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ABSTRACT
The elastic behavior of nematics is commonly described in terms of the three so-called bulk deformation modes, i.e., splay, twist, and bend.
However, the elastic free energy contains also other terms, often denoted as saddle–splay and splay–bend, which contribute, for instance, in
confined systems. The role of such terms is controversial, partly because of the difficulty of their experimental determination. The saddle–splay
(K24) and splay–bend (K13) elastic constants remain elusive also for theories; indeed, even the possibility of obtaining unambiguous micro-
scopic expressions for these quantities has been questioned. Here, within the framework of Onsager theory with Parsons–Lee correction, we
obtain microscopic estimates of the deformation free energy density of hard rod nematics in the presence of different director deformations.
In the limit of a slowly changing director, these are directly compared with the macroscopic elastic free energy density. Within the same
framework, we derive also closed microscopic expressions for all elastic coefficients of rodlike nematics. We find that the saddle–splay con-
stant K24 is larger than both K11 and K22 over a wide range of particle lengths and densities. Moreover, the K13 contribution comes out to be
crucial for the consistency of the results obtained from the analysis of the microscopic deformation free energy density calculated for variants
of the splay deformation.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0153831

I. INTRODUCTION
The Oseen–Frank free energy density of (non-chiral) nemat-

ics is expressed in terms of the invariants under nematic symmetry,
built from the first-order derivatives of the position (R) dependent
director, n̂(R),1,2

Δadef
(R) =

1
2

K11S2
+

1
2

K22T2
+

1
2

K33B2

− K24∇ ⋅ (S + B). (1)

Here, S = n̂(∇ ⋅ n̂), T = n̂ ⋅ (∇× n̂), and B = −(n̂ ⋅ ∇)n̂ = n̂
× (∇× n̂) represent the splay, twist, and bend deformation modes,
respectively, and K11, K22, and K33 are the corresponding elastic
constants. The fourth term accounts for the saddle–splay mode,
and in the case of a homogeneous degree of order, its integral over
a nematic sample can be reduced to a surface integral over the
boundary. Hence, it is generally regarded as surface-like elasticity, in
contrast to the bulk elasticity described by the other terms. It may
be worth mentioning that different definitions of the saddle–splay
contribution to the free energy density can be found in the literature.

Some authors include a factor of 1/2 in the saddle–splay term in
Eq. (1).3–5 In other cases, the following alternative form has been
employed:6,7

−
1
2
(K22 + K′24)∇ ⋅ (S + B), (2)

which compared with Eq. (1) leads to K′24 = 2K24 − K22. Therefore,
attention must be paid when comparing values reported in the liter-
ature. Hereafter, data taken from different sources will be converted,
when needed, to be consistent with the form of Eq. (1).

Given its form as a total derivative, the saddle–splay mode
does not enter the Euler–Lagrange equations for fixed boundary
conditions; however, in principle, it can contribute to the energy
through boundary conditions at the surface. It has the effect of
renormalizing the surface anchoring, and the difficulty of disen-
tangling the two contributions, together with the negligible role of
the saddle–splay term for strong anchoring, are reasons why this
mode is often neglected. However, it can have significant implica-
tions in complex geometries, such as stripes, cylinders, droplets, or
hybrid aligned cells, through the coupling to the local curvature.8
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The stability of the uniform nematic phase requires that each of the
bulk elastic constants is positive, whereas the saddle–splay constant
must satisfy the inequalities 0 < K24 < min(K11, K22).7 In particular,
K22 − K24 < 0 would promote a double twist deformation, as in blue
phases.9

In a recent reformulation of nematic elasticity,10 based on a
mathematical construction proposed in Ref. 11, the director gradi-
ents are decomposed into four modes: in addition to splay, twist, and
bend, there is a fourth mode, denoted as Δ, which is directly related
to K24. Thus, a form of the free energy density is proposed, with the
saddle–splay contribution explicitly regarded as a bulk term.

