
Nonlinear Dynamics of DNA Chain

Slobodan Zdravković

Deoxyribonucleic acid (DNA) is found in all prokaryotic and eukaryotic cells and
many viruses. This complex molecular structure is certainly one of the most inter-
esting molecules. Interest in its structure and dynamics is primarily due to the impor-
tant role that this molecule plays in life processes. Themolecule was first identified in
the 1860s by theSwiss chemist JohannFriedrichMiescher.He discovered a substance
that had unexpected properties, different from those of the other proteins he had been
familiar with. He did not know he had discovered the molecular basis of life, which
he called nuclein.

Great progress was made by the German biochemist Albrecht Kossel, who iden-
tified the nuclein as a nucleic acid in 1881. He isolated the four nucleotide bases that
are the building blocks of DNA, introduced their present names, and obtained the
Nobel Prize in 1910.

A revolution has been related to a famous Watson–Crick model, published in a
one-page paper [1]. The paper was published in 1953, and the authors were awarded
the Nobel Prize in Medicine in 1962. According to the model, DNA is a double
helix, formed from two mutually complementary strands, as shown in Fig. 1. We
assume that the readers have basic knowledge of its structure [2–7]. It suffices now
to point out that each strand represents a series of nucleotides, spaced at l = 0.34 nm,
whose constituent parts are sugar, phosphate, and base. The nucleotides are always
linked together by strong covalent bonds, while different strands interact through
basis by weak hydrogen bonds. Adenine (A) is always attached to thymine (T) by
two hydrogen bonds, whereas guanine (G) and cytosine (C) are attached by three
bonds. This is shown in Fig. 1, where we recognize the two strands representing
sugar-phosphate backbones and four kinds of basis. All sugars and phosphates are
equal, which means that genetic information depends on the bases only.
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Institut za Nuklearne Nauke Vinča, Univerzitet u Beogradu, 11001 Beograd, Serbia
e-mail: szdjidji@vin.bg.ac.rs

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
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Fig. 1 The structure of DNA molecule

In addition to the H-bonds, the stability of the chain is supported by stacking
interactions [5, 8]. These weak forces, interacting between neighbouring bases of
the same chain, are of crucial importance for DNA twisting determination.

In conclusion, let us point out that DNA can be seen as a dynamic collection of
particles and springs. The particle can be either a nucleotide or any of its constitutive
parts. The springs represent chemical bonds. If a certain amount of energy is released
at some point, the oscillation of the particles at that point becomes stronger. This
affects the neighbouring oscillators, and this transmission is a wave. All this is what
we call DNA dynamics.
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1 DNA Dynamics

To date, dozens of different mechanical models and their versions have been devel-
oped to describe DNA dynamics. For the simplest structural model, the DNA chain
is an elastic rod [9]. More advanced models are helical double rod-like models [9].
In both cases, the rods can be either uniform or discrete. According to these simple
models, plain waves propagate along the chain.

It was in 1980 when Englander et al. suggested that nonlinear effects might play
an important role in DNA dynamics [10]. Instead of the plain waves, the nonlinear
effects may focus the vibration energy of DNA into localized soliton-like excitations.
Therefore, we can talk about linear and nonlinear models. This is very important to
be understood and requires some explanation.

Suppose that there is a strong interaction between two neighbouring particles. An
example can be the covalent bond between the nucleotides belonging to the same
strand, as explained above.The existenceof the strong forcemeans that displacements
along the direction of this force are very small. In other words, the oscillations in
this direction have small amplitudes. This means that we can assume that attractive
and repulsive forces are almost equal and that the corresponding potential energy, or
potential for short, should be modelled by a symmetric function. A typical example
is the well-known function f (x) = kx2/2. Such a potential is called harmonic,
and its usage in science has been called harmonic approximation. Its first derivative
represents a force, which is obviously a linear function. On the other hand, if these
forces are weak, the corresponding displacements are large and the repulsive and
attractive forces are not equal anymore. An example can be the hydrogen bond
between the nucleotides belonging to different strands, which was mentioned above.
Therefore, to model such potentials, we need non-symmetric functions. A common
example is the function F(x) = D [e−a x − 1]2, shown in Fig. 2. This potential
energy is called the Morse potential. The parameters D and a are the depth and
the inverse width of the Morse potential well, respectively. The first derivatives for
negative and positive x represent the repulsive and attractive forces, respectively,
and it is obvious that the latter one is smaller. For a very large distance between
the interacting particles, the first derivative is zero, which means that the particles
do not interact anymore. This potential is not harmonic, and its first derivative, i.e.,
the force, is not a linear function. The models that include at least one anharmonic
interaction are called nonlinear. Therefore, the weak interactions are the sources of
the nonlinear terms, and, consequently, such systems are nonlinear. As these weak
forces are common for biological systems, we concentrate on the nonlinear models
only.

Let us explain the first nonlinear model. According to the model, DNA repre-
sents two linear chains of pendulums (the bases) connected to the sugar-phosphate
backbones, as shown in Fig. 3 [10]. If θn is the angle between the pendulum and the
direction around which it oscillates, then the total energy is given by the following
Hamiltonian
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Fig. 2 Morse potential
energy
F(x) = D [e−a x − 1] 2 for
D = 1, a = 2 (blue) and
D = 0.8, a = 1 (red)

H =
∑
[
mh2

2

(
dθn
dt

)2

+ S

2
(θn − θn−1)

2 + mgh(1 − cos θn)

]
, (1)

wherem and h aremass and length of the pendulum, respectively, and S is a harmonic
constant, while the number n determines the position of the pendulum [10]. It is clear
that nonlinearity is coming from the cosine function.

Using Hamilton’s equations and appropriate generalized coordinates, i.e., q̇n =
∂H
/

∂pn , ṗn = −∂H
/

∂qn , qn = θn , and pn = mh2θ̇n , where the dot means the
first derivative with respect to time, the Hamiltonian (1) brings about an appropriate
equation of motion, that is

mh2
(
d2θn
dt2

)
= S(θn+1 + θn−1 − 2θn) − mgh sin θn. (2)

In the static limit, when the term including the second derivative is neglected [10],
we obtain the equation

S(θn+1 + θn−1 − 2θn) − mgh sin θn = 0, (3)

whose solution is

θn = 4 arctan
[
exp
(
2nl
/
L
)]

, L = 2l
√
S
/
mgh (4)

where l is the distance between two neighbouring pendulums [10]. Its meaning will
be clarified in what follows. The function θn ≡ θ(n) is a kink soliton.

It is convenient, very often, to begin with the discrete case and then pass to the
continuum limit nl → z, which will be followed here. The z-axis is in the direction
of the DNA chain. This means that when θn does not vary too rapidly with n, the
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Fig. 3 Mechanical model of the strands of a double helix possessing soliton excitations. Each
pendulum is of mass m and length h, spaced at l = 0.34 nm along the helix axis. A One strand
of the duplex capable of undergoing torsional oscillations about the backbone axis in the presence
of a restoring force mg. B Soliton excitation mode involving a large-amplitude excursion of one
pendulum with spreading of the excitation to a group of L . C The ground state of the double helix
modelled as two linear chains of pendula (the bases) connected by springs (the sugar-phosphate
backbones)

following series expansion can be performed:

θn±1(t) ≈ θ(z, t) ± θz(z, t)l + 1

2
θzz(z, t)l

2, (5)

where indices z and zz denote the first and second derivatives with respect to z,
respectively, and Eq. (2) becomes

mh2
(

∂2θn

∂t2

)
− S

(
∂2θn

∂z2

)
+ mgh sin θn = 0. (6)

This is a well-known solvable sine–Gordon equation [11, 12]. Its solutions are
the kink and antikink solitons.
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Problem 1 Derive Eq. (2).

Problem 2 Plot the function θn ≡ θ(n), given by Eq. (4), for arbitrary values
of the parameters l and L , and convince yourself that this is a kink soliton.

