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Cats use the connection governing parallel transport in the space of shapes to land safely on
their feet. Here we argue that this connection also explains the impressive performance of molecular
motors by enabling molecules to evade conclusions of Feynman’s ratchet-and-pawl analysis. We first
demonstrate, using simple molecular models, how directed rotational motion can emerge from shape
changes even without angular momentum. We then computationally design knotted polyalanine
molecules and show how their shape space connection organizes individual atom thermal vibrations
into collective rotational motion, independently of angular momentum. Our simulations show that
rotational motion arises effortlessly even in ambient water, making the molecule an effective theory
time crystal. Our findings have potential for practical molecular motor design and engineering and
can be verified through high-precision nuclear magnetic resonance measurements.

INTRODUCTION

Exploring the physical principles governing the oper-
ation of biomolecular machines, including proteins that
are vital to all living cells, is a challenging task yet has
the potential to improve various aspects of human life
[1]. However, developing synthetic and artificial molec-
ular machines that can replicate their motion control
and functionality remains a daunting undertaking [2–4].
The current understanding is that nonequilibrium statis-
tical physics is the best approach [5]. This perspective
originates from Feynman’s exploration of the Brownian
ratchet-and-pawl [6]. He showed that a ratchet in ther-
mal equilibrium with its surroundings would only exhibit
random thermal tumbling, and the concept of a Brown-
ian motor aims to overcome the limitations he identified
[1–4]. Subsequent investigations of linked and knotted
molecular structures propose that topology also holds
promise for advancing the field [7–11].

Here we propose a novel perspective on how biomolec-
ular motors generate and sustain directed rotational mo-
tion, even in the viscous environment of water at phys-
iological temperatures. While Feynman’s ratchet-and-
pawl analysis posits that the ratchet relies on an exter-
nal torque from the pawl to direct its rotation, we suggest
that biomolecular motors are deformable bodies that uti-
lize the geometry of their shape space to autonomously
direct their thermal shape changes into a collective and
sustainable rotational motion, without requiring any ex-
ternal torque or angular momentum. Our novel paradigm
builds on two theoretical ideas that were both unknown
to Feynman. The first is the geometric concept of a
connection in the shape space, originally introduced by
Guichardet [12], Shapere and Wilczek [13]. They ex-
plained why a deformable body can perform rotational
motion simply by changing its shape. In mathematical
terms, a continuous shape change is a trajectory in a

space of all possible shapes, and the connection in this
space relates a continuous shape change to parallel trans-
port [14–17]. For cyclic shape deformations the result is
a rotational motion with a direction that depends on the
connection. The second idea is the notion of a time crys-
tal [18, 19] that explains how a physical object can ro-
tate continually and effortlessly, even in the lowest energy
ground state of its thermodynamical free energy. In the
case of a biomolecular motor, the ambient water provides
a thermodynamically stable environment, with recurrent
thermal collisions that continually change the shape of
the molecule. The connection [12–17] organizes these
minute shape changes into a directed, effective theory
timecrystalline rotational motion of the entire molecule
that can persist indefinitely even in the absence of any
angular momentum, until the system changes.

THEORETICAL CONSIDERATIONS

We gain insight into our proposal, by examining the
time evolution of a deformable triangle with three point-
like interaction centers such as atoms or small molecules
at the vertices ra(t) (a = 1, 2, 3); for clarity we assign to
each of them an equal unit mass. Steric effects prevent
the vertices from overlapping, and with no external forces
the center of mass is stationary and we place it at the
origin r1(t) + r2(t) + r3(t) = 0. The shape can change
arbitrary, provided the angular momentum vanishes

L = r1 × ṙ1 + r2 × ṙ2 + r3 × ṙ3 = 0 (1)