In addition to the saddle–splay, also another surface-like elas-
tic mode has been considered, which can be expressed as a sum of
products of first derivatives of the director and linear terms in its sec-
ond derivatives.10,12 It was neglected by Frank,2 but it was included
by Oseen,1 Zocher,13 and Nehring and Saupe.6 This term is gener-
ally denoted as (mixed) splay–bend, and its contribution to the free
energy density can be expressed as

+K13∇ ⋅ S, (3)

where K13 is the corresponding elastic constant. Most of the consid-
erations presented above on the saddle–splay term can be repeated
for the splay–bend contribution, with additional questions related
to the different geometrical structure of the two modes: the for-
mer contains only director derivatives tangential to the surface,
whereas in the latter there are also normal derivatives. These are
responsible for the unboundedness of the free energy functional,
which was a highly debated issue in the last decade of the past
century.14

Bulk elastic constants can be measured by independently excit-
ing the relative modes, through a suitable use of sample geometry,
boundary conditions and external fields.15 On the contrary, surface-
like constants are generally evaluated by the analysis of relatively
complex director configurations using a certain model. This is one
reason why it is difficult to obtain accurate estimates; indeed, very
few data are available for thermotropic liquid crystals, and in gen-
eral, they are affected by a considerable uncertainty. For PCH7
positive, K13, comparable with the bulk constants, was determined in
hybrid nematic cells,16 whereas for 5CB K13 ≈ −0.20K11 was inferred
from analysis of the periodicity of the strip domain phase of a hybrid
aligned nematic film with azimuthally degenerate boundary con-
ditions.4 For the saddle–splay constant K24 some more data, yet
rather controversial, are available. K24 of some thermotropic liquid
crystals was obtained from the analysis of spontaneously modu-
lated structures in hybrid aligned nematic layers4,17 or from nuclear
magnetic resonance3,18–20 and optical polarizing microscopy5 in
systems confined to submicrometer cavities. Despite some discrep-
ancies between the reported data, values comparable in magnitude
to the bulk constants were estimated for 5CB, 8CB, and E7. More
recently, a new route for measuring K24 was proposed, based on
the use of combined topographic and chemical surface pattern-
ing to create saddle–splay distortions: K24 ≈ 0.5K22 was estimated
for 5CB and for 8CB.21 Further support to relatively high values
of the saddle–splay constant of 5CB comes from studies of the
equilibrium configuration of the nematic director in confined sys-
tems: K24 ≈ K22

22 was inferred from the formation of doubly twisted

configurations in toroidal droplets, whereas K24 ≈ 0.7K11 was esti-
mated from the analysis of the radial to bipolar ordering transition,
induced by endotoxin in spherical droplets.23 Particularly impres-
sive in this respect are the results obtained for chromonics, i.e.,
water solutions of plank-like aromatic molecules with charged sub-
stituents in the periphery, which self-assemble into columnar stacks
and beyond a certain concentration form liquid crystal phases.24

Disodium cromoglycate (DSCG) and Sunset Yellow (SSY), two well-
studied representatives of this class of liquid crystals, were found to
adopt an escaped twist configuration, typical of blue phases,9 when
confined in cylindrical capillaries with degenerate planar bound-
ary conditions25–27 and in cylindrical shells.28 This was surprising
because the molecules are achiral and could only be explained by
invoking a stabilization due to the saddle–splay contribution to the
free energy. Particularly high K24 values were inferred from the anal-
ysis of the director configurations in these systems: K24/K22 = 27.525

and 3.2529,30 for SSY, K24/K22 = 7.527,28 for DSCG.
Molecular theories and simulations, which in principle could

provide independent insights on the relation between the various
elastic constants and their dependence on the molecular structure
and interactions, have devoted scarce attention to surface-like elas-
ticity. Within molecular theories, expressions for elastic constants
of nematics are obtained from the free energy in the presence of
director deformations, which are generally analyzed through Taylor
expansion of the director as a function of position. Early estimates
of both the bulk and the surface-like elastic constants were provided
by Nehring and Saupe, based on anisotropic dispersion interactions
(with implicitly isotropic short-range repulsions),31 and the relation-
ships K11 : K22 : K33 : K13 = 5 : 11 : 5 : −6 were obtained, together
with very small positive K24. Remarkably, the very possibility of
unambiguously defining K13 and K24 from a microscopic theory was
questioned.32 This objection was discussed in a subsequent study,33

