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The viscous flow of polymer chains in dense melts is dominated by topological constraints when-
ever the single chain contour length, N , becomes larger than the characteristic scale Ne, defining
comprehensively the macroscopic rheological properties of the highly entangled polymer systems.
Even though the latter are naturally connected to the presence of hard constraints like knots and
links within the polymer chains, the difficulty of integrating the rigorous language of mathematical
topology with the physics of polymer melts has limited somehow a genuine topological approach to
the problem of classifying these constraints and to how they are related to the rheological entangle-
ments. In this work, we tackle this problem by studying the occurrence of knots and links in lattice
melts of randomly knotted and randomly concatenated ring polymers of various bending stiffness.
Specifically, by introducing an algorithm which shrinks the chains to their minimal shapes which do
not violate topological constraints and by analyzing those in terms of suitable topological invariants,
we provide a detailed characterization of the topological properties at the intra-chain level (knots)
and of links between pairs and triplets of distinct chains. Then, by employing the Z1-algorithm on
the minimal conformations in order to extract the entanglement length Ne, we show that the ratio
N/Ne, the number of entanglements per chain, can be remarkably well reconstructed in terms of
2-chain links solely.

I. INTRODUCTION

The viscoelastic behavior of concentrated solutions or
melts of linear polymer chains can be understood assum-
ing [1–3] slow reptative flow of each chain through the
network of topological obstacles (entanglements) formed
by the surrounding chains. According to this picture, en-
tanglements confine each chain within an effective tube-
like region of diameter dT ≈ 〈b〉nK

√
Ne/nK where 〈b〉

is the mean bond length, nK is the Kuhn length of the
polymers (in monomer units [4]) accounting for the fiber
stiffness while the topological entanglement length Ne is
the characteristic, material-dependent [5–7], length scale
marking the crossover from non-entangled to entangled
polymer behavior. Then, the mean size or gyration ra-
dius 〈Rg〉 of polymer chains with contour length N & Ne
follows the power-law behavior

〈Rg〉 ∼ dT
(
N

Ne

)1/2

∼ 〈b〉nK
(
N

nK

)1/2

, (1)

and all the essential structural and dynamical informa-
tion on the melt can be understood in terms of the single
parameter Ne. Although, in general, estimating Ne is a
challenging problem [5, 8], considerable progress has been
made (at least in numerical simulations) in terms of prim-
itive path analysis [9–11] (PPA): by exploiting the simple
yet ingenious idea [2] that linear chains can be “coarse-
grained” down to their minimal path without violating
the topological constraints, PPA provides an intuitive un-
derstanding of the microscopic nature of entanglements.
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Alternatively, polymeric entanglements may be also
modeled as physical links between chains [11–20]. Specifi-
cally, the idea is “to map” the system of entangled chains
to an equivalent one of randomly entangled (namely, self-
knotted and linked) ring polymers and employ suitable
topological invariants [21] in order to identify and then
classify – in a mathematically rigorous manner! – the
total amount of entanglements of the melt and connect
them to the macroscopic viscoelastic behavior.

The connection between the two pictures is, however,
not that straightforward: mainly, the reason is that the
complete statistical-mechanical classification of a poly-
mer melt would require an infinite set [14, 16] of topo-
logical invariants in terms of pairs, triples, etc... of loops,
not to mention that analytical theories are mathemati-
cally hard [22] and their applicability to dense systems is
limited.

Motivated by these considerations, in this article we
rethink the problem of characterizing a melt of entan-
gled polymer chains in terms of topological invariants
and outline, in a quantitative manner, the connection be-
tween the latter and the topological entanglement length
of the chains. More specifically, we perform extensive
computer simulations of randomly knotted and randomly
concatenated ring polymers at dense conditions and dif-
ferent values of the bending stiffness of the polymer fiber
as models for entangled polymer systems.

Then, inspired by PPA and by the recent work of Bob-
bili and Milner [19] on molecular dynamics simulations
of melts of randomly linked ring polymers, we construct
an algorithm for contracting the contour length of each
ring in the melt to its “primitive” or “minimal” length
which does not violate the topological constraints with
the other rings. The conformational properties of the
primitive ring structures are thus explored at the single-
ring level (knots), between any rings’ pair (see the White-
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a) Whitehead link b) Borromean rings

FIG. 1. Examples of ring polymer structures with Gauss
linking number (GLN, see Eq. (3)) equal to 0. (a) Two rings
intertwined in the Whitehead link 52

1. (b) Three rings clus-
tered into the Borromean conformation 63

2. Both conforma-
tions have been extracted from numerical simulations of ring
polymer melts after the minimization procedure described in
the text. To name the conformations here and in the rest of
the text, we have used the classical nomenclature introduced
in Rolfsen’s book (see Sec. II C).

head link in Fig. 1(a)) and between any rings’ triplet (see
the complex Borromean configuration in Fig. 1(b)). By
looking at the relative abundance of these topological
structures as a function of the bending stiffness of the
polymers, we combine them into a proxy for the quanti-
tative prediction of the number of entanglement lengths,
N/Ne, of the polymers.