The procedure explained above can be extended, and the DNA molecule can be
seen as a series of coupled double pendulums [13, 14]. The first pendulum models
the oscillation of the phosphate-sugar part of the nucleotide, while the remaining one
describes the oscillation of the base. This approach can be further extended in order
to describe inhomogeneous DNA chains [15].

Now, we will explain the Y-model, introduced by Yakushevich in 1989 [16].
According to the model, DNA consists of two parallel chains of discs. The chains
are straight, which means that the helicoidal structure is not taken into consideration.
The discs are connected to each other with longitudinal and transverse springs. The
rigidity of the longitudinal springs is higher than that of the transverse ones as they
represent the covalent and hydrogen bonds, respectively. Let us suppose that the
chains are in the z-direction, while the surfaces of the discs are in the xy-plane. The
model assumes angular oscillations of the discs in the xy-plane only. Ifφi,n represents
the angular displacement of the disc, where i = 1, 2 and n = 1, 2, ... denote the
chains and discs, respectively, then the Hamiltonian of DNA is [16]

H =
∑

i,n

[
Ii
2

φ2
i,n + Ki

2
(φi,n − φi,n−1)

2 + k

2
(�ln)

2

]
. (7)

Here, Ii is themoment of inertia of the discs of the i-th chain, Ki and k are the rigidities
of the longitudinal and transverse springs, respectively, and �ln is the stretching of
the n-th transverse spring due to rotations of the discs. Let us determine �ln first.
Imagine two discs of the radius R in the common plain at the position n. Then, the
distance between their centres is 2R + l0, where l0 is nothing but the length of the
unstretched spring. This is shown in Fig. 4. Suppose that these two discs perform
the angular displacements φ1,n and φ2,n . These angles are denoted by φ1 and φ2 in
Fig. 4 for short. The new length becomes ln , where

l2n = (l0 + 2R − R cosφ1,n − R cosφ2,n
)2 + (R sin φ1,n − R sin φ2,n

)2
, (8)

and, consequently,

�ln = ln − l0. (9)
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Fig. 4 Cross-section of the model consisting of two strands

Problem 3 Derive Eq. (8).

Using the Hamilton’s equations and the generalized coordinates qi = φi and
pi = Ii φ̇i , we easily obtain the dynamical equations of motion according to Eqs.
(7)–(9). The one for φ1,n is

I1φ̈1,n = K1
(
φ1,n+1 + φ1,n−1 − 2φ1,n

)2 − k
�ln
ln

[(
2R2 + Rl0

)
sin φ1,n ,

−R2 sin
(
φ1,n + φ2,n

)]
(10)

while the remaining equation can be obtained from Eq. (10) by replacing the index
1 by 2.

Problem 4 Derive Eq. (10).

The next step is the continuum limit. This means that we replace φi,n(t) with
φi (z, t), where the coordinate z is in the direction of the chains, as explained above.
This simplifies Eq. (10), and we straightforwardly obtain

I1φ̈1 = K1a
2φ1zz − k

�l

l

[(
2R2 + Rl0

)
sin φ1 − R2 sin(φ1 + φ2)

]
, (11)

as well as the corresponding one for φ1 ↔ φ2. Notice that �l
/
l depends on the

functions φ1 and φ2, which means that Eq. (11) is very far from being solvable.
Fortunately, we can assume l0 << R, which suggests a new approximation l0 ≈ 0
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[16], yielding to �l/ l = 1 in Eq. (11). All this brings about the following system of
equations

I1φ̈1 = K1a
2φ1zz − kR2[2 sin φ1 − sin(φ1 + φ2)],

I2φ̈2 = K2a
2φ2zz − kR2[2 sin φ2 − sin(φ1 + φ2)]

}
. (12)

This system is nonintegrable in general. In the case of linear approximation, i.e.,
for very small oscillations, the solutions for φ1 and φ2 are plain waves, as expected.
For ϕ1 = −ϕ2 and ϕ1 = ϕ2, Eq. (12) reduces to the sine–Gordon and double
sine–Gordon equations, respectively. These particular equations have one feature
in common: they have soliton-like solutions named kinks and antikinks. So, we can
expect that the system (12)might also have soliton-like solutions of kink and antikink
types [16].

Y-model has been subjected to a variety of improvements. For example, the heli-
coidal structure of DNA was taken into consideration in [17], while in [18], it was
not assumed that all bases are equal and, consequently, a more realistic model was
explained. In [19], the author did not assume the approximation l0 ≈ 0, while Morse
potential was introduced in [20] to model the weak hydrogen bonds. Of special
importance is the composite Y-model [21]. A key point is that the sugar-phosphate
group and base are described by separate degrees of freedom.The compositeY-model
contains the Y-model as a particular case. It represents an improvement providing a
more realistic description of DNA.We should point out that the existence of solitons
is a generic feature of the underlying nonlinear dynamics and is to a large extent
independent of the detailed modelling of DNA [21]. Finally, let us point out that the
Y-model allows us to study DNA dynamics under external influences [20, 22, 23].

A key problem in each model is the choice of degrees of freedom. Namely, DNA
dynamics can be connectedwith either an angular or radial displacements of the bases
from their equilibrium positions. The latter ones will be explained in what follows.
This means that if we assume only one degree of freedom per nucleotide, we can
choose either angular or radial variable as the coordinate, and the appropriate models
can be called angular (torsional) and radial models, respectively. Of course, some
extensions, i.e., models combining both kinds of coordinates, are possible [24–29].
The models mentioned above [10, 16, 21] are obviously the angular ones. In what
follows, we describe a couple of radial models. We start with the Peyrard–Bishop
(PB) model and further describe its two improvements, which we call the helicoidal
Peyrard–Bishop (HPB) and Peyrard–Bishop–Dauxois (PBD) models.

To understand the PB model, we should remind ourselves of the chemical bonds
existing between the nucleotideswithinDNA. In Fig. 5, we recognize the two strands.
The interactions between the nucleotides belonging to the same strand are very strong,
and the corresponding oscillations are negligible. On the other hand, the bases of the
nucleotides belonging to the different strands interact through weak hydrogen bonds,
modelled by the Morse potential, as explained above. Hence, these oscillations are
not negligible, and it certainly makes sense to choose the radial displacements un
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Fig. 5 A simplified structure of DNA molecule

and vn as the crucial degrees of freedom. Notice that the strands are linear systems,
while DNA, due to the weak interactions, is not.

Like above, we start with the discrete Hamiltonian and pass to the continuum
limit. According to the PBmodel, the Hamiltonian for DNA, in the nearest neighbour
approximation, is [30, 31]

H =
∑{

m

2

(
u̇2n + v̇2

n

)+ k

2

[
(un − un−1)

2 + (vn − vn−1)
2
]

+D
[
e−a(un−vn ) − 1

]2}
, (13)

where m = 300 amu = 5.1× 10−25 kg is the nucleotide mass, k is a constant of the
harmonic interaction, and u̇n and v̇n represent the appropriate velocities. Obviously,
the coordinates un and vn are longitudinal (radial) displacements of the nucleotides
at the position n from their equilibrium positions along the direction of the hydrogen
bond. One can recognize the kinetic energy term, potential energy describing the
covalent interaction, and the Morse potential.

It is convenient to introduce new coordinates representing the in-phase and out-
of-phase transversal motions as

xn = (un + vn)/
√
2, yn = (un − vn)/

√
2, (14)

which transforms Hamiltonian (13) into
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H =
∑{

m

2
(ẋ2n + ẏ2n ) + k

2

[
(xn − xn−1)

2 + (yn − yn−1)
2]+ D [e−a

√
2yn − 1]2

}
.