where the surface-like elastic constants of a Gay–Berne fluid were
evaluated using density functional theory. K13 and K24 close to K22/2
were predicted, and the discrepancy from previous results31,34 was
ascribed to the fact that in previous studies the pair potential favored
end-to-end over side-by-side alignment. Moreover, the results could
be affected by the level of approximation adopted in the theory, first
of all the truncation at the second rank orientational order parameter
in the series expansion of the single particle density, which leads to
K33 = K11. In Ref. 35, dealing again with a Gay–Berne system, order
parameters up to fourth rank were retained in the spherical harmon-
ics expansion of the direct correlation function, which was calculated
from molecular dynamics data for the pair correlation function of
the nematic phase by solving the Ornstein–Zernicke equation, rather
than from a simple isotropic liquid approximation. At variance with
the previous study, K24 close to K22 and small negative K13 were
obtained, the latter almost an order of magnitude smaller, in abso-
lute value, than the bulk constants. The surface-like elastic constants
were found to be more sensitive to details of the pair correlation
function than the bulk ones. Finally, in Ref. 36, an atomistic model
that can be seen as an extension of the Maier–Saupe potential was
used for some typical thermotropic systems. The prediction was
K24 > K22 for PAA, and K24 ≈ K22 for 5CB and 8CB, whereas K13
was found to be small and positive for PAA, small and negative
for 5CB and even more negative for 8CB. The strong dependence
on the molecular structure suggests possible roles of the molecular
stiffness and biaxiality, which increase on going from 8CB to PAA.
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Recently, numerical estimates of the saddle–splay elastic constant
were provided by molecular dynamics simulations. For Gay–Berne
particles, K24 ≈ K22 was obtained,37 whereas for an atomistic model
of 5CB, K24 between 1.5 and 2.5 pN, smaller than K22, was
found.38

The scenario is confusing: the magnitude of the surface-like
elastic constants remains unclear and there is no insight into their
dependence on the thermodynamic parameters and the microscopic
structure of materials. This is quite different from the case of the bulk
elastic constants, whose behavior is rather well understood, not only
in conventional nematics, which typically exhibit K22 < K11 < K33,
but also in less conventional systems.39–41 Recently,42 we addressed
the question of unambiguous determination of the saddle–splay
elastic constant in the framework of Onsager–Straley theory43,44

for hard rodlike particles. K24 and the three bulk elastic constants
were calculated from the profile of the deformation free energy
as a function of the deformation wavenumber, for a double twist
distortion and for the standard splay, twist, and bend modes, respec-
tively: K24 > K22 was found, which implies an intrinsic tendency
to twist.

Here, we extend the approach proposed in Ref. 42 to other
deformation modes, which allow us to obtain estimates also for the
splay–bend constant K13. Moreover, we derive explicit expressions
for all the elastic constants using a second-order Taylor expansion
of the singlet orientational distribution function (ODF). We then
report numerical estimates of the full set of elastic constants for tan-
gent hard sphere rods (THSRs) with different aspect ratios and over
a wide range of densities.

This paper is organized as follows. Section II is devoted
to the theoretical development: first the deformation modes are
defined using continuum theory; then, a microscopic expression
for the deformation free energy density is obtained, and finally,
expressions for elastic constants are derived. Section III is dedi-
cated to the numerical implementation of the theoretical expres-
sions. In Sec. IV, we report the results of the different calcu-
lations and finally, in Sec. V, we summarize the conclusions
of our study.

II. THEORY
A. Macroscopic deformation analysis

We start our analysis by introducing a set of vector functions
of the position R (expressed with respect to a fixed laboratory frame
OXYZ) that describes different deformations of a uniform director
field. The explicit forms of these deformations are listed in Table I.
All deformations share three features: (i) their definition involves a
parameter, indicated as q, which is a measure of the degree of defor-
mation; (ii) for q = 0, a uniform director field n̂u∥Ẑ is recovered; and
(iii) the director at the origin is in any case parallel to the laboratory
Z axis, n̂d(0, q) = Ẑ. Using these expressions, the elastic free energy
density, sum of Eqs. (1) and (3), at the origin of the reference frame,
R = 0, has a parabolic dependence on q and the parabolic coefficients
are given by linear combinations, 𝒞d, of elastic constants

Δadef
d (0, q) = q2𝒞d(K11, K22, K33, K24, K13), (4)

where the subscript “d” stands for one of the director fields listed in
Table I; the corresponding explicit expressions of 𝒞d are also listed
there. Three functions (splay, twist, and bend) are linked each to a

FIG. 1. Schematic illustration of the director deformations (a) Δ and (b) generalized
double splay, defined in Table I, in the plane Z = 0. In this plane, the splayed
director field is independent of the value of the w parameter.