The paper is structured as the following: In Section II,
we present some technical details of the lattice polymer
model, we explain the shrinking algorithm developed for
the calculation of the ring minimal path and introduce
the notation and the topological invariants for the char-
acterization of knots and links and, finally, we illustrate
the idea behind the Z1-algorithm used for the calcula-
tion of the entanglement length. In Sec. III we present
the main results of our work, while in Sec. IV we provide
some discussion and conclusions regarding the connection
between knots, 2-chain and 3-chain links and the entan-
glement length of the polymers. Additional figures have
been included in the Supporting Information (SI) file.

II. MODEL AND METHODS

A. Polymer model

Model systems of M concatenated and knotted ring
polymers of N monomers each were prepared based on
the kinetic Monte Carlo (kMC) algorithm illustrated in
Refs. [23, 24]. The polymer model, which is defined
on the three-dimensional face-centered-cubic (fcc) lat-
tice of unit step = a, accounts for (i) chain connectiv-
ity, (ii) bending stiffness, (iii) excluded volume and (iv)
topological rearrangement of the polymer chains. The
kinetic algorithm consists of a combination of Rouse-
like and reptation-like moves for chain dynamics which
take advantage of a certain amount of stored contour

κbend/(kBT ) 〈b〉/a 〈cos θ〉 nK

0 0.733 0.186 1.965
1 0.695 0.455 3.157
2 0.663 0.638 5.118

TABLE I. Values of physical parameters for the ring polymer
melts investigated in this paper. a is the unit distance of the
fcc lattice and the monomer number per unit volume is =
5
4

√
2a−3, see text and Ref. [24] for details. (i) κbend, bending

stiffness parameter in stat. mech. thermal units kBT , where
kB is the Boltzmann constant and T is the temperature; (ii)
〈b〉, mean bond length [25]; (iii) 〈cos θ〉, mean cosine value
between two consecutive bonds along the chain [25]; (iv) nK ,
Kuhn length [26].

length along the polymer filament which eases the pro-
cess of chain equilibration. This has the consequence that
polymers are locally elastic, with fluctuating monomer-
monomer bonds of mean length = 〈b〉 implying that the
effective polymer contour length is = N〈b〉.

Ring conformations were equilibrated through long
runs at the average monomer number per lattice site
= 5

4 = 1.25 or unit volume = 5
4

√
2a−3 correspond-

ing to melt conditions. By modulating the Kuhn seg-
ment nK through the bending penalty Hamiltonian H =

−κbend
∑N〈b〉/a
i cos θi, where κbend is the bending stiff-

ness and θi is the angle between two consecutive bonds
along the chain, it can be shown [24] that chains be-
come locally stiffer: Table I summarizes (i) the mean
bond length 〈b〉, (ii) the mean cosine value 〈cos θ〉 be-
tween two consecutive bonds along the chain, (iii) the
Kuhn length nK , as a function of κbend. The simu-
lation box of linear size Lbox has periodic boundaries
for the enforcement of bulky melt conditions. By fixing
the total number of monomers to the convenient value
= 134, 400, we have that Lbox/a = 30

√
2. In this pa-

per, we have studied polymer melts with N × M =
(40× 3360, 80× 1680, 160× 840, 320× 420, 640× 210).

As illustrated in Ref. [23], we introduce random strand
crossing between nearby polymer strands at the fixed
rate of one per 104 kMC elementary steps. In this way,
we induce the violation of the topological constraints
and obtain equilibrated melts of rings with intra-chain
(i.e., knots) and inter-chain (i.e., links) non-trivial and
randomly-generated topologies. By construction then,
the algorithm generates rings with annealed topologies,
in other words our ring conformations represent a ther-
modynamic ensemble of melts of randomly knotted and
concatenated rings at the given density for different poly-
mer lengths N and bending rigidities κbend. To ensure
proper system equilibration, the total computational cost
of the simulations goes from 2× 106τMC for N = 40 and
κbend = 0 to 7× 107τMC for N = 640 and κbend = 2kBT .
Here, τMC – the MC “time” unit [23, 24] – is equal to
N ×M kMC elementary steps.