(15)

Therefore, the coordinate xn describes the oscillation of the centre of mass, while
yn is proportional to the stretching of the nucleotide pair at position n. We are going
to see that the function xn(t) represents a linear wave, while yn(t) is a nonlinear
one and, consequently, more interesting for us. It is important to know that yn(t) is
not temperature-dependent, but its mean value 〈y〉 is [30–32]. We do not explain the
model in detail as this will be done through one of its improved versions. In fact, the
PB model is a special case of the HPB one.

The PB model does not take helicoidal DNA structure into consideration, while
its improved version, the HPBmodel, does. This has been achieved by introducing an
additional term, describing helicoidal interactions, into Eq. (15), and theHamiltonian
becomes [33]

H =
∑{

m

2

(
u̇2n + v̇2

n

)+ k

2

[
(un − un−1)

2 + (vn − vn−1)
2
]

+K

2

[
(un − vn+h)

2 + (un − vn−h)
2]+ D

[
e−a(un−vn) − 1

]2
}

(16)

where K is the harmonic constant of the helicoidal spring. To understand the new
helicoidal term, we should imagine DNA in Fig. 5 being twisted. This means that
after a turn of π , the nucleotide belonging to one strand at the position n will be
close to both the (n + h)th and (n − h)th nucleotides of the other strand [33]. As
the helix has a helical pitch of about 10 base pairs per turn [34], one can assume
h = 5. Of course, we use Eq. (14) again, as well as the generalized coordinates
qnx = xn ,qny = yn , pnx = mẋn , and pny = mẏn , andobtain the following completely
decoupled dynamical equations of motion

mẍn = k(xn+1 + xn−1 − 2xn) + K (xn+h + xn−h − 2xn) (17)

mÿn = k(yn+1 + yn−1 − 2yn) − K (yn+h + yn−h + 2yn)

+ 2
√
2aD

(
e−a

√
2yn − 1

)
e−a

√
2yn (18)

Problem 5 Derive Eqs. (17) and (18).

In the continuum limit, i.e., if we apply Eq. (5), both terms in the brackets in
Eq. (17) will transform into the second derivatives with respect to the spatial coordi-
nate. Thismeans thatwe obtain an ordinarywave equationwhose solution is the usual
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linear wave (phonon). However, Eq. (18) describes a nonlinear wave. We restrict our
attention to it and assume that the oscillations of nucleotides are large enough to be
anharmonic but still small enough so that the nucleotides oscillate around the bottom
of the Morse potential well. This suggests the transformation

yn = ε 	n; (ε 	 1) (19)

and Eq. (18) becomes

	̈n = k

m
(	n+1 + 	n−1 − 2	n) − K

m
(	n+h + 	n−h + 2	n)

− ω2
g

(
	n + ε α 	2

n + ε2β 	3
n

)
, (20)

where

ω2
g = 4a2D

m
, α = −3a√

2
and β = 7a2

3
(21)

Problem 6 Derive Eq. (20).

Now, we solve Eq. (20) following [7], where all the derivations can be found. To
solve it, we use a semi-discrete approximation, which means that we look for the
wave solutions of the form

	n(t) = F1(ξ )e
iθn + ε

[
F0(ξ) + F2(ξ) ei2θn

]+ cc + O
(
ε2
)

(22)

ξ = (εnl, ε t), θn = nql − ω t (23)

where l = 0.34nm is the distance between two neighbouring nucleotides in the
same strand, ω is the optical frequency of the linear approximation, q = 2π

/
λ is the

wavenumber, cc represents complex conjugate terms, and the function F0 is real. This
is a modulated wave where F1 is a continuous function representing the envelope,
while the carrier component eiθn is discrete. As the frequency of the carrier wave
is much higher than the frequency of the envelope, we need the two time scales,
t and ε t , for those two functions, which can be seen in Eq. (23). Of course, the
same holds for the coordinate scales. A mathematical basis for this procedure is the
multiple-scale method or the derivative-expansion method [35, 36].

From Eq. (22), one can see the true meaning of the parameter ε. The higher-order
terms are required because of the last two terms in Eq. (20).

Now, we switch to the continuum limit nl → z and use the transformations
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Z = ε z; T = ε t, (24)

which yield

	n(t) → F1(Z , T )eiθ + ε
[
F0(Z , T ) + F2(Z , T )ei2θ

]+ cc

= F1e
iθ + ε

[
F0 + F2e

i2θ
]+ F∗

1 e
−iθ + εF∗

2 e
−i2θ (25)

where the star stands for complex conjugate and Fi ≡ Fi (Z , T ). Also, a very
important relation is

Fi (ε(n ± h)l, ε t) → Fi (Z , T ) ± Fi Z (Z , T )ε l h + 1

2
Fi Z Z (Z , T )ε2l2h2, (26)

where index Z denotes differentiation with respect to the coordinate Z [7]. All this
enables us to determine the expressions existing in Eq. (20), such as

	n+h + 	n−h + 2	n = {2F1 [cos(qhl) + 1] + 2iεhlF1Z sin(qhl)

+ε2h2l2F1Z Zcos(qhl)
}
eiθ

+ {2εF2 [cos(2qhl) + 1] + 2iε2hlF2Z sin(2qhl)
}
ei2θ

+ 4εF0 + cc, (27)

	̇n = ε F1T e
iθ − iω F1e

iθ + ε2F0T + ε2F2T e
i2θ − 2iεω F2e

i2θ + cc, (28)

and

	3
n = 3|F1|2F1 e

iθ + 3|F1|2F∗
1 e−iθ + F3

1 e
i3θ + F∗ 3

1 e−i3θ + O(ε). (29)

Finally, we obtain the continuum version of Eq. (20), that is,

(ε2F1T T − 2iεωF1T − ω2F1) e
iθ − (4iε2ω F2T + 4εω2F2) e

i2θ + cc

= k

m
{2F1 [cos(ql) − 1] eiθ + 2iε l F1Z sin(ql) e

iθ + ε2l2F1Z Zcos(ql) e
iθ

+2ε F2[cos(2ql) − 1] ei2θ + 2 iε2l F2Z sin(2ql) e
i2θ + cc

}

−K

m
{2F1[cos(qhl) + 1] eiθ + 2iεh lF1Z sin(qhl) e

iθ + ε2h2l2F1Z Zcos(qhl) e
iθ

+2ε F2[cos(2qhl) + 1] ei2θ + 2iε2h lF2Z sin(2qhl) e
i2θ + 4ε F0 + cc

}

−ω2
g

[
F1 e

iθ + ε F0 + ε F2 e
i2θ + 2εα |F1|2 + 2ε2α(F0F1 + F∗

1 F2) e
iθ

+εα F2
1 e

i2θ + 2ε2α F1F2 e
i3θ + 3ε2β|F1|2F1 e

iθ + ε2β F3
1 e

i3θ + cc
]

(30)
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Problem 7 Derive Eq. (27).

Problem 8 Derive Eq. (30). Hint: Derive the expressions for 	̇n , 	2
n , and

	n+1 + 	n−1 − 2	n first.

Let us keep in mind that we are looking for the solution 	n(t). The crucial
expression (30) enables us to obtain the functions F1(ξ), F0(ξ), and F2(ξ), required
for the determination of 	n(t), as clear from Eq. (22). To do this, we should equate
the coefficients for the various harmonics [6, 7, 33]. Thus, the coefficients for eiθ

give

ε2 F1T T − 2iεω F1T − ω2F1 = k

m
[2F1 (cos(ql) − 1)]

+2iεl F1Z sin(ql) + ε2l2F1Z Z cos(ql)
]

− K

m
[2F1 (cos(qhl) + 1) + 2iεhlF1Z sin(qhl)

+ε2h2l2F1Z Z cos(qhl)
]

− ω2
g

[
F1 + 2ε2αF0F1 + 2ε2αF∗

1 F2 + 3ε2β|F1|2F1
]

(31)

Neglecting all the terms with ε and ε2, we get the dispersion relation

ω2 ≡ ω2
y ≡ ω2

o = (4/m) [a2D + k sin2
(
ql
/
2
)+ K cos2

(
qhl
/
2
)]

, (32)

which brings about the expression for the group velocity dω
/
dq as

Vg = l

mω
[ k sin(ql) − K h sin(qhl)] (33)

The corresponding dispersion relation for the in-phase oscillations described by
Eq. (17) is

ω2
x ≡ ω2

a = (4/m) [k sin2(ql/2)+ K sin2
(
qhl
/
2
)]

. (34)

The frequencies ωy and ωx are usually called optical and acoustical, respectively.