The triangle then moves only on its own plane [12] that
we take to coincide with the z = 0 plane. Two shapes
are the same when they differ at most by a rigid rota-
tion around the z-axis. To describe shape changes, we
assign to the vertices shape coordinates sa = (sax, say).
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They describe all possible shapes of the triangle except
a rotation, when we subject them to the following three
conditions: First, the vertex s1(t) can move back and
forth along the positive x-axis, but it can never leave
this axis. Second, the vertex s2(t) can move freely on
the upper half-plane s2y(t) > 0. The position of the re-
maining vertex s3(t) is determined by our third condition
s3(t) = −s1(t)−s2(t). The actual space coordinates ra(t)
can then deviate from the sa(t) at most by an overall spa-
tial rotation of the triangle around the z-axis(

rax(t)
ray(t)

)
=

(
cos θ(t) − sin θ(t)
sin θ(t) cos θ(t)

)(
sax(t)
say(t)

)
(2)

and we take θ(0) = 0 so that ra(0) = sa(0) initially. To
check whether there is any rotational motion, we substi-
tute (2) into (1). With

Izz =

3∑
i=1

s2i & Lz =

3∑
a=1

(say ṡax − saxṡay)

the zz-component of the moment of inertia tensor and
the z-component of the angular momentum in the shape
space, respectively, the rotation angle at time t is

θ(t) ≡
t1∫
0

dt′
dθ(t′)

dt′
=

t∫
0

dt′ I−1zz Lz (3)

Guichardet, Shapere and Wilczek [12, 13] realized that
the r.h.s. of (3) defines a connection one-form that is in
general non-vanishing. Its integral along different shape
space trajectories evaluates the rotational effect of differ-
ent periodic shape deformations.

We have analyzed two simple molecule-inspired [20] ex-
amples; additional examples can be found in [21, 22]. In
both, we describe shape deformations using bond lengths
Dab = |sa− sb| that we combine into the distance matrix

Mab =
1

2
(D2

1b +D2
a1−D2

ab) = (sa− s1) · (sb− s1) (4)

and we use Gram decomposition together with our three
conditions to solve for sa(t), and evaluate (3).

In the first example we have an initially equilateral
triangle that changes its shape stepwise, with D12 and
D13 shrinking and expanding cyclically while D23 ≡ 1
remains fixed as shown in panel A of figure 1. The panel
B shows the motion in shape space, and panel C shows
its rotational effect. The triangle oscillates back-and-
forth and after six cycles we observe a ∼ 90o rotational
motion. The second example describes the rotational ef-
fect of bond length oscillations when D12 and D13 evolve
according to the harmonic oscillator Lagrangian while

FIG. 1: Panel A depicts stepwise changes of bond
lengths D12 and D13 between D1a = 1.0 and D1a = 0.55
in an initially equilateral triangle, with D23 = 1 fixed.
Panel B shows the motion in shape space, and panel C
shows the actual rotational motion. Panels D-F show
the same, in case of harmonic bond length oscillations
(5) in an initially equilateral triangle Dab = 1 for
t ∈ [0, 0.1] with amplitudes ∆D12 = 0.2, ∆D13 = 0.1
and T1 = 7× 10−5 and T2 = 3× 10−5. Panel G and H
show rotational motions with Hamiltonians (6) and (8)
respectively, and panel I depicts a generic rotational
motion, as a combination of G and H.

D23 = 1 is fixed.

L =
∑
a=2,3

{
1

2
(
dD1a

dt
)2 − 1

2
(
2π

Ta
)2(D1a − 1)2

}
(5)

At t = 0 the triangle is equilateral. It then oscillates
around its symmetry axis, so that for generic parameter
values we observe a net drift as exemplified in panels D-F
of Figure 1.

In both examples we observe a qualitative change in
the dynamics in the limit of very small amplitudes and
very high frequencies. This is the relevant limit for
biomolecular applications, where the length and time
scales are significantly larger than the individual atom
oscillatory amplitudes and periods. The supplementary
material’s movie 1 demonstrates how, in both examples,
the limit is an equilateral triangle rotating uniformly
around its symmetry axis, as in panel G of figure 1. This
transition from a triangle with oscillating sites to a uni-
formly rotating equilateral triangle exemplifies the sepa-
ration of scales, a general phenomenon that often enables
the description of complex systems in terms of a few key
variables and commonly introduces qualitatively new fea-
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tures such as self-organization, collective oscillations, and
emergent topological order. To describe this limit in our
two examples, we take the bond vectors ni = ri+1 − ri
with r4 = r1 as effective theory dynamical variables, with
SO(3) Lie-Poisson brackets [23] and Hamiltonian