Violation of topological constraints by random strand
crossing induces a massive reorganization of the statistics
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of polymer chains. As studied in Ref. [23], while unknot-
ted and non-concatenated rings remain compact with
asymptotic mean gyration radius following the power-law

〈Rg〉 ∼ N1/3 ,

randomly knotted and randomly linked melt of rings
swell as

〈Rg〉 ∼ N1/2 ,

i.e., locally they become equivalent to melts of linear
chains (see Eq. (1) and Fig. S1 in SI). Furthermore, the
distinctive anti-correlation of the bond-vector correlation
function,

c(n) =
〈~t(n′) · ~t(n+ n′)〉

〈~t(n′)2〉
, (2)

as a function of the effective monomer length separation,
n, along the chain reported [24, 27] in melts of unknot-
ted and non-concatenated rings disappears in randomly
linked systems (see Fig. S2 in SI), whose behavior is close
to the one for linear chains (see dashed lines). Overall,
we may conclude that randomly linked rings reproduce
the essential features of entangled linear polymer chains
in melt. In the next, we will use these systems to inves-
tigate the microscopic nature of entanglements by means
of the rigorous language of topological invariants.

B. Algorithmic pipeline to rings minimal paths

In order to detect and classify topological interactions
in equilibrated melts of entangled rings, we introduce a
simple “shrinking” algorithm which takes explicit advan-
tage of the presence of stored lengths along the contour
length of each chain. Specifically, the algorithm consists
in iterating the following steps:

1. We remove away all the stored lengths from the
polymers. Of course, this excision process leads to a
reduction of the total contour length of each chain.
Notice that – by construction – this does not lead
to violations of the topological constraints, neither
intra-chain ones (such as knots, for instance) nor
between different chains (i.e., links).

2. After the excision, we perform a short MC run (of
the order of 10 − 100τMC) under global preserva-
tion of topological constraints (i.e., without strand
crossing). In general, this step leads to formation
of new units of stored length which, in turns, will
be removed by the next implementation of step (1),
and so on.

The procedure stops when the number of monomers of
each shrinking chain has not changed for 300 consecutive
iterations: in this case, we assume that each chain has
reached its minimal shape. To validate the algorithm,

we have tested it first on the “trivial” case of unknotted
and non-concatenated ring polymers in melt. We have
thus verified that shape minimization of rings taken one
by one or simultaneous application of the procedure on
the whole melt lead to what is expected based on intu-
ition: that individual rings shrink to single points. Then,
by our algorithm, we may isolate unknotted and non-
concatenated configurations from those with non-trivial
topologies.

C. Classification of knots and links

Following the contour length simplification outlined in
Sec. II B, we have investigated the statistical abundance
of the following topological objects: (i) knots in single
ring polymers (Sec. III A); (ii) links between pairs of ring
polymers (2-chain topological structures, Sec. III B); (iii)
links between triplets of ring polymers (3-chain topolog-
ical structures, Sec. III C). We do not proceed beyond
(iii) because, although in principle the procedure can
be applied to even larger groups of rings, the factorial
growth of possible combinations makes the analysis te-
diously lengthy from the computational point of view.
On the other hand, it will be shown (Sec. III D) that this
is perfectly adequate to capture the entanglement length
Ne.

1. Notation

In referring to a given knot or link we follow stan-
dard convention as explained in the book by Rolfsen [28].
Namely, a knot or a link is defined by the symbol Kp

i
where: K represents the number of irreducible crossings
of the knot (or the link), p is the number of rings which
takes part in the topological structure (e.g., p = 2 for
links between two rings) and i is an enumerative index
assigned to distinguish topologically inequivalent struc-
tures with the same K and p. For knots in single rings
p = 1 is tacitly assumed and, as an example, the simple
trefoil knot is identified by the Rolfsen’s symbol 31.

2. Topological invariants

Non-trivial knots and links can be detected and hence
classified by means of suitable topological invariants [21,
29]. In this work, we resort to the method of the so called
Jones polynomials [30] which assign to each knot a dis-
tinctive algebraic polynomial. Specifically (Sec. III A),
we use the implementation of the Jones polynomials fea-
tured in the Python package Topoly [31] in order to rec-
ognize and categorize knots within single ring polymers
and, in this way, benchmark the simplification algorithm
of Sec. II B.