Problem 9 Derive Eqs. (31) and (32).

Problem 10 Derive Eq. (34).
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Problem 11 Plot the functions ωo(ql) and ωa(ql). Compare these two
functions for different values of the parameters K and a2D.

Equating the coefficients for ei0 = 1 in Eq. (30), we straightforwardly obtain

F0 = μ |F1|2; μ = −2α

(
1 + 4K

mω2
g

)−1

(35)

while ei2θ gives

F2 = δ F2
1 ; δ = ω2

g α

[
4ω2 − 4k

m
sin2 ( ql) − 4K

m
cos2(hql) − ω2

g

]−1

(36)

Problem 12 Derive Eq. (36).

As the functions F0 and F2 can be expressed through F1, the equation for F1

should be derived. We use the new coordinates

S = Z − Vg T, τ = ε T, (37)

again and obtain the transformations for F1 Z , F1Z Z , F1 T , and F1T T existing in
Eq. (30). We notice that ε exists in the time coordinate but does not in the space
one. This definition ensures that the time variation of the envelope of the function
F1, in units of 1

/
ω, be smaller than its spatial variation in units of l [37]. Finally, using

Eqs. (31)–(33) and (35)–(37),we easily obtain thewell-knownnonlinear Schrödinger
equation (NLSE) for the function F1

i F1τ + P F1SS + Q |F1|2F1 = 0, (38)

where the dispersion coefficient P and the coefficient of nonlinearity Q are given by

P = 1

2ω

{
l2

m
[k cos(ql) − K h2 cos(qhl)] − V 2

g

}
, Q = −ω2

g

2ω
[2α (μ + δ) + 3β]

(39)
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Problem 13 Derive Eqs. (38) and (39).

This is a solvable equation, and its analytical solution, for PQ > 0, is [33, 38,
39]

F1(S, τ ) = A0 sech

(
S − ueτ

Le

)
exp

iue(S − ucτ )

2P
, ue

> 2uc · ue > 2uc. (40)

Here, we assume P > 0 and Q > 0 [38]. The values for the envelope amplitude A0

and its width Le will be written later. The function (40) is obviously the modulated
solitary wave, where ue and uc are the velocities of the envelope and carrier waves,
respectively.

Problem 14 Make sure that Eq. (40) satisfies Eq. (38). Show that A0 =√
u2e−2ueuc

2PQ and Le = 2P√
u2e−2ueuc

.

Therefore, we have obtained the expression for F1, the functions F0 and F2 can
be expressed through F1, and, according to Eqs. (19), (22), and (23), we can easily
reach our final goal, which is the function yn(t).

However, before we proceed, we need to comment on a couple of the parameters
existing in the HPB model. Some of them have appeared in the Hamiltonian (16).
They are so-called intrinsic parameters, describing the geometry and the chemical
interactions within DNA. However, there are parameters coming from the applied
mathematical procedure. Let us concentrate on the mathematical parameters ue, uc,
and ε. The velocities ue and uc are included in the solution of the NLSE, while ε does
not have any physical meaning. This only helps us to distinguish big and small terms
in the series expansion (22). A careful investigation of all the formulae shows that
only two mathematical parameters are relevant and they are εue and εuc. Also, it is
very difficult to pick the appropriate values for ue and uc according to the requirement
ue > 2uc only. However, the ratio of these speeds belongs to the interval [0;0.5),
which is much more convenient to deal with. Hence, we choose the following two
mathematical parameters [40]

Ue = εue, η = uc
ue

, 0 ≤ η < 0.5 (41)

We will return to this point later and show how Ue can be expressed through η.
Finally, according to Eqs. (19), (22)–(24), (35), (36), (38), and (41), the stretching

of the nucleotide pair at the position n, i.e., the solution of Eq. (18), is
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yn(t) = 2Asech

(
nl − Vet

L

)
{cos(�nl − �t)

+ Asech

(
nl − Vet

L

)[μ
2

+ δ cos(2(�nl − �t))
]}

(42)

where

A ≡ εA0 = |Ue|
√
1 − 2η

2PQ
, L ≡ Le

ε
= 2P

|Ue|√1 − 2η
. (43)

The envelope velocity Ve, wavenumber �, and frequency � are given by

Ve = Vg +Ue, � = q + Ue

2P
, � = ω + (Vg + ηUe)Ue

2P
(44)

Problem 15 Derive Eqs. (42)–(44).

To plot the function yn(t), the values of all the parameters should be known. The
problem with the mathematical parameter Ue can be solved by assuming that the
most favourable mode is a coherent one (CM), according to which the envelope and
the carrier wave velocities are equal, i.e., [41]

Ve = �

�
. (45)

This means that the function yn(t) is the same at any position n. In other words,
the wave preserves its shape in time, indicating high stability [40].

Problem 16 To better understand the previous statement, plot the modulated
wave f (x) = sec h(x - ct) cos[10(x − t)] for different t for the two cases: (a)
c = 1 (CM) and (b) c �= 1.

Notice that the requirement (45) ensures that Eq. (42) becomes a one-phase func-
tion. This means that yn(t) depends on nl and t through ζ = nl − Vet , where Ve

is a constant, representing the travelling wave velocity. If a solitary wave, or soliton
for short, is defined as a localized travelling wave [39], then yn(t), obviously being
localized, satisfies the requirements for being the soliton. In other words, the CM
is nothing but the solitonic mode (SM) [7]. According to Eq. (45), one can easily
obtain the function Ue(η), which is



Nonlinear Dynamics of DNA Chain 45

Ue = P

1 − η

[
−q + q

√

1 + 2(1 − η)

Pq2

(
ω − qVg

)
]
. (46)

This is a slowly increasing function of η [40].

Problem 17 Derive Eq. (46).

Notice that no experimental evidence that CM is the most favourable one, as
suggested above, exists. This is still an open question, one of many open questions
in DNA dynamics, requiring further research. One of the future research directions
could be to study the stability of the solution (42) for different cases, i.e., for Ve > �

�
,

Ve = �
�
, and Ve < �

�
. Also, it is important to keep in mind that Eq. (20) is a

discrete one. To obtain the solution (42), this equation was subjected to the semi-
discrete approximation, as explained above. One important future task should be to
numerically solve Eq. (20) for all three relationships between Ve and�/�. This will
shed new light on the question regarding the most favourable mode.

In what follows, we assume CM, i.e., Eq. (46). This means that we have solved
the problem regarding the parameter Ue. Let us study η now. It was pointed out
that Eq. (42) represents the modulated wave. It is useful to define a certain physical
quantity, which determines the efficiency of the modulation. This can be a density
of internal oscillations (density of carrier wave oscillations) [41]. This is a ratio
of the wavenumbers of the wave components or a ratio of the appropriate periods.
According toEq. (42),we can define thewavelengths andperiods of both the envelope
and carrier wave as

2π

�
= 1

L
,

2π

�c
= �,

2π

T
= Ve

L
,
2π

Tc
= �, (47)

where the index c denotes the carrier component. Then, we define the density in two
ways, that is,

Do ≡ �

�c
= L�, �o ≡ T

Tc
= L�

Ve
(48)

They are equal as they should be if Eq. (45) is satisfied. This is strong support for
the CM. In what follows, we plot Do(η), as well as Am(η) = 2A, and try to pick an
acceptable value for the parameter η. However, to do these plots, we should know,
or assume, the values of the remaining intrinsic parameters. They are k, K , a, and
D, existing in Eq. (16), and q, which has appeared in Eq. (23). The experimental
values of these parameters do not exist, and this has turned out to be a very tough
problem. It is very likely that the most detailed analysis has been performed in [42].
It was shown that there are a couple of requirements that should be satisfied. In this
chapter, we use the following set of parameters, to satisfy all these requirements [7,



46 S. Zdravković

42]:

a = 1.2
◦
A −1, D = 0.07 eV, k = 12 N/m, K = 0.08 N/m, ql = 2π/10.

