].

It is therefore natural to wonder to what extent restricting the maximum allowed
base pair span influences the topological properties of the structure of viral RNAs.
As panels (c) and (f) of Fig. 9 show, restricting the maximum base pair span to
∼ 1000–2000 nt slightly changes the 〈MLD〉, regardless of whether the original
genome belongs to a compact class or not, as long-range base pairs are progressively
removed from the global structure (panels (b) and (e)). However, when the maximum
base pair span is restricted to . 1000 nt, 〈MLD〉 starts to decrease drastically.
Inspection of the resulting structures (panels (a) and (d)) shows that significant
maximum base pair span restrictions eventually result in RNA topology becoming
more star-like because the individual hairpins are effectively being “strung” on a
backbone of single-stranded RNA. This leads to a decrease in 〈MLD〉 which by
definition does not take into account single-stranded regions of RNA (Sec. 2.1), and
could consequently affect the results showing that viral RNAs are more compact
than random ones (Sec. 3). From a topological and structural perspective, imposing
a drastic restriction on the maximum base pair span in RNA would thus not only
require a redefinition of the MLD but perhaps even a different mapping of its
secondary structure onto a graph.
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Fig. 9 (a) Representative structures of BlShV genome with different maximum base pair restric-
tions, indicated with each structure. (b) Distributions of base pair spans in the thermal ensemble of
BlShV genome structures with different maximum base pair span restrictions (marked by vertical
bars). (c) 〈MLD〉 of the BlShV genome as a function of the maximum base pair span restriction.
(d)–(f) Same as panels (a)–(c) but for the BVQ genome.

5 Field-theoretical description of viral RNA as a branched
polymer

RNA branching is also intimately connected with long-range interactions, such as
electrostatic self-interaction and interactions between the RNA and capsid proteins.
Since the strength of RNA self-interaction (base-pairing) is relatively weak and may
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easily be affected by either thermal fluctuations or electrostatic interactions [25],
annealed branched polymers present a viable coarse-grained model system. Here,
one starts with the grand canonical partition function [98]

Ξ(𝐾, 𝑓𝑒, 𝑓𝑏;𝑉) =
∑︁

𝑁 ,𝑁𝑒 ,𝑁𝑏

𝐾𝑁 𝑓 𝑁𝑒
𝑒 𝑓

𝑁𝑏

𝑏
Ω(𝑁, 𝑁𝑒, 𝑁𝑏;𝑉) (13)

where 𝐾 are bonds (edges), and 𝑓𝑒 and 𝑓𝑏 are end- and branch point fugacities of
the annealed polymer (with hairpins counted as the end points, cf. Sec. 2.1). Branch
points (nodes) of high degree (𝑑𝑖 > 3) can be considered as combinations of branch
points of degree 3 and thus need not be treated separately in this description. The
function Ω(𝑁, 𝑁𝑒, 𝑁𝑏;𝑉) is the number of ways to arrange 𝑁 bonds, 𝑁𝑒 end points,
and 𝑁𝑏 branch points on a lattice of volume 𝑉 .

The grand canonical partition function can be obtained in the 𝑛 → 0 limit of the
partition function of an O(𝑛) model of a magnet [99] as a functional integral over a
continuous field Ψ [60]

Ξ(𝐾, 𝑓𝑒, 𝑓𝑏;𝑉) '
∫

D[Ψ]𝑒−𝛽𝐹0 [𝜓] , (14)

with the square of Ψ proportional to the monomer density. The saddle-point (mean-
field) free energy 𝐹0—in absence of electrostatic interactions—is then

𝛽𝐹0 [Ψ] =
∫
𝑉

d3𝑟

[
𝑎2

6
|∇Ψ|2 + 1

2
𝜐Ψ4 − 1

√
𝑎3

(
𝑓𝑒Ψ + 𝑎

3

6
𝑓𝑏Ψ

3
)]
, (15)

where 𝑎 is the statistical step length (Kuhn length; for RNA, ∼ 1 nm) and 𝜐 is the
(repulsive) short-range excluded volume interaction term. Branch point and end point
terms proportional toΨ andΨ3 are negative (attractive), therefore increasing the local
monomer density. The annealed numbers of end- (𝑁𝑒) and branch points (𝑁𝑏) of the
RNA (corresponding to 𝐷1 and 𝐷>3 in the graph representation, respectively) are
related to the fugacities 𝑓𝑒 and 𝑓𝑏 by [60]

𝑁𝑒 = − 𝑓𝑒
𝜕𝛽𝐹0
𝜕 𝑓𝑒

and 𝑁𝑏 = − 𝑓𝑏
𝜕𝛽𝐹0
𝜕 𝑓𝑏

. (16)

If the total number of monomers is fixed, the number of end points for a single
RNA molecule with no closed loops depends on the number of branch points as
𝑁𝑒 = 𝑁𝑏 +2, meaning that 𝑓𝑒 is not a free parameter. The polymer is linear if 𝑓𝑏 = 0,
and the number of branch points increases with 𝑓𝑏 .