Moreover, and as for links alone [32], we also consider
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the simpler Gauss linking number (GLN):

GLN ≡ 1

4π

∮
C1

∮
C2

(~r2 − ~r1) · (d~r2 ∧ d~r1)

|~r2 − ~r1|3
, (3)

which gives the number of times two closed loops C1 and
C2, parametrized respectively by coordinates ~r1 and ~r2,
wind around each other. While intuitive and easier to
compute with respect to the Jones polynomials, the GLN
has nonetheless severe limitations [29]. It is in fact widely
known that, while GLN 6= 0 means that the two rings are
linked, the opposite (GLN = 0) is not necessarily true.
Take for instance the example shown in Fig. 1(a), i.e.
the so called Whitehead link 521, constituted by two irre-
ducibly linked rings and yet GLN = 0. On top of that,
one may imagine even more complex situations such as
the one displayed in Fig. 1(b) (the so called Borromean
conformation 632) where 3 rings, which are two-by-two
non-concatenated, are irreducibly linked: such structures
are, obviously, also not detected by Eq. (3). In the course
of the paper (Sec. III), we will show how these structures
(which elude Eq. (3)) can be properly detected and, then,
how to quantify their impact on the entanglement prop-
erties of the melt.

D. Calculation of the entanglement length

By following the approach by Bobbili and Milner [19]
for molecular dynamics simulations of a melt of seem-
ingly shrunk and randomly linked ring polymers, we es-
timate Ne by applying the recent version (Z1+ [33]) of
the Z1-algorithm [10, 34–36]. The Z1-algorithm consists
in the implementation of a series of geometrical opera-
tions which transform the entangled polymer chains in
a collection of straight segments which are sharply bent
at the entanglement points, then one may estimate Ne
as the average length of these straight segments. In par-
ticular, the Z1+ version takes explicitly into account the
role of chain self-entanglements (knots) during the de-
termination of Ne. The effects of it will be discussed in
Sec. III D.

III. RESULTS

In the next, we will describe results concerning the
appearances of knots (Sec. III A) and links (Secs. III B
and III C) in melts of entangled randomly linked rings
of different chain length and bending stiffness. Then
(Sec. III D), we will show how to establish a direct con-
nection between the topology of links and the entangle-
ment length of the chains. While we have considered dif-
ferent chain lengths (Sec. II A), covering the full crossover
from loosely to strongly interpenetrating polymers, for
brevity we will present many results only for the most
representative and longest chains with N = 640.

A. 1-chain topological structures, knots

First, we have applied our algorithm (Sec. II B) to de-
tect knots in single rings and, to prove its reliability, we
have applied the Topoly tool (Sec. II C 2) to the simplified
ring shape in order to classify the relative knot type. As
a result, we have always found a non-trivial Jones poly-
nomial in correspondence of those rings which do not
shrink to a point, in other words the shrinking algorithm
recovers knots successfully and map one-to-one to the re-
sults obtained by Topoly, see Fig. 2 (l.h.s. panel) for the
probability Punknot that a ring is unknot as a function of
the monomers number N and at different bending stiff-
ness κbend. Overall Punknot is always a decreasing func-
tion of the polymer length N , a result in line [37, 38]
with other generic polymer models. At the same time,
for fixed N , Punknot decreases as a function of κbend or
stiffer rings are more likely to form knots with respect to
more bendable ones and this difference appears growing
with N : this feature seems also quite general having been
reported recently [39] in the context of computer sim-
ulations of isolated semiflexible ring polymers. Notice,
however, that the probability to observe a knot remains
small (for κbend/(kBT ) = 2 and N = 640, this is only
= 1− Punknot ≈ 14%).

While Jones polynomials (as well as any other topo-
logical invariant) inform us on the knot type “trapped”
within the ring, by our shrinking algorithm we may
also quantify the “amount” of topological entanglement
“stored” within a non-trivial knot in terms of the cor-
responding “minimal” length scale: in particular, rings
hosting “simpler” knots (i.e., low-crossing knots) shrink
more and occupy less primitive length in comparison to
more complicate knots. To show this, we have computed
the mean value, 〈Lmin〉, of the ring minimal contour
length as a function of the crossing number K charac-
terizing the hosted knot. In principle the ring minimal
contour length is a random quantity because the shrink-
ing procedures goes stochastically, on the other hand we
see that the these fluctuations are, for each knot type,
comparably small (Fig. S3 in SI), i.e. the minimization
procedure converges to a well defined minimal shape. No-
tably 〈Lmin〉 is a genuine topological signature, it is al-
most insensitive to the bending stiffness κbend (see Fig. 2
(r.h.s. panel)) and it grows with the characteristic power-
law Kα with α ' 0.81 (dashed line). Interestingly, the
same power-law behaviour in relation to the scaling of
the minimal rope length required to tie a non-trivial knot
into a flexible rope has been reported recently [40]: we
conclude then that, for a given knotted ring, our mini-
mization algorithm converges to the corresponding min-
imal knot structure. Moreover, and again in agreement
with [40], we find that the so called alternating knots,
namely knots where crossings alternate under/over when
moving along the filament, display bigger 〈Lmin〉 and are
less frequently seen (Figs. S3 and S4 in SI, respectively,
for K ≥ 8 only [41]) than the non-alternating ones for
the same number of crossings.