(49)

Let us remember that q = 2π
/

λ is the wavenumber. For λ = Nl, where N is
a number, not necessarily an integer, one obtains ql = 2π

/
N . Therefore, N = 10

has been assumed in Eq. (49).

Problem 18 Show that Do = �o if Eq. (46) holds.

Now, we can plot the functions Do(η) and Am(η). They are shown in Figs. 6
and 7, respectively. The plots were done according to Eqs. (21), (32), (33), (35),
(36), (39), (43), (44), (46), (48), and (49). We see that, for very small η, modulation,
practically, does not exist. If we assume that modulation represents a key factor in
DNA dynamics, then it is very likely that �o cannot be less than 6. This means that
η should not be smaller than 0.45. Figure 7 also shows that the small values for η

are not acceptable. If we expect that Am cannot be bigger than 0.3
◦
A, we come up

with the same conclusion as above. Notice that Am = 2A is not real amplitude.
From Eq. (42), we see that yn(t) has maximal value ym when the cosine and secant
hyperbolic functions are equal to one. Such a curve is similar to one depicted in
Fig. 7 but is roughly 1.5 times bigger. For example, the starting point for η = 0
would be 0.97 instead of 0.63 shown in Fig. 7. As a conclusion, in what follows, we
use η = 0.47.

Fig. 6 Density of internal
oscillations �o as a function
of the parameter η
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Fig. 7 Amplitude Am = 2A
as a function of the
parameter η

Problem 19 Make sure thatUe, given by Eq. (46), is real for the values of the
parameter existing in Eq. (49) and for η = 0.47.

Problem 20 Plot the real maximum of ym(η) and verify the statements from
the previous paragraph.

Finally, we can plot the nucleotide pair stretching as a function of the position,
i.e., the function yn(t). This is depicted in Fig. 8 as a function of the position for a
particular time t .

Fig. 8 Nucleotide pair
stretching at t = 100 ps for:

a = 1.2
◦
A −1,

D = 0.07 eV, k = 12 N/m,
K = 0.08 N/m, ql = 2π/10,
and η = 0.47
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Problem 21

(a) Plot Fig. 8 for at least two different values of t . Make sure that the shape
of the curve has not been changed for the different t .

(b) Do the same for the non-coherent mode. Hint: Calculate Ue according to
Eq. (46) and pick another value to do the required plot.

Problem 22 Calculate ym , Ue, �, Vg , and Ue for the values of the parameters
used for Fig. 8. (Solutions: �o = 7.1, � = 30.2 l, Vg = 1011 m/s, and
Ue = 877 m/s).

It is obvious that this is a localized modulated wave, usually called a breather. If
we had picked a different time, we would have obtained exactly the same shape of
the wave but at a different position. This is so because the CM was assumed. Also,
we could have assumed a certain position and plotted yn(t) as a function of time.

According to Fig. 8, one can see that the positive amplitude is a little bit bigger
than the negative one. This comes from the higher-order terms in Eqs. (22) and (42).
Basically, this is a result of the fact that the Morse potential is not symmetric, which
means that the repulsive force between the nucleotides is stronger than the attractive
one.

Based on Fig. 8, we can conclude that the soliton covers about 30 nucleotide pairs.
In other words, the wavelength, defined by Eq. (47), is � = 30.2 l. Unfortunately,
appropriate experimental values do not exist. However, this width can be compared
with the solitonic width at a DNA segment involved in a process of transcription
[7]. It was reported [43] that this width is between 8 and 17 nucleotides, while
some experimental works suggest that this segment covers between 7 and 15 base
pairs [44]. The width shown in Fig. 8 is higher, but we should keep in mind that
the transcription is followed by a local unzipping, which can be understood as an
extremely high amplitude. The wave shown in Fig. 8 is an “ordinary” one, while
the solitons at the mentioned segments have much higher amplitudes, corresponding
to the local unzipping, which is a topic of the next sections. As the increase of
the amplitude means the decrease of the solitonic width, we can conclude that the
solitonic width, corresponding to Fig. 8, certainly makes sense.

It was stated above that the two basic improvements of the PB model have been
made so far. We have just described the HPB model in some more detail. Now, we
will briefly explain the PBD model. The basic idea is that the harmonic potential
energy has been replaced by the anharmonic one through

k

2
(yn − yn−1)

2 ⇒ k

2

[
1 + ρ e−α(yn+yn−1)

]
(yn − yn−1)

2, (50)

where ρ and α are constants [45–50]. This expression can be viewed as a harmonic
interaction with a variable coupling constant [51]. It was mentioned above that
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the stacking interaction stabilizes the helix. The nonlinear term, comprising posi-
tive parameters α and ρ, is the stacking potential. Widely used values taken in the

calculations are α = 0.35
◦
A −1 and ρ = 0.5 [49].

It was stated above that yn(t) is not temperature-dependent, but its mean value is.
Figure 9 shows how the mean value 〈y〉 depends on temperature [46]. The authors
compared the two cases within the potential given by Eq. (50), that is, α = 0 (PB
model) and α �= 0 (PBDmodel). We see that 〈y〉 is slowly increasing function up to a
certain temperature, when it sharply increases. This increase represents denaturation.
In the case of the PBD model, denaturation is rather sharp and occurs at lower
temperatures. It would be interesting to study temperature dependences of 〈y〉 relying
on the HPB, as well as other models, which could be a future task. We want to point
out that the temperature dependence of 〈y〉 also depends on the remaining parameters
existing in the model, like D and a, describing the Morse potential.

The models explained above assume a homogeneous DNA chain, which might
not be quite correct. For example, adenine and thymine are connected by double
hydrogen bonds and guanine and cytosine by triple ones. Hence, one can expect
that the corresponding Morse potential depths are D and 1.5D. A crucial question
is whether the wave characteristics, like amplitude, velocity, etc., drastically change
whenever the wave reaches a new type of nucleotide pair. If so, the soliton would
not be stable. It was explained that the breathers are not substantially affected by
spatial inhomogeneities of the DNA sequence, but the kinks are [18]. This is in good
agreement with the result explained in [52].

Fig. 9 Variation of the mean
value 〈y〉 versus temperature

for: k = 0.04 eV/
◦
A 2,

a = 4.45
◦
A −1, and

D = 0.04 eV. The solid line
corresponds to the
anharmonic stacking

interaction (α = 0.35
◦
A −1,

ρ = 0.5). The dashed and
dash-dotted lines correspond
to two cases (ρ = 0.5 and
ρ = 0) of harmonic stacking
interactions (α = 0),
respectively
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2 Resonance Mode and DNA Opening

Any model can be considered good if it can explain something or predict a possible
experiment. In this section, we show how the HPBmodel can explain a local opening
of DNA, a well-known fact that happens during transcription. Let us study the func-
tions ωo(ql) and ωa(ql), given by Eqs. (32) and (34), respectively. They also depend
on the parameters k,K , a, andD, and, in general, are not equal. These frequencies
were compared [33, 53], and it was speculated that their equality could represent a
resonance mode (RM) [53]. Let us study this idea in some more detail. From Eqs.
(32) and (34), one obtains

ω2
o − ω2

a ∝ a2D

K
+ cos(5ql), (51)

as we are using h = 5 throughout this chapter. We easily recognize the following
three possibilities:

(1) a2D > K ⇒ ω0 > ωa for ∀ql, (52a)

(2) a2D < K ⇒ ω0 < ωa in some intervals of ql, (52b)

(3) a2D = K ⇒ ω0 = ωa at ql = π/5. (52c)

Of course, there are other values for ql satisfying the requirement ωo = ωa, but
they are not relevant now. The last case, i.e., Eq. (52c), corresponds to the RM,
mentioned above [53]. The idea was further developed in [54, 55]. It was shown
that some conditions yield very high amplitude [54]. Of course, the large amplitude
does not necessarily mean the RM, and this behaviour was called extremely high
amplitude (EHA) mode in [54]. However, some arguments in favour of RM were
given in [55] and, in this chapter, the term RM will be used.