TABLE I. Deformed director field functions n̂d(R, q) employed in this work and corresponding combinations of elastic constants (𝒞d).

Deformation name (d) n̂d(R, q) 𝒞d = Δadef
d (0, q)/q2

Splay (S) [qRX , 0, 1 + qRZ]/

√

q2R2
X + (1 + qRZ)

2 K11/2

Twist (T) [sin(qRY), 0, cos(qRY)] K22/2

Bend (B) [qRZ , 0, 1 − qRX]/

√

q2R2
Z + (1 − qRX)

2 K33/2

Δ deformation (Δ) [qRX ,−qRY , 1]/
√

q2
(R2

X + R2
Y) + 1 2K24

Double twist (DT) [−qRY , qRX , 1]/
√

q2
(R2

X + R2
Y) + 1 2(K22 − K24)

Generalized [qRX , qRY , 1 + qwRZ]/

√

q2
(R2

X + R2
Y) + (1 + qwRZ)

2 2[K11 + (2 − w)K13 − K24]
a

double splay (DS)

aThe combination𝒞DS for the case w = 1 reported here differs from the one in Ref. 10 because there the K13 term was not included in the macroscopic free energy density expression.
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single bulk elastic constant. Three additional functions were pro-
posed in Ref. 10; one of them, Δ [see Fig. 1(a)], involves only K24,
whereas the other two, double twist and double splay [see Fig. 1(b)],
are related to linear combinations of K24, K11, and K22. Here, we
define a generalized version of double splay in which the additional
parameter w has been introduced in order to control the degree of
involvement of the K13 constant.

B. Microscopic free energy density of deformation
In this section, we obtain a microscopic, particle-based equiv-

alent of Eq. (4) and we describe a method to estimate the elastic
constants. In the framework of Onsager theory,43 the Helmholtz free
energy of a system of uniaxial particles is expressed as functional of
the single particle ODF, i.e., the probability density of finding a par-
ticle with its center of mass (c.m.) at position R and with orientation
û. For the general case of a nonuniform director field n̂d, we will use
the following ansatz for the form of the ODF:

fd(û, R, q) =
exp{c[û ⋅ n̂ d(R, q)]2}

Q
, (5)

where c is a parameter that quantifies the orienting strength and
Q = ∫ dû exp{c[û ⋅ n̂ d(R, q)]2} is the orientational partition func-
tion. Equation (5) is the simplest functional form compatible with
the uniaxial symmetry of the particle and the local nematic symme-
try. Inclusion of higher rank terms may affect the numerical results
at high ordering, but would be unessential for the scope of this work.
The dependence on the scalar product [û ⋅ n̂d] implies that, at fixed
c, the ODF does not change its profile when a deformation is present,
but it simply rotates to match the local director.

In the case of a uniform director field n̂u∥Ẑ, i.e., for an
undeformed nematic system, the ODF takes the simple form

fu(û) =
exp{cu2

Z}

Q
. (6)

The Helmholtz free energy of the system is given by the sum of
the ideal and the excess part. The former accounts for the decrease
in rotational entropy due to nematic ordering and reduces to the
isotropic ideal gas term when the ODF is constant. Its expression
per unit volume for an undeformed system is

aid
u

kBT
=

aiso
u

kBT
+ ρ∫ dû fu(û) ln [4π fu(û)], (7)

where aiso is the isotropic ideal gas free energy density, kB is
Boltzmann’s constant, T is the temperature of the system, and
ρ = N/V is the density of particles, N being their total number
enclosed in a volume V . The ideal free energy density in the presence
of a deformation, aid

d , is obtained by substituting the general form of
the ODF [Eq. (5)] in Eq. (7); however, since the latter involves the
integration over all possible orientations and the ODF is evaluated
at a single point in space, aid

d = aid
u is obtained.