H = en1 · n2 × n3 (6)

Together with the equilateral triangle condition n1+n2+
n3 = 0 Hamilton’s equation for n1 is

dn1

dt
= {n1, H} = −n1 ×

∂H

∂n1
=
e

2
(n2 − n3) 6= 0 (7)

with cyclic permutations for n2, n3, and the solution is
a uniformly rotating equilateral triangle as in panel G
of figure 1. Note that (6) vanishes for a triangle, but
the derivatives of H do not vanish. In fact, (7) has no
time independent solutions whatsoever, in the case of an
equilateral triangle. This qualifies it as an example of a
Hamiltonian time crystal [24, 25], an energy conserving
physical system that is in motion even at the minimum
of its mechanical free energy [18, 19]. Apparently cy-
clopropane C3H6 represents this universality class [22].
The following effective theory Hamiltonian can also be
introduced, in the case of a triangle.

H = n1 · n2 + gn2 · n3 (8)

For g 6= 1 it also describes a time crystal, with uniform
rotational motion around an axis that lies on the plane
of the triangle and goes thru its center with a direction
that depends on the parameter g, as shown in panel H
of figure 1. Finally, panel I depicts a time crystal with a
Hamiltonian that is a combination of (6) and (8). With
time dependent e(t) and g(t) it can describe any rota-
tional motion of an equilateral triangle around any axis
that goes through the center of the triangle.

For tangible molecular examples, we designed polyala-
nine trefoil knots with varying lengths and studied the
impact of their shape deformations using all-atom molec-
ular dynamics simulations in both vacuum and water.
We selected polyalanine as it is the simplest side-chained
proteinomic amino acid. A closed chain was chosen to
limit conformational entropy, making free energy min-
imization computationally feasible using available com-
puters; notably in the case of an open protein chain the
free energy minimization remains a daunting task even
for specialized supercomputers [26]. The choice of tre-
foil knot topology for the chain was partially inspired
by previous studies [7–11] that highlighted the potential
significance of topology in the functionality of molecular
motors. We also anticipate that the chirality of the trefoil
knot aids in directing any rotational motion.

For simulations we have utilized GROMACS [27] with
the all-atom CHARMM36m force field [28]. We have em-
ployed a three-step potential energy minimization pro-

tocol that we explain in detail in the Methods section.
For our observations, following our triangular examples
we have selected a reference triangle defined by three
points that are located along the molecule’s backbone,
ideally symmetrically and at the positions of Cα atoms.
We connected these points using virtual segments and
used the resulting triangle’s time evolution to character-
ize the molecule’s rotational motion. For this we used a
quaternion representation of rotations [29]: As shown in

FIG. 2: Panel A shows the coordinate system and panel
B is the minimum energy 9-ALA, together with the
triangle we use to describe its rotational motion. Panel
C compares histograms for 9-ALA Gauss linking
number changes between -2 and -3 during a 40ns
observation period, in vacuum and in water. Panel D
shows 9-ALA 2µs moving average actual evolution of ϑi
in (9) in vacuum, panel E shows evolution of ϑi in
vacuum when evaluated from angular momentum using
(10) and panel F shows 0.4µs moving average actual
evolution of ϑi in water.

panel A of Figure 2, at each time step ti we introduced a
cartesian coordinate system, with origin at the center of
mass of the entire molecule, and we adjusted the refer-
ence triangle so that its geometric center coincided with
the molecule’s center of mass. We then assigned to the
axes an orthonormal basis of unit quaternions (̂ii, ĵi, k̂i)
with îi pointing from the center of mass to one of the
vertices of the triangle (r1 in the figure), with k̂i the
normal to the plane of the triangle, and with ĵi deter-
mined by right-handed orthonormality. At time step ti
the instantaneous Euler axis of rotation determines a unit
quaternion Ni = xîii +yîji +zik̂i where x2i +y2i +z2i = 1.
The unit normal ki at time ti is then related to the initial
normal vector k1 by

ki = exp{−ϑi
2
Ni}k1 exp{ϑi

2
Ni} (9)

where ϑi is the rotation angle around the Euler axis,
and we use it to characterize the rotational motion of



4

the triangle relative to the initial triangle: In the case
of a rotational motion on a plane ϑi coincides with the
rotation angle θ of our triangular examples.