5

Composite 

knots

>

12


20

30

40

60

50

<L
m

in
>

K

N = 640

FIG. 2. (Left) Punknot, probability that a ring is unknot as a function of the number of monomers, N , and for different
bending stiffness, κbend. The shrinking algorithm (solid lines) and Topoly (dashed lines) are in perfect agreement. (Right)
〈Lmin〉, average minimal contour length of rings with N = 640 monomers as a function of the knot crossing number, K, and for
different bending stiffness, κbend. Each error bar corresponds to the standard deviation calculated for the ring population at
the respective crossing number K. The data are well described by the simple power-law behavior ∼ K0.81 (dashed line). The
generic label “> 12” follows from the fact that Topoly is unable [31] to recognize properly knots with > 12 crossings.

B. 2-chain topological structures, links

After having investigated the amount of knots, we
turn our attention to the topological interactions between
pairs of rings. To this purpose, we have devised the fol-
lowing way to distinguish between those links which have
Gauss linking number (Eq. (3)) GLN 6= 0 and links with
GLN = 0 (such as the Whitehead link, see Fig. 1(a)).
A link between two closed chains with GLN = 0 can
be unlinked by performing a certain number of cross-
ings between strands of the same chain, while the ones
with GLN 6= 0 can not be simplified and would remain
linked. According to that, we have applied the shrinking
procedure to the two rings in the two distinct manners:
(i) straightforwardly as described in Sec. II B; (ii) with
intra-chain crossing allowed. In this way, the excess of
links between pairs of rings with GLN = 0 can be mea-
sured as the “difference” between (i) and (ii). In order
to test the robustness of this procedure, we have com-
puted the corresponding Jones polynomial for the linked
rings which display GLN = 0. In the end, it turns out
that only the pairs of rings which emerge as non-trivially
linked feature non-trivial Jones polynomials as well.

The mean number of links per chain with absolute
Gauss linking number |GLN|, n2link(|GLN|), for rings
with N = 640 and different bending stiffness is shown
in the l.h.s. panel of Fig. 3 and in Fig. S5 in SI for the
other polymer lengths. We find that links are mainly
simple Hopf links (i.e., |GLN| = 1), while links with
GLN = 0 are rare and have frequency in between that
for |GLN| = 2 and |GLN| = 3. More complex links
follow an exponentially-decaying distribution, in agree-
ment with [23]. Finally, there exist many possible types
of non-equivalent links for GLN = 0 and we have fur-

ther investigated, by the Jones polynomials, which struc-
tures emerge and their relative abundance (Fig. 3, r.h.s.
panel). As one may see, polymer conformations are dom-
inated by the Whitehead link (Rolfsen’s symbol: 521)
which, of course, is the simplest one in terms of crossings.
Nonetheless, we report a remarkably complex spectrum
of link types which is very little affected by the bending
stiffness of the chains. In particular, at number of cross-
ings ≥ 7, we find that the most abundant links result
to be the non-alternating ones with probabilities signifi-
cantly higher than the alternating ones. The only notable
exception is for 9 crossings where the non-alternating 9247
occurs with the same frequency of 925 and 9210 which are
indeed alternating: overall, though, all these links are
very rare.

C. 3-chain topological structures, links

We consider now topological structures between ring
triplets. We point out that 3-chain links can be divided
in two categories: those which can be reduced to the pair
composition of 2-chain structures and those which can
not or irreducible. Those belonging to the first group are:
(a) poly(3)catenanes, chains made of three rings in which
two non-concatenated rings are connected to a common
ring and (b) triangles, triplets of rings which are two-
by-two concatenated. Thanks to the detection of pair-
wise links (Sec. III B) their presence can be efficiently
assessed. The presence of these structures has been am-
ply documented in melts of concatenated rings [42], in
particular they can be identified – subject to the limi-
tations discussed in Sec. III B – via the summation of
pairwise concatenations and the relative GLN. On the
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FIG. 3. (Left) 〈n2link(|GLN|)〉, mean number of 2-chain links per ring with absolute Gauss linking number |GLN|. (Right)
P (K2

i |GLN = 0), fractional population of 2-chain links K2
i (termed according to the Rolfsen’s convention [28]) having GLN = 0.