On this level of the description of RNA branching, long-range interactions can
be straightforwardly implemented by adding additional terms to the free energy
functional (Eq. (15)), depending on local interaction fields and couplings with the
Ψ field [35,36,100]. The free energy for, e.g., electrostatic interactions described by
electrostatic potential field Φ would read
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𝛽𝐹 = 𝛽𝐹0 [Ψ] + 𝛽𝐹 [Φ] + 𝛽𝜏
∫
𝑉

d3𝑟 ΦΨ2 , (17)

with 𝜏 being the charge per monomer and 𝛽𝐹 [Φ] the electrostatic interaction
term [101], which can also describe the interactions between the genome and the cap-
sid proteins. On the other hand, non-electrostatic interactions implied by packaging
signals require a modified approach [102].

Modifying the topology of the genome by varying the fugacities 𝑓𝑒 and 𝑓𝑏 allows
to use this methodology to simulate systems of viral RNAs with a fixed number
of end- and branch points. This coarse-grained description of branching is comple-
mentary to the methodology based on explicit planar tree structure [42] and can, for
instance, differentiate between the encapsulation behavior of RNA1 of brome mosaic
virus (BMV) that has 65 branch points and of RNA1 of cowpea chlorotic mottle
virus (CCMV) with 60.5 branch points—correctly confirming that BMV RNA1 is
preferentially packaged over CCMV RNA1 by the CCMV capsid protein [35]. Fur-
thermore, the straightforward implementation of electrostatic interactions on top of
RNA topology is probably the most important forte of this methodology and allows
one to assess the role of electrostatics in spontaneous co-assembly of the negatively
charged genome and positively charged capsid proteins. Using this approach, it has
been demonstrated that branching in fact allows viruses to maximize the amount
of encapsulated genome and makes assembly more efficient [35], implies negative
osmotic pressures across the capsid wall [36], and can explain the effect of number
and location of charges in the capsid protein tails [103].

While the field-theoretical annealed-branching description is without doubt heav-
ily coarse-grained, it not only provides an approximate implementation of topology,
but also readily incorporates short- and long-range interactions on a level amenable
to analytical calculations. Different approaches of standard polymer theory can then
be transplanted into the statistical mechanics of RNA providing further insight into
the coupling between topology and virion self-assembly.

6 Conclusions

Mapping RNA secondary structure onto a graph enables its description as a branched
polymer and a subsequent study of its topological properties (e.g., MLD and node
degree distribution; Sec. 2). This, in turn, can be connected to the physical properties
of the RNA, such as its size as given by its radius of gyration. This approach
also provides insight into how RNA structure compares to other types of branched
polymers in terms of, for instance, their scaling exponents. Branching properties
of RNA also allow comparison of +ssRNA genomes of different viral families,
both among themselves and with random RNA of similar length and composition
(Sec. 3). Such an analysis reveals the unusual compactness of genomes from certain
viral families and may eventually provide an answer to the question of where in the
sequence of viral RNA its physical compactness is encoded.
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Describing RNA as a graph and in this way treating it as a branched polymer is,
of course, an approximation. This description is made on the topological level of the
RNA secondary structure, itself deriving from an energy-based base pair prediction,
and thus depends on the model parameters used in it (Sec. 4). Secondary struc-
ture prediction furthermore remains agnostic to steric interactions between different
parts of the RNA, long-range interactions such as electrostatics, and other tertiary
interactions. Some of these effects can, however, be included on a coarse-grained
level by treating the branching RNA structure with a field-theoretical description,
enabling, for instance, a coupling between topological parameters (such as node
degree distribution) and electrostatic interactions (Sec. 5).

Predictions obtained by treating viral RNA as a branched polymer can, to an
extent, be verified experimentally, for instance by measuring its radius of gyration
by gel electrophoresis [37] or by determining the distributions of node degrees
and segment lengths from 2D projections of viral RNA molecules imaged by cryo-
EM [37, 104]. Properly designed experiments on long RNA molecules of different
lengths could thus, in principle, be compared with the predictions given by different
multiloop energy models and in this way help determine the most appropriate model.
Lastly, treating RNA as a graph and being able to understand how its sequence leads
to its topological and structural properties can be beneficial not only in the ability to
interfere with the function of viral genomes but also in the design of RNA molecules
with specific topology for use in nanomedicine and synthetic biology [52,105,106].
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