In our simulations the initial molecule had vanishing
angular momentum, but due to round-up error accumu-
lation, and Brownian rotational tumbling when water-
molecule interactions are present, the angular momentum
can fluctuate during the simulation. Thus we monitored
its value, to isolate its contribution from the rotational
motion of the molecule that is due to shape deforma-
tions. For this, imagine that between time steps ti and
ti+1 the molecule rotates as a rigid body. To describe
this ”rigid body” i.e. proper rotation of the molecule,
we evaluated the components of the instantaneous mo-
ment of inertia tensor Iab(i) and the components La(i)
of the instantaneous angular momentum. We then eval-
uated the components of the instantaneous ”rigid body”
angular velocity ωa(i) = I−1ab (i)Lb(i). With ri is the po-
sition of a generic atom with respect to the molecule’s
center of mass at time ti, its putative ”rigid body” ro-
tated position at ti+1 is then

ri+1 = ri + (ti+1 − ti)ωi × ri (10)

The difference between the actual orientation and the pu-
tative orientation evaluated according to (10) is then the
rotational motion that we attributed to the molecule’s
shape changes; we found that the rotation evaluated us-
ing (10) is quite small in comparison to the rotational
motion by shape changes. We note that the ”rigid body”
rotation (10) is tantamount to a description using instan-
taneous Eckart frames [30] where a rotational motion due
to shape changes can not be detected.

RESULTS

We now describe our simulation results for 9 amino
acid polyalanine trefoil which is the shortest trefoil knot
that we can design without any steric conflicts, and 42-
ALA with is the shortest trefoil knot that we can design
with all peptide planes in the trans-conformation at en-
ergy minimum. In the case of 9-ALA our minimum en-
ergy all-atom structure together with the triangle that we
used to follow its rotational motion, is shown in Panel B
of figure 2. The peptide planes are neither in trans nor in
cis conformation implying that the backbone is strained.
Notably, the energy minimum breaks spontaneously the
three-fold D3 trefoil symmetry into a C2 symmetry with
three distinct, degenerate minimum energy trefoils that
are related to each other by i→ i+ 3 mod(9) shift along
the backbone. In the case of 42-ALA the D3 trefoil sym-
metry is similarly spontaneously broken into C2, with the
three energy minima related to each other by a i→ i+14
mod(42) shift.

Our vacuum trajectories were 10µs long at constant

310 K internal molecular temperature; note that ther-
mal effects could be thought of as rudimental approxima-
tion of quantum mechanical zero point fluctuations. In
the case of 9-ALA the average Cα backbone root-mean-
square distance (RMSD) between the initial structure
and those along the trajectory was stable at 0.14±0.02 Å,
and for 42-ALA we obtained RMSD 0.69±0.15 Å. The
D3 symmetries remained broken in both cases. We used
Topoly [31] to evaluate the evolution of Gauss linking
number between the Cα trace and the virtual Cβ trace,
which in the present case is a local topological invariant.
For 9-ALA the initial value was -2 and along the trajec-
tory it oscillated frequently between -2 and -3, as shown
in panel C of figure 2. For 42-ALA the initial value was
-1 and along the trajectory it oscillated between 0 and
-2.

Panel D of figure 2 shows the 2µs moving average time
evolution of the rotation angle ϑi in (9), in the case of 9-
ALA. Panel A of figure 3 shows the same for 42-ALA. In
both, we have back-and-forth oscillations in combination
of an overall directed rotational motion, in resemblance of
panels C and F in figure 1. The panel E of figure 2 shows
the evolution of ϑi when evaluated from (10) for 9-ALA,
and B of figure 3 shows the same for 42-ALA. Clearly,
the contribution from angular momentum fluctuations
to the rotational motion due to shape deformations was
vanishingly small, in both cases.