Here, as well as in the r.h.s. panel of Fig. 4 and Fig. S4 in SI, error bars are estimated by assuming the formula for simple binomial
statistics for the probability of observing a given link (knot, in Fig. S4 in SI) type in the total population. Empty/full circles
are for alternating/non-alternating links while vertical dotted lines separate link classes with the same number of crossings.
The displayed link labels correspond to those links appearing with the highest frequency in their class of number of crossings
K. The generic label “> 9” follows from the fact that Topoly is unable [31] to recognize properly links with > 9 crossings. In
both panels, data refer to rings with N = 640 and different bending stiffness κbend.

other hand, irreducible three-chain links – which fail de-
tection by decomposition into pairwise linkings – can be
divided further in two classes: (c) poly(2)catenane+1-
ring, structures made of a poly(2)catenane (i.e., a pair
of concatenated rings) plus another ring which is not di-
rectly concatenated (in a pairwise manner) with any of
the two’s, and (d) Brunnian links, non-trivial links which
become a set of trivial links whenever one component ring
is unlinked from the others (the Borromean conformation
in Fig. 1(b) constitutes the easiest example).

In order to characterize the relative abundance of each
of these structures, we have studied the mean number
of different 3-chain links per ring, 〈n3link〉. We find
(Fig. 4, l.h.s. panel) that links take part maximally to
poly(3)catenane and triangle structures, yet, although
rarer, the other two classes appear in detectable amounts.
Notably, as for single knots and 2-chain links (l.h.s. pan-
els of Fig. 2 and Fig. 3), abundance of 3-chain structures
increases with chain stiffness. As for the links, within the
(c) and (d) classes we have analyzed the different topo-
logical inequivalent concatenated structures with Topoly.
Due to the complexity of the analyzed structures, Topoly
is unable to classify them properly in about 50% of the
cases after 9 crossings. As for the successfully deter-
mined links (Fig. 4, r.h.s. panel), we get that the most
abundant links are 632 (i.e., the Borromean rings) and
839 (which belongs to class (c)). Again, at fixed num-
ber of crossings, the most abundant structures are the
non-alternating ones (835, 9310 and 9312 are all alternating),
thus highlighting the preference towards non-alternating
linked structures.

D. Quantitative connection to the entanglement
length Ne

By applying the shrinking algorithm to the whole melt,
topological interactions of any order are taken into ac-
count and, finally, we can assess their contribution to the
topological entanglement length Ne (Eq. (1)). In gen-
eral, the process of shrinking reduces the contour length
of each ring inasmuch the topological constraints allow.
Thus, if a ring is unknotted and non-concatenated it will
shrink to a point and it will be not taken into account
since it is assumed to not contributing to the entangle-
ment length of the chains. Conversely, the more the rings
are entangled the less they will shrink. Then we apply
(see Sec. II D for details) the Z1-algorithm [10, 33–36] on
the shrunk structures and estimate Ne by that. Fig. 5
shows the values of Ne as a function of N and for the
different bending stiffness κbend. In all cases Ne tends
to an asymptotic value (Ne = [40.(2), 24.(5), 16.(5)] for
N = 640 and for κbend/(kBT ) = 0, 1, 2, respectively),
while the large values of Ne measured at small N is due
to the fact that rings are loosely linked, in contrast at
larger values of N rings result to be concatenated into
a single percolating network of concatenated rings (see
Fig. S6 in SI).

While, not surprisingly [24], Ne decreases as poly-
mers become stiffer it is worth comparing these values
to the ones (Ne = [80.37(9), 29.76(4), 13.08(8)]) obtained
by us [24] by applying theoretical results based on PPA:
reasonable agreement exists for κbend/(kBT ) = 1, 2 while
for κbend/(kBT ) = 0 the new value is about a factor
of 2 off. Interestingly, in Ref. [36] it has been shown
that different ways of estimating Ne may indeed lead to
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6 8 9 > 9N = 640

FIG. 4. (Left) 〈n3link〉, mean number of different 3-chain structures per ring. (Right) P (K3
i |irreducible), fractional population

of 3-chain links K3
i (termed according to the Rolfsen’s convention [28]) belonging to the poly(2)catenane+1-ring and Brunnian

classes (see text for details). These are “irreducible” with respect to the simpler compositions of 2-chain links. As in Fig. 3,
empty/full circles are for alternating/non-alternating links while vertical dotted lines delimit link classes with the same number
of crossings. Similarly, the generic label “> 9” follows from the fact that Topoly is unable [31] to recognize properly links with
> 9 crossings. In both panels, data refer to rings with N = 640 and different bending stiffness κbend.
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FIG. 5. Entanglement length, Ne, as a function of the
number of monomers per chain, N , and for different bend-
ing stiffness, κbend. Solid and dashed lines are, respectively,
after including/removing self-entanglements (knots) through
the Z1-algorithm (see technical details in Sec. II D).