Problem 23 Return to Problem 11 and check on Eqs. (52a)–(52c).

Before we proceed, we want to discuss one important point. Equations (17) and
(18) represent two decoupled equations of motion. How about the corresponding
frequencies, given by Eqs. (32) and (34)? We should notice that ωo and ωa are not
decoupled in the sense that they can be changed independently as both frequen-
cies depend on the same parameters k and K . Hence, they are coupled through the
common parameters [54]. In other words, we can eliminate one of these parameters
and express ωo as a function of ωa , or vice versa. An example of such a function is
Eq. (51).
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Fig. 10 Transcription of RNA

In what follows, we explain how the RM can explain the local opening of the
DNA chain during the mRNA formation. The DNA–RNA transcription is nothing
but the formation of mRNA molecule from RNA polymerase molecules (RNAP),
as shown in Fig. 10 [5, 56]. Therefore, this occurs at the segments where the DNA
chain is surrounded by the RNAP. We can call them transcription segments (TS).
The transcription can be done only through active interaction between DNA and
its surrounding. Let us imagine a segment of a single DNA strand. The nucleotides
belonging to this strand can interact with the surrounding nucleotides only if they
do not interact strongly with the remaining strand, which can be seen in Fig. 10.
This means that the DNA chain should open locally, and this is what really happens
during the transcription.

It was explained above that the mentioned parameters describe chemical bonds.
Thismeans that, due to the presence ofRNAP, the interaction between the nucleotides
belonging to the same pair is changed. In other words, the Morse potential at TSs is
different from the potential at the rest of the molecule, which means that the RNAP
transforms the Morse potential so that it becomes wider and shallower. This change
could correspond to the transition from the blue to red cases in Fig. 2. Notice that the
result of the local opening is the decrease in the value of the parameter K . Therefore,
the RNAP interacts with the DNA nucleotides, decreasing the force between the
different strands. This means that both K and a2D go down, a2D decreases faster,
and, finally, the EHA vibrations occur (K = a2D), which results in very large
amplitude, i.e., in the local opening of the DNA chain.

It is worth mentioning that the decrease in the value of the parameter K might
be an indication that the helicoidal interaction term in Eq. (16) is not linear. In other
words, it might make sense to replace this term with the nonlinear one. This has not
been done so far but should be one of the future tasks.

One can argue that K = a2D is not a sufficient condition for EHA vibrations, i.e.,
for the RM, as ql = π/5 is required in addition. However, it was explained above
that ql = π/5 is probably the most favourable value, as indicated in Eq. (49). This
is nothing but N = 10 in Fig. 8, which was explained previously.
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The reader might have noticed that the optical frequency is �, given by Eq. (44),
rather than ωo. This is correct, but the simplified analysis has been quite appropriate
till now to understand the idea. Therefore, a more correct requirement for the RM is

� ≡ ω0 + �ω = ωa, (53)

while ωo = ωa represents its approximation. Of course, the expression for �ω is
determined by Eq. (44).

Till now, we have discussed the local opening and RM, but there was nothing
that could be considered as possible proof of the real existence of the RM. The best
and easiest thing that can be done is to study the amplitude existing in Eq. (42). We
should investigate if it really goes to infinity under the mentioned conditions. It is
convenient to introduce a positive dimensionless parameter p defined through

a = p
√
K
/
D. (54)

Of course, the cases p > 1,p < 1, and p = 1 correspond to Eqs. (52a–c),
respectively.

Figure 11 shows the amplitude as a function of the parameter p for three values
ofD. It was plotted according to Eqs. (21), (32), (33), (35), (36), (39), (43), and (46).
Of course, the chosen values for D and K are smaller than the non-resonant ones
used for Fig. 8. We can see that the amplitude really tends to infinity for a certain
critical value of p. This is smaller than one due to the definition (53).

Two examples of the resonance solitons y(n) are shown in Figs. 12 and 13. These
functions were plotted like Fig. 8, but a was determined according to Eq. (54). It was
explained above that the RMvalues of the parameters K and a2D are smaller than the
ordinary values, and we picked K = 0.05 N/m and D = 0.05 eV. Both figures were
carried out for t = 100 ps. It is important to point out that the interaction between

Fig. 11 Amplitude A as a
function of p for
k = 12 N/m, K = 0.05 N/m,
η = 0.47 and D = 0.07 eV
(blue), D = 0.05 eV (red),
and D = 0.03 eV (black)
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the RNAP and the corresponding DNA nucleotides does not affect the longitudinal
interaction of the neighbouring nucleotides. Hence, the parameter k is not changed
at those segments unlike K , a, and D. Notice that k does not appear in Eq. (54). Of
course, the very high amplitude should not bother us as viscosity has been neglected.

It was explained why the positive amplitude in Fig. 8 is slightly bigger than the
negative one. However, for the RM, the negative amplitude becomes negligible in
comparison with the positive one. This is consistent with our attempt to describe the
local opening of the DNA molecule.

It is very important to understand that the resonance cannot happen for K = 0.
This means that the helicoidal structure provides the resonance, which shows the
advantage of the HPB model over the PB one, which could be obtained from the
HBD by letting K = 0. There is one more way to demonstrate this advantage.
Figure 6 shows how modulation, i.e., the density of internal oscillations �o, depends

Fig. 12 Nucleotide pair
stretching at t = 100ps for:
D = 0.05 eV, k = 12 N/m,
K = 0.05 N/m, ql = 2π/10,
η = 0.47, and p = 0.9

Fig. 13 Nucleotide pair
stretching at t = 100 ps for:
D = 0.05 eV, k = 12 N/m,
K = 0.05 N/m, ql = 2π/10,
η = 0.47, and p = 0.87
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Fig. 14 Stretching of the nucleotide pair as a function of time andposition for g = 0.3. (Reproduced
with permission from [73])

on η for the particular K . We could have assumed a fixed value for η and plotted the
function �o(K ). This is an increasing function, showing that the higher K provides
more efficient modulation.

Problem 24 Plot the function �o(K ) for the parameters given by Eq. (49) and
η = 0.47. Calculate �o for K = 0.08 N/m. Compare with Problem 22. Notice
the value of �o for K = 0.
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Let us study the soliton depicted in Fig. 13. According to Eq. (47), its width,
in units of l, is �n ≡ �/ l ≈ 38. However, the local opening can be related to its
positive value only. We see that this relevant width is about 13 nucleotides. This
can be compared with the experimental values, where the transcription bubble and
RNA:DNA hybrid were reported to be 17 and 8 base pairs, respectively [43]. In [54],
where slightly different values of the parameters were used, the agreement with these
experimental values was almost perfect. However, we should not be too happy with
providing such an agreement because, more or less, everything depends on a few
parameters and, of course, different combinations of them can bring about an equal
result.

A more detailed analysis of the RM exists in [54]. There, it was shown how the
interval of the allowed values of K can be estimated. Also, the smallest value of
p was calculated. Of course, this is the resonance value pR. For the values of the
parameters used in this paragraph, pR is slightly smaller than 0.87, used for Fig. 13.