We have simulated the 9-ALA trefoil extensively in a
solvent with 1157 explicit water molecules at 310 K, and
we find that the molecule retains its (average) shape with
no indication of D3 symmetry restoration: The Cα back-
bone RMSD between the initial structure and those along
the trajectory is 0.13±0.02 Å. But the water-molecule in-
teractions intensify the frequency of shape fluctuations
that drive the molecule’s rotational motion. This can be
seen in panel C of figure 2 that shows how the Gauss
linking number oscillates between -2 and -3 and a com-
parison between panels D and F shows how the rotational
motion is clearly faster in water. But it becomes difficult
to compare the actual rotational motion with the instan-
taneous rigid body rotation computed from (10). This
is because water exchanges angular momentum with the
molecule, and in a box with periodic boundary conditions
it is problematic to ensure conservation of total angular
momentum.

We have embedded the minimum energy 42-ALA
vacuum structure in solvent with 2445 explicit water
molecules, and minimized the total energy by gradient
descent. The length of our 310 K dynamical production
run is 10µs. Initially, ϑi decreases. But after 200-300ns
there is a rapid transition where the direction of rota-
tional motion appears to reverse (panel C of figure-3),
the RMSD between the initial structure and those along
the trajectory increases to ∼4.5 Å, the RMSD from the
trajectory to the two other C2 symmetric energy minima
approach the same value (panel D), and the Gauss linking
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FIG. 3: Panel A shows rotational motion of 42-ALA in
vacuum in terms of ϑi in (9). Panel B shows the ϑi
evolution in vacuum, when evaluated from
instantaneous angular momentum. Panel C shows
evolution of ϑi in water. Panel D shows RMSD from
42-ALA trajectory in water to initial energy minimum
(red), and to the other two Z3 symmetric energy
minima (blue and green). Panel E shows total energy
along water trajectory of 42-ALA. Panel F shows a
generic short segment of the water trajectory,
comparing the actual rotational motion to that
evaluated from (10). The difference is the rotational
motion due to shape deformations.

number of the Cα-Cβ traces changes from -1 ±1 to -9 ±2.
The total energy also decreases, as shown in panel E: We
conclude that the spontaneously broken D3 symmetry
becomes restored, in a manner that resembles a second
order phase transition akin the ferromagnetic to param-
agnetic phase transition in magnetic materials. Panel F
in figure 3 compares the observed rotational motion to
that computed from (10). There is a clear distinction
between the two.

In the limit of large stroboscopic time steps where an
effective theory description becomes valid, the dynam-
ics both in the case of 9-ALA and 42-ALA resembles a
tumbling time crystal with the evolution of the reference
triangle described by a Hamiltonian that is a sum of (6)
and (8) with time dependent parameters e(t) and g(t)

CONCLUSIONS

Our high-precision all-atom molecular dynamics study
shows that the concept of a connection can be essential
to the design and control of effective molecular machines.
Our results demonstrate how biomolecules can convert
individual atom thermal vibrations into a rotational mo-
tion of the entire molecule by utilizing the connection in
their shape space. This challenges the prevailing view of
molecular motors as rigid bodies by highlighting the cru-

cial role of deformability in their functionality. In partic-
ular, we have discovered that the impressive effectiveness
of many biomolecular motors can be modeled by an effec-
tive theory Hamiltonian time crystal while at the atomic
level the dynamics is driven by the heat bath of ambi-
ent water molecules. We have also exposed the dynami-
cal consequences of a spontaneous symmetry breakdown
and restoration. Finally, although simulations of open
protein chains are computationally much more demand-
ing we expect our findings to hold true for such systems
as well.
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SUPPLEMENTARY MATERIAL:

The supplementary material consists of two movies,
and description of simulation methods

• The first movie in file movie1.mp4 describes the
qualitative change in dynamics in the case of the model
Lagrangian defined in equation (5) in the text. The movie
starts with parameter values that describe an oscillat-
ing triangle, with no observable rotational motion. Then
the parameters including time scale change stepwise. As
a consequence the frequency of oscillations increase and
their amplitudes decrease and eventually become vanish-

ingly small. At the same time the rotational motion be-
comes more apparent, until the triangle appears to rotate
uniformly in line with the scaling limit effective theory
timecrystalline Hamiltonian (6), even though the angular
momentum vanishes.