quite different results. While, a priori, we did not expect
the same results for the two methodologies, it is unclear
where the big discrepancy for the more flexible rings may
come from. Certainly (compare solid and dashed lines
in Fig. 5) self-entanglements (i.e., knots) do not play a
sensitive role, in agreement with the result (Sec. III A)
that only a small fraction of the rings (≈ 10%) display
knots. Overall, the difference in the entanglement length
looks in agreement with earlier findings by us [23] where
it was shown that if the rate of strand crossing was not
fast enough the system of dynamically concatenated rings
may be actually slowed down with respect to the same
system of unknotted and non-concatenated rings.

Finally we show how to connect, in a quantitative
manner, Ne to the linking properties of the rings (see
Secs. III B and III C). To this purpose, we define the ring
mean linking degree 〈LD〉 as:

〈LD〉 =
1

M

M∑
i=1

M∑
j=1

χij Cij , (4)

where each sum runs over the total number of chains
(M , see Sec. II A) in the melt. Cij is the M ×M matrix
expressing the concatenation status between rings i and
j, it is defined as

Cij =



0 , if i = j

1 , if i 6= j and form a 2-chain
or a 3-chain irreducible link

0 , otherwise

(5)

while the “weight” factor χij = K
2 or χij = K

6 for, respec-
tively, 2- or 3-chain links and where K is the number of
crossings characterizing the link or, in other words, each
crossing of the link contributes 1/2 to an entanglement
point. Fig. 6 (l.h.s. panel) show that, by only taking
into account the contribution of 2-chain links and in the
large-chain limit, Eq. (4) accounts remarkably well for the
number of entanglements, N/Ne, of each chain. Further
inclusion (r.h.s. panel) of 3-chain links adds only a small
contribution, otherwise it does not improve the agree-
ment significantly. This is probably the most important
result of this work: it says that 2-chain links alone cap-
ture almost completely the nature of the entanglement
length Ne and that, through Eq. (4), a true quantitative
connection between them can be established.
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FIG. 6. Number of entanglements per ring, N/Ne, as a function of the mean linking degree, 〈LD〉, computed (see Eq. (4)) by
taking into account the contribution from 2-chain links solely (left) and after including (right) also the contribution of 3-chain
links.

IV. DISCUSSION AND CONCLUSIONS

Understanding the microscopic nature of topological
constraints in melts of polymer chains is a long-standing,
classical [5, 8, 13, 14] problem in soft matter physics. In
this work, we have characterized accurately the topologi-
cal state of melts of randomly knotted and concatenated
ring polymers used as models for (long) linear polymer
systems and, then, show its relationship with the entan-
glement length Ne of the chains which is the central quan-
tity of any rheological theory [1–3].

In order to accomplish the task, we have first shrunk
the chains to their “minimal shape” by introducing a
simple numerical algorithm which chops off progressively
the contour length of the chains without producing any
violation of the topological constraints present in the sys-
tems. After that, we have systematically carried out an
analysis of rings’ topology from the single-chain (knots)
to 2- and 3-chain (links) levels.

By using the Jones polynomials as suitable topological
invariants, we have characterized the topological spec-
trum as a function of the bending stiffness of the chains
by finding, in particular, that stiffer rings are more knot-
ted and more concatenated with respect to more flexible
ones (Figs. 2, 3 and 4). We have also found that, quite
systematically, for both knots and links non-alternating
structures are more likely to be present with respect to
the alternating ones (at the same topological complex-
ity). By applying the Z1-algorithm on the shrunk struc-
tures, we have computed the entanglement length Ne of
the melts for the different stiffnesses and found that chain
self-entanglements (knots) do not play a significant role
on Ne (Fig. 5) in fair agreement with the fact that rings
are rarely knotted (Fig. 2). Most importantly, we have
demonstrated (Fig. 6) that the ring mean linking degree
〈LD〉, which accounts for the mean number of entangle-
ment points of each chain in the melt, is a prior for the

number of entanglements N/Ne which points to a non-
trivial connection between the topology of the chains and
the rheological entanglement of the system. Interestingly,
the quantitative matching between 〈LD〉 and N/Ne is
already remarkably accurate only by including the con-
tributions up to the simplest 2-chain linked structures
suggesting that, at least for the chain lengths examined
here, links of higher orders contribute negligibly. Overall,
these findings highlight the connection between the rhe-
ological entanglements and the topological links between
distinct chains acting at the microscopic level.