Figure 11 shows that the amplitude reaches extremely high values under certain
conditions. However, each big amplitude does not necessarily mean RM. In the
context of classical mechanics, the vibrations of an undamped linear oscillator, char-
acterized by intrinsic frequency ωi , when subjected under the action of the external
harmonic force of frequency ω f , must attain a resonance regime when ωi = ω f .
How about the DNA molecule? Let us imagine an arbitrary nucleotide pair. If this
pair was independent, i.e., free from any external influence, the centre of its mass
would not move. This means that there would be only one mode, and these are out-
of-phase oscillations. Therefore, the frequency ωo, given by Eq. (32), corresponds
to the intrinsic frequency ωi of the classical undamped oscillator. However, when
this nucleotide pair belongs to DNA, there is one more oscillating mode and the
frequency ωa. In other words, there is surrounding, which brings about one more
mode. From the point of view of the nucleotide pair, this surrounding, i.e., the rest
of DNA, is nothing but the external force [55]. Hence, we can expect the resonance
mode to happen if these frequencies are equal as the friction is neglected and this is
what we have stated in the paper. Therefore, the frequencies ωo and ωa correspond
to the frequencies ωi and ω f , respectively [55].

At the beginning of this chapter, a couple of very important and relevant yearswere
mentioned. Now, let us remember one more. This is 1992 when the first mechanical
manipulation on a single molecule was performed [57]. Therefore, it is possible to
stretch, wind, unwind, and so on, the single molecule [58–69]. The first molecule that
was picked for such experiments was DNA [57]. There have been some suggestions
for the experiments that would test the theory explained in this section [70]. It is
very likely that such experiments are still not realistic to be performed. However, the
value of the parameter k can be determined, as was suggested recently [71]. The idea
for the experiment is based on the fact that the longitudinally applied force on DNA
is proportional, in a rather big interval, to its extension [71]. It is important to point
out that this linearity represents proof that the longitudinal interaction along with
DNA [the second term in Eq. (13)] is properly modelled by the harmonic potential.
Of course, if we knew the value of k, we would be able to estimate the remaining
parameters better.
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It was mentioned above that the very high amplitude should not bother us because
viscosity has been neglected so far. Otherwise, the infinitely large amplitude would
represent the destruction of the molecule. To provide a more realistic DNA model,
we should take viscosity into consideration. This can be done by adding a viscous
force

Fv = −γ ẏn (55)

into Eq. (18), where γ represents a damping coefficient [72–74]. Following the same
procedure as above, we obtain Eq. (35) again, while Eq. (36) becomes

F2 = δγ F
2
1 ; δγ = ω2

g α
[
4ω2

γ − � + i4χωγ

]−1
, (56)

where i is the imaginary unit and

χ = γ
/
2m, ωγ = −iχ +

√
ω2 − χ2. (57)

Hence, the optical frequency turns out to be complex now. In what follows, the
index γ denotes the terms depending on the damping coefficient γ . NLSE holds
again, where the dispersion and nonlinear parameters are

Pγ = 1

2
√

ω2 − χ2

{
l2

m
[k cos(ql) − K h2 cos(qhl)] − V 2

γ

}
(58)

and

Qγ = − ω2
g

2
√

ω2 − χ2
[2α (μ + δγ ) + 3β]. (59)

Problem 25 Derive Eqs. (56) and (57) and show that the group velocity is
Vγ = ωVg√

ω2−χ2
.

Problem 26 Derive the expression for � in Eq. (56).

(Solution:� = (4
/
m)
[
k sin2 ( ql)) + K cos2(qhl)

]+ ω2
g).
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Problem 27 Use the coordinate S ≡ Sγ = Z − Vγ T instead of Eq. (37) and
show that Eq. (38) holds again. Derive Eqs. (58) and (59).

A crucial point is the fact that the complex optical frequency yields to the
complexQ, i.e.,

Qγ = − ω2
gα√

ω2 − χ2
(Q1 + i Q2) ≡ Qr + i Qi , (60)

where

Q1 = μ + CM + 1.5
β

α
, Q2 = CN , C = ω2

gα

M2 + N 2
(61)

M = 4(ω2 − χ2) − �, N = 2γ

m

√
ω2 − χ2. (62)

This means that Eq. (38) cannot be solved analytically anymore. A numerical
solution is shown in Fig. 14 for g = 0.3, where

γ = g × 10−11 kg

s
. (63)

We recognize the breather shown in Fig. 8. At a certain moment, denoted as zero
in the figure, viscosity was introduced and the obtained wave looks like the envelope
of the soliton in Fig. 8 with a smaller amplitude. This means that viscosity destroys
modulation and thewave is a bell-type soliton. This is a very interesting result, having
important biological implications, which will be explained later in more detail. It
suffices now to state that the demodulation ensures long-lasting interaction between
DNA nucleotides and RNAP, which is biologically very convenient [74].

Problem 28 Derive Eqs. (60)–(62).

Problem 29 Show that the requirement Pγ > 0 imposes 0 < g < 0.372.
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3 Demodulated Standing Solitary Wave and DNA–RNA
Transcription

In this section, we study DNA:RNA transcription again. Hence, we keep in mind a
certain TS and Fig. 10. However, instead of the RM, we study the transcription in
the context of two new ideas. We rely on the HPB model again and follow [71].

Let us concentrate on a particular DNA nucleotide in Fig. 10. If this is an adenine,
for example, it is bonded with DNA thymine, belonging to the other strand, but
it also interacts with RNAP. Of course, the final positioning of RNA nucleotides
should be a copy of the DNA segment. This obviously means that our DNA adenine
should attract a certain RNA uracil and repel the remaining RNA nucleotides. This
can be efficiently done only if the DNA adenine is far enough from its DNA partner
during the transcription. Of course, this is really the case due to the local opening,
as explained above.

Now, we go further in this direction of thinking. The local opening is certainly
a necessary but not sufficient condition for successful transcription. The stretching
of DNA, i.e., the distance between the DNA nucleotides belonging to the same pair,
is described by Eq. (42). This certainly means that our adenine and thymine are
far from each other during short periods of time only, and the adenine we have in
mind does not have enough time to attract one RNA uracile. We do believe that the
carrier wave is crucial for soliton movement through the DNA chain but is redundant
when transcription occurs. Also, it is clear that only the envelope of Eq. (42) may
correspond to the local opening. All this suggests the idea that the breather, moving
along the chain, should be demodulated when it reaches the TSs. A mathematical
interpretation of this requirement is

� = 0, � = 0, (64)

as can be concluded according to Eq. (42). A crucial question is how demodula-
tion happens at these segments. Our explanation is, like above, that RNAP changes
the chemical milieu of DNA nucleotides, i.e., the values of relevant parameters,
especially D and a, which yields to the values accommodating Eq. (64).

Therefore, the lack of internal oscillations prolongs the interaction between our
adenine and uracil, but the question is whether this is enough for successful transcrip-
tion. We should keep in mind that RNAP, during transcription, normally processes
up to 100 bps per second [5]. This corresponds to propagation velocities of 34 nm/s,
which is negligibly small in comparison with soliton velocities in DNA. Hence, a
biologically convenient soliton is the one that is as slow as possible at TSs, as this
would decrease the probability of genetic mistakes as much as possible. If we assume
that nature has chosen genetically the best mode, then we may propose the idea that
the soliton wave becomes a standing one at TSs. By the standing wave, we assume
the one whose envelope velocity is equal to the RNAP velocity. As the latter one is
negligible, we state [71]
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Ve = 0. (65)

Thus, Eqs. (64) and (65) provide food for thought, and, therefore,must be carefully
checked. We here perform a mathematical analysis of the demodulated standing
soliton (DSS) mode. This means that we investigate if there exists a certain value
of ql that satisfies these equations. To simplify the mathematics, we introduce new
parameters x , b, and s defined through the relations

K = x k, b = 1 − η, a2D = sk (66)

and use h = 5, as explained earlier. As the parameter k determines the strong covalent
bond, we know that both x and s should be much less than one.