• The second movie in file movie2.mp4 displays a seg-
ment of the trajectory of the 42-ALA in water at 310 K,
as described in the text. It shows the first 1.0µs with
10ns between frames, starting from the initial condition
and covering the C2 → D3 symmetry restoring transi-
tion. The rotational motion is clear from the orientation
of the reference triangle, and the structural change dur-
ing the symmetry restoration can be seen by comparing
the first and last frames.

Simulation Methods

In our all-atom polyalanine trefoil knot simulations we
use GROMACS [27] with the all-atom CHARMM36m
force field [28]. We first minimize the free energy, using a
three-step protocol. For this we start with vacuum, with
free boundary conditions and both Coulomb and van der
Waals interactions extending over all atom pairs in the
molecule with no cut-off approximation.

• In step one we start with the trefoil template

x(s) = (2 + cos 3s) cos 2s

y(s) = (2 + cos 3s) sin 2s s ∈ [0, 2π]

z(s) = sin 3s

We discretize this into a linear polygonal chain with n
equidistant vertices; n = 9 and 42 in othe examples we
describe in the text. The neighboring vertices are 3.8 Å
apart, which is the average distance between neighboring
Cα atoms along a protein backbone. We use PULCHRA
[32] to construct an initial all-atom representation.

• Step two minimizes the energy using a kinetic diffusion
process. This consists of an iterative series of energy con-
serving double precision all-atom runs. For each run we
choose the initial kinetic energies of all the atoms to be
zero. The typical length of a single run is 1.0 ps, during
which some of the excess potential energy becomes con-
verted into kinetic energy of the atoms, that we remove
to start the next iteration. We repeat the process un-
til we observe no kinetic energy, and minimize the final
potential energy using LBFG [33].

• Step three aims to remove the above structure from
a putative local energy minimum towards a global min-
imum, using double precision annealing. We start with
a 10ns heating phase from 0 K to 500 K followed by a
5ns stabilization. We then proceed to a 985ns cooling
simulation that brings the temperature back to 0 K.

We repeat the steps two and three until we observe
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no energy decrease in the final 0 K configuration. This
proposes that we have reached the minimum of the
molecule’s potential energy. In the case of 9-ALA our
minimization algorithm decreases the CHARMM36m en-
ergy from the initial value 25583 kJ/mol down to 6120
kJ/mol and in the case of 42-ALA the CHARMM36m
energy goes down from 6255 kJ/mol to 1764 kJ/mol.

We then employ energy drift, a common phenomenon
in all-atom simulations, to construct the corresponding
finite temperature minimum energy configuration: We
initiate a single precision run with 1.0 fs time step. Due
to error accumulation the internal temperature of the
molecule starts increasing, and we let the energy drift
proceed until the temperature has reached a target value,
310 K in the examples that we present here. This gives
us the initial configuration of our production runs in vac-
uum.

A tight knotted protein such as our polyalanine trefoils,
is subject to steric restraints proposing that the minimum
energy configurations in vacuum and in water should be
geometrically close to each other. Thus, we start all our
water simulations by placing the above 310 K minimum
energy molecule at the center of a cubic box with periodic
boundary condition, with 12 Å distance to the edges. We
fill the box with explicit TIP3P [34] water, with 12 Å cut-
off for Coulomb and van der Waals interactions. We then
minimize the potential energy of the entire system, using
gradient descent to construct a minimum energy ensem-
ble. We bring the entire system in thermal equilibrium
at 310 K, and we start the production run always with
vanishing initial angular momentum. We keep the sim-
ulation time step short enough to eliminate detectable
energy drift, and we use double precision as need be.
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