The excess contribution to the Helmholtz free energy, which
accounts for the interactions between particles, is expressed accord-
ing to second virial Onsager theory with modified45 Parsons–Lee46,47

correction. In particular, the excess free energy density in R = 0 for
the deformations defined in Table I reads

aex
d (0, q)
kBT

= −
ηρ2

2 ∫
dûA ∫ dûB ∫ dRAB

× fd(ûA, 0, q) fd(ûB, RAB, q) eAB(ûA, ûB, RAB) (8)

where A and B are labels for two particles at positions RA = 0
and RB, respectively, and RAB = RB − RA is the vector joining their
c.m.s; eAB is the Mayer function,48 which in turn is defined as
eAB = exp{−UAB/kBT} − 1 with UAB being the interaction potential
energy between the two particles. The triple integral represents the
volume excluded to particle B by particle A, averaged over all their
possible orientations. Finally, η is the modified Parsons–Lee46,47

factor

η =
1 − 3

4 ρveff

(1 − ρveff)
2 , (9)

which corrects for neglecting higher order virial terms; veff is an
effective volume, defined as the portion of space in which any part
of a particle cannot enter due to the presence of another particle.45

In the undeformed state, the ODFs fd in Eq. (8) are replaced by the
corresponding position independent ODFs, fu, defined in Eq. (6).

As explained in Appendix A, the difference between the excess
free energy density in the presence and in the absence of director
distortions provides a microscopic expression for the (macroscopic)
deformation free energy density [Eqs. (1) and (3)]

Δadef
d (0, q) = aex

d (0, q) − aex
u . (10)

Therefore, for a given form of the director field function n̂d, Eq. (10)
can be used to calculate the deformation free energy density as a
function of the parameter q, with the only assumption of constant
orienting strength c. This in turn corresponds to a fixed value of
the nematic order parameter S = (3⟨u2

Z⟩u − 1)/2, where ⟨⋅ ⋅ ⋅⟩u indi-
cates the orientational average over the undeformed ODF defined
in Eq. (6). From the profile of Δadef

d (0, q), one can obtain insight
on the adequacy of the first or second-order form of the elastic
free energy density and the possible role of higher order contribu-
tions,49 whereas from the curvature of Δadef

d (0, q) for q→ 0, we can
determine the elastic constants (see the expressions of 𝒞d in Table I).

C. Explicit expressions for the elastic constants
A second route for the determination of the elastic constants,

closer to the conventional one, is based on the Taylor expansion
around q = 0 of the ODFs appearing in Eq. (8). If we introduce the
following shorthand notations:

f A
d = fd(ûA, 0, q) = fu(ûA) = f A

u

f B
d = fd(ûB, RAB, q), f B

u = fu(ûB)

eAB = eAB(ûA, ûB, RAB),
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we can approximate the product of ODFs in the integral of Eq. (8) as

f A
d f B

d ≃ f A
u f B

u + q {[∂q f A
d ∣q=0] f B

u

+ [∂q f B
d ∣q=0] f A

u} +
q2

2
{[∂q∂q f A

d ∣q=0] f B
u

+ [∂q∂q f B
d ∣q=0] f A

u + 2[∂q f A
d ∣q=0][∂q f B

d ∣q=0]}, (11)

where the symbol ∂q indicates differentiation with respect to q. If we
introduce Eq. (11) into the expression of the microscopic free energy
density [Eq. (10)], we obtain the following correspondence between
the combinations of elastic constants 𝒞d and the second-order term
of the expansion:

𝒞d

kBT
= −

ηρ2

4 ∫
dûA ∫ dûB ∫ dRAB eAB

× {[∂q∂q f A
d ∣q=0] f B

u + [∂q∂q f B
d ∣q=0] f A

u

+ 2[∂q f A
d ∣q=0][∂q f B

d ∣q=0]}. (12)

In order to obtain expressions for the elastic constants, we must
make the ODF derivatives appearing in Eq. (12) explicit. The first
derivative of the ODF evaluated at q = 0 has the general form

[∂q fd∣q=0] = fu [∂qgd∣q=0], (13)

where we introduced the shorthand notation

gd = gd(û, R, q) = c[û ⋅ n̂ d(R, q)]2. (14)

Similarly, the second derivative of the ODF evaluated at q = 0 has the
general form

[∂q∂q fd∣q=0] = fu{[∂qgd∣q=0]
2
+ [∂q∂qgd∣q=0]}. (15)

The explicit expressions of the first and the second derivatives
of gd(û, R, q) evaluated at q = 0 are collected in Table II. We note
that, since all terms involve at least one Cartesian component of R
and particle A is placed at the origin, RA = 0, only the second term
between braces in Eq. (12) survives, so we can write

𝒞d

kBT
= −

ηρ2

4
⟨∫ dRAB eAB{[∂qgB

d ∣q=0]
2
+ [∂q∂qgB

d ∣q=0]}⟩, (16)

where we have introduced the angular brackets to denote a double
orientational average