It is convenient to introduce the following expressions:

f1 ≡ f1(ql) = sin(ql) − 5x sin(5ql)

f2 ≡ f2(ql) = cos(ql) − 25x cos(5ql)

f3 ≡ f3(ql) = sin2(ql/2) + x cos2(5ql/2)

⎫
⎪⎬

⎪⎭
. (67)

Hence, the expression

Vg = kl

mω
f1 (68)

is obvious, while Eqs. (44), (64), and (65) bring about useful formulas

Vg = 2P
ql

l
, Vg(1 − η) = ωl

ql
(69)

Problem 30 Derive Eq. (69).

The next step is to solve the system (68), (39), and (69). Of course, Eqs. (66) and
(67) should be applied. If we eliminate P and Vg , we straightforwardly obtain

b ≡ b(ql) = f1
ql f2 − f1

, Mo ≡ mω2

k
= ql f 21

ql f2 − f1
, P = kl2 f1

2qlmω
. (70)

Problem 31 Derive Eq. (70).
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Notice that the expression for P is simpler than the corresponding one in [71],
although both are correct. Finally, Eqs. (32), (66), and (70) yield to

s ≡ s(ql) = ql f 21
4(ql f2 − f1)

− f3. (71)

Also, according to Eqs. (21), (35), (36), (39), and (66), we easily obtain

μ = − 2αs

s + x
, δ = αs

M0 − f4 − s
≡ αs

δd
, (72)

Q = −2s2k2

mωD
	, 	 ≡ 	(ql) = 7x − 11s

s + x
+ 9s

δd
, (73)

where

f4 ≡ f4(ql) = sin2(ql) + x cos2(5ql). (74)

It was mentioned above that we are looking for possible value(s) of ql that satisfy
a couple of requirements. It is convenient to assume the wavelength as an integer of
l, i.e.,

ql = 2π

λ
l = 2π

N
. (75)

In the examples used for Figs. 8, 12, and 13, this integer was N = 10. If we
assume that N cannot be smaller than six, then ql should be less than one. Therefore,
the big values for ql are not acceptable. This means that f1, existing in Eq. (67), is
positive. In fact, it can be negative, but only for an unacceptable large x. As f1 > 0
for any small enough ql, we conclude that P > 0 as well, which can be seen from
Eq. (70).

There are a couple of requirements that should be satisfied. They are b > 0.5,
s > 0, δd �= 0, and 	 < 0. The last one comes from Eq. (73), as the parameter Q
should be positive to satisfy the requirement PQ > 0, as explained above. Let us
take b as an example. Figure 15 shows b(ql) for two values of x . We see that there
should be

0.25 < ql < 0.81 for x = 1
/
50

ql < 0.77 for x = 1
/
80

}
. (76)

The part ql > 0.25 comes from the figure s(ql). Also, δd > 0 for ql below the upper
limits indicated in Eq. (76).
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Fig. 15 Parameter b as a
function of ql for: x = 1/50
(blue) and x = 1/80 (red)

Problem 32 Plot the figure δd(ql) and verify the statement in the previous
sentence.

Problem 33 Plot the figure s(ql) and determine the smallest value for ql.

The next step is the function 	(ql), existing in Eq. (73). It is shown in Fig. 16.
The only conclusion is

ql > 0.45 for x = 1
/
50. (77)

Of course, the final allowed intervals for ql are given by Eqs. (76) and (77).
Therefore, there exist the values for ql satisfying the requirements for the DSS

mode, i.e., Eqs. (64) and (65). Our final task is to plot the nucleotide pair stretching
corresponding to the DSS mode. As an example, we pick ql = 0.47 rad and x =
1
/
50. For D = 0.07 eV and k = 12 N/m, from Eqs. (43) and (47), we easily

calculate A = 6.1
◦
A, � = 8l, and s = 0.03. The second value means that the wave

covers 8 base pairs, which perfectly matches the experimental value for the extent
of the DNA:RNA hybrid [43]. This soliton is shown in Fig. 17 (blue), together with

another example ql = 0.20 rad and x = 1/80,which yields to A = 1.6
◦
A,� = 7.6 l,

and s = 0.05 (red). The figure obviously shows the demodulated solitons. These are
nothing but a kind of bell-type solitons. The big amplitudes are in agreement with
the local opening of the chain.

Therefore, we demonstrated that ql satisfying our postulates explained above
exists. Importantly, for the acceptable values of the relevant parameters, the
corresponding soliton width matches the experimental value.
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Fig. 16 Function 	(ql) for:
x = 1/50 (blue) and
x = 1/80 (red)

Fig. 17 Demodulated
solitary waves for:
ql = 0.47 rad, x = 1

/
50

(blue) and ql = 0.20 rad,
x = 1/80 (red)

We complete this chapter with a couple of concluding remarks. We have dealt
with DNA modelling. Two models, the Y and HPB, are explained in some more
detail. They are examples of the angular and radial models, respectively. There have
been a variety of attempts to improve these models, such as the model representing a
combination of the Englander’s and PB models, which brings about the kink soliton
[75].

Let us compare the models explained in the first part of Sect. 1 with the HPB one.
A reader might come to the conclusion that the first group of themmay yield towards
the kink-type solitons, while the HPB is reserved for the breathers. However, this
would not be quite correct. Within the HPB model, the semi-discrete approximation
has been applied. It has turned out that, according to this mathematical procedure, the
breathers move along the chain. However, the continuum approximation can be used
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as well, which yields the kinks moving along the chain [76]. Besides the kinks, the
bell-type solitonswere obtained in the case of negligible viscosity. Therefore, thefinal
result does not depend on the studied system only, but on the applied mathematics
as well. Of course, a crucial question is which of these solitons really exist in DNA,
if any. It was argued that kinks and breathers do not exclude each other and that both
solitons play an important role in DNA functioning [76]. Let us keep in mind the
DNA–RNA transcription again. From the point of view of a single nucleotide pair,
two nucleotides oscillate in a transverse direction around a certain distance. If this
distance is large, then the local opening will more likely happen. The kink certainly
means a certain step, which can be an increase in the distance around which the
nucleotides oscillate. If so, then the kink could be understood as a prerequisite for
the breather [76]. Regarding the mathematical methods, it is worth mentioning the
method based on Jacobi elliptic functions [77] and fractional Lagrange formalism
[78, 79]. They yield to the breathers again, i.e., to the results obtained using the
semi-discrete approximation and shown above.

It was pointed out that the prerequisite for DNA–RNA transcription is the local
opening. However, it is known that DNA must also unwind locally to let one strand
serve as a template for the synthesis of a new strand of RNA [5]. The HPBmodel can
take this into consideration. Namely, the local angle of helixwinding is defined by the
value of the parameter h. The partially unwinding chain corresponds to the decrease
of h. We have been dealing with constant h so far. However, possible generalization,
i.e., allowing it to be a variable at TSs, could be a topic of further research.

It might be important to point out that thermodynamics of local DNA opening
was studied in [79], relying on the PBmodel. One of the future research tasks should
be an extension of this work. This means that the HPB model should be used instead
of its simpler predecessor. The HPBmodel is doubtlessly better than the PB one, and
its advantage is especially important when we study the local opening. Namely, the
term comprising K is extremely important as it describes the helicoidal structure of
DNA.

A patient reader has certainly noticed that the big amplitudes are not in agreement
with the earlier assumptions of small oscillations. This means that the HPB model
only predicts the RM and DSS modes but is not adequate for complete quantitative
analysis.

Let us complete this section with a few more words about the HPB model. The
RM and DSS modes have been studied neglecting viscosity. The introduction of the
dumping effects would be an important advantage, but a real challenge as well. Also,
these two modes have been studied independently. One of the future tasks should be
an attempt to involve both of them in a single theory. It is clear thatDNAmodelling has
made tremendous progress during the past couple of decades. However, the velocity
of increasing the volume of knowledge cannot match the velocity of appearing new
questions. This means that the life of a biophysicist working on this topic is very
interesting.
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