To conclude, while this work is mostly focused on
understanding the relation between the rheological en-
tanglement of the melt and the microscopic topolog-
ical state of its constituent chains, model conforma-
tions of randomly knotted and concatenated rings can
be adopted [23] to understand the mechanisms of syn-
thesis of so called Olympic gels, namely polymer gels
made of randomly linked rings like the ones now realized
by using DNA and cutting restriction enzymes [43]. In
particular, the possibility to perform fine tuning of the
fiber parameters allow to foresee in great detail how one
can benefit from the topological properties of the gel and
design materials with certain specificities. For instance,
a by-product of the present work concerns how the poly-
mer length, combined with the bending stiffness of the
chain, influence the topology of the resulting structure.
Depending on κbend, there is a different critical N for
which a percolating network of concatenated rings ap-
pears (Fig. S6 in SI), in particular longer and stiffer rings
typically produce more robust networks. Moreover, de-
pending on N and κbend the networks are constituted by
a complex zoo of catenation motifs: Hopf links, which are
the most abundant for all considered N and κbend (Fig. 3
(l.h.s. panel) and Fig. S5 in SI), some more complex links
with GLN = 0 (e.g, the Whitehead link) and |GLN| > 1
or links involving 3-chain structures whose abundances
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grow with N and κbend (see Fig. 3 (r.h.s. panel) and
Fig. 4). These considerations highlight the topological
complexity which may arise in Olympic gels made up by
strand-crossing rings as in [43] and how topology can be
fine regulated by controllable external parameters such
as N and κbend.
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[34] S. Shanbhag and M. Kröger, Macromolecules 40, 2897
(2007).

[35] N. C. Karayiannis and M. Kröger, International Journal
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FIG. S1. Mean-square gyration radius 〈R2
g〉 for melts of unknotted and non-concatenated rings (data from Ref. [24]) and

randomly linked rings as a function of the total number of monomers per ring, N . Panels from left to right are for bending
stiffnesses κbend/(kBT ) = 0, 1, 2 (see label).
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(a) Unknotted and non-concatenated rings (b) Randomly linked rings
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FIG. S2. Bond-vector correlation function c(n) (Eq. (2) in the main paper) as a function of the effective monomer length,
n/Ne, normalized with respect to the entanglement length Ne. The l.h.s. and r.h.s panels are for (a) melts of unknotted and
non-concatenated rings (data from our previous work Ref. [24]) and (b) randomly linked rings studied in this paper. Lines of
equal color are for the same chain stiffness (κbend in units of kBT , see legend), full colors are for the longest rings (N = 640),
while lines in fainter colors are for chains of shorter contour lengths (see arrow’s direction). The long-dashed lines correspond
to the exponential decay typical of linear polymers with local stiffness, i.e. c(n) = 〈cos θ〉n. The values for 〈cos θ〉 and Ne used
in panels (a) and (b) are from, respectively, Ref. [24] and the present work (see Table I and Sec. III D in the main paper).
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FIG. S3. Average ring minimal contour length (with error bars), 〈Lmin(Ki)〉, computed for each knot type. The labels on the
x-axis are for each possible knot at the given K; for K ≥ 9, the labels (starting from 1) appear with regular spacing for reasons
of space (except the panel “K = 12, alternating” where only two knots have been detected). As in Figs. 3 and 4 in the main
text, empty/full circles are for alternating/non-alternating knots. As in the rest of the paper (see Sec. II C 1 in the main text),
knots with K ≤ 10 crossings are named according to the Rolfsen’s convention while knots with K = 11 and K = 12 crossings
are conventionally [31] split into alternating, Ka i, and non-alternating, Kn i, ones with the ordered index i ≥ 1 in both cases.
Data with no error bars are for rare knot types, which occur only once in the generated melt conformations. The results shown
here are for rings with N = 640 monomers and different values of the bending stiffness, κbend.
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FIG. S4. Fractional population (with error bars), P (Ki), computed for each knot type. Notice that the values on each y-axis
have to be multiplied by the power-law reported on the top left corner of the corresponding panel. Symbols, labels and notation
are as in Fig. S3. Large error bars are due to the limited size of the relative sample.
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FIG. S5. 〈n2link(|GLN|)〉, mean number of 2-chain links per ring with absolute Gauss linking number |GLN|. Results for rings
with N monomers (to be compared to the results for N = 640 reported in the l.h.s. panel of Fig. 3 in the main text).
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FIG. S6. (Left) Probability, Punlink, that a ring is not concatenated to any other ring of the system as a function of N
and κbend. (Right) Mean fraction of rings, 〈Mcc〉/M , belonging to the largest connected component of chains in the melt as a
function of N and κbend.
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