⟨⋅ ⋅ ⋅⟩ = ∫ dûA ∫ dûB f A
u f B

u [ ⋅ ⋅ ⋅ ]. (17)

For example, if we use the splay deformation n̂S from Table I, we
obtain an expression for K11 = 2𝒞S,

K11

kBT
= −

ηρ2

2
⟨∫ dR eAB{4c2R2

Xu2
BXu2

BZ

+ 2cR2
X(u

2
BX − u2

BZ) − 4cRXRZuBXuBZ}⟩, (18)

where we dropped the “AB” subscript from RAB for simplicity. If we
now introduce the following notation for the opposite of the spatial
integral of the Mayer function multiplied by a generic factor:

E[ ⋅ ⋅ ⋅ ](ûA, ûB) = −∫ dR eAB(ûA, ûB, R) [ ⋅ ⋅ ⋅ ], (19)

we can further simplify Eq. (18) obtaining

K11

kBT
= ηρ2c[2c⟨ER2

X
u2

BXu2
BZ⟩ + ⟨ER2

X
(u2

BX − u2
BZ)⟩

− 2⟨ERX RZ uBXuBZ⟩].
(20)

Similarly, from the twist and the bend deformations, we obtain the
expressions for K22 and K33,

K22

kBT
= ηρ2c[2c⟨ER2

Y
u2

BXu2
BZ⟩ + ⟨ER2

Y
(u2

BX − u2
BZ)⟩], (21)

K33

kBT
= ηρ2c[2c⟨ER2

Z
u2

BXu2
BZ⟩ + ⟨ER2

Z
(u2

BX − u2
BZ)⟩

+ 2⟨ERX RZ uBXuBZ⟩]. (22)

TABLE II. First and second derivatives with respect to q of the argument gd of the exponential function of the ODF for the
deformations defined in Table I.

d ∂q[gd(û,R,q)]q=0
2c

∂q∂q[gd(û,R,q)]q=0
2c

S RXuXuZ R2
X(u

2
X − u2

Z) − 2RXRZuXuZ

T RY uXuZ R2
Y(u

2
X − u2

Z)

B RZuXuZ R2
Z(u

2
X − u2

Z) + 2RXRZuXuZ

Δ RXuXuZ − RY uY uZ R2
X(u

2
X − u2

Z) + R2
Y(u

2
Y − u2

Z) − 2RXRY uXuY

DT RXuY uZ − RY uXuZ R2
X(u

2
Y − u2

Z) + R2
Y(u

2
X − u2

Z) − 2RXRY uXuY

DS RXuXuZ + RY uY uZ R2
X(u

2
X − u2

Z) + R2
Y(u

2
Y − u2

Z) + 2RXRY uXuY
−2w(RXRZuXuZ + RY RZuY uZ)
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Using the Δ deformation, we arrive at the following expression for
K24:

K24

kBT
=

ηρ2c
4
{2c[⟨ER2

X
u2

BXu2
BZ⟩ + ⟨ER2

Y
u2

BY u2
BZ⟩ +

− 2⟨ERX RY uBXuBY u2
BZ⟩] + ⟨ER2

X
(u2

BX − u2
BZ)⟩

+ ⟨ER2
Y
(u2

BY − u2
BZ)⟩ − 2⟨ERX RY uBXuBY⟩}. (23)

By exploiting Eqs. (B1) and (B2) (see Appendix B), the last
expression can be further simplified to

K24

kBT
=

ηρ2c
2
[2c⟨ER2

X
u2

BXu2
BZ⟩ − 2c⟨ERX RY uBXuBY u2

BZ⟩

+ ⟨ER2
X
(u2

BX − u2
BZ)⟩ − ⟨ERX RY uBXuBY⟩]. (24)

From the w-dependent quantities in the generalized double splay
deformation, we obtain the following expression for K13:

K13

kBT
=

ηρ2c
2
[⟨ERX RZ uBXuBZ⟩ + ⟨ERY RZ uBY uBZ⟩], (25)

which, by making use of Eq. (B3), can be further simplified to

K13

kBT
= ηρ2c⟨ERX RZ uBXuBZ⟩. (26)

Finally, using Eqs. (B4)–(B6), the Nehring–Saupe6 relationship
between K13 and other elastic constants is recovered,

K13 = 2K24 −
1
2
(K11 + K22). (27)

III. NUMERICAL IMPLEMENTATION
A. Model details

In this work, we focused on the simple particle model of THSRs:
the particles are straight chains of M = 6, 12, and 24 spheres of dia-
meter σ. The potential energy between two rods A and B is defined
as

UAB(ûA, ûB, RAB) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∞
if at least one sphere of A overlaps
with one or more spheres of B

0 otherwise,
(28)

where ûA and ûB are unit vectors parallel to the C∞ axes of the rods
and RAB is the vector joining their centers of mass. The system is
athermal, i.e., T has a trivial effect and the thermodynamic state is
determined only by the number density ρ.

The geometrical volume v0 of a particle, used to calculate the
packing fraction ϕ = ρv0 of the system, is simply the sum of the
volumes of the hard spheres: v0 =Mπσ3

/6. The effective volume,
employed in the evaluation of the Parsons–Lee coefficient η [Eq. (9)]
was calculated as the volume enclosed by the tessellated surface
defined by a sphere of radius equal to 0.5 σ rolling over the particle;50

a density of vertices on the surface equal to 1000 σ−2 was adopted.
The results for the three particle types are reported in Table III.

TABLE III. Geometric and thermodynamic properties of the THSRs studied in this
work: number of hard spheres M, geometric (v0), and effective (veff) volume,
packing fractions of the isotropic, ϕI, and nematic phase, ϕN, at the coexistence.

M v0/σ3 veff/σ3 ϕI ϕN

6 3.14 3.50 0.337 0.354
12 6.28 7.08 0.186 0.207
24 12.57 14.24 0.096 0.113

B. Calculation of integrals
In this work, we are concerned with the calculation of two

main type of integrals: free energy densities in presence of a cer-
tain deformation [Eq. (8)] and generalized excluded volumes in the
form of Eq. (19) orientationally averaged over undeformed ODFs, as
required, for instance, in Eq. (20).

For the first type of integral, we adopt a simple Monte Carlo
scheme consisting of (i) generation of uniformly distributed ran-
dom orientations for particles A and B over the unitary sphere and
of a uniformly distributed random position for the center of mass
of particle B inside a sphere of radius equal to Mσ (particle A’s cen-
ter of mass is fixed at the origin); (ii) check for overlap between the
two particles, i.e., check if the Mayer function eAB is different from
zero; (iii) if the particles do overlap, evaluate the two ODFs inside the
integral. The final values of aex

d (0, q) are obtained as simple averages
over all the evaluations performed in the previous steps. For all the
calculations reported in Figs. 3 and 4, the number of steps employed
to obtain convergence is NMC = 1012.

Generalized excluded volume integrals over R in the form of
Eq. (19) are calculated in spherical coordinates, R = [R, Θ, Φ]. Inte-
gration is performed analytically on the radius R and by numerical
quadrature over the polar angle Θ and the azimuthal angle Φ. This is
repeated on a 4-indexes discrete grid of angles {αA, βA, αB, βB} defin-
ing orientations of the two uniaxial particles, ûA and ûB. The results
are then stored into matrices that can be efficiently employed for the
evaluation of orientational averages in the form of Eq. (17) at differ-
ent values of the orienting strength parameter c. For all polar angles
(Θ, βA, βB), the Gauss–Legendre quadrature scheme is employed,
whereas a Gauss–Chebyshev quadrature is used for azimuthal angles
(Φ, αA, αB).51

C. Isotropic–nematic coexistence and equilibrium
order parameter

At a certain thermodynamic condition, i.e., for a fixed value
of the number density ρ, the equilibrium ODF is obtained by min-
imizing the total free energy density of the undeformed system,
au = aex

u + aid
u . According to our ansatz, the ODF [Eq. (6)] depends

on a single parameter, c, which has to be varied in order to obtain
the minimum au for a certain ρ value. In this way, a unique rela-
tion between the orienting strength c and the number density ρ is
established, c = c(ρ). Practically, this is obtained by applying the
Nelder–Mead simplex algorithm52 implemented in MATLAB53 on
the sum of Eqs. (7) and (8) for the undeformed system, whose
integrals are evaluated with the quadrature procedure outlined in
Subsection III B.
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Using the relation c(ρ), it is possible to calculate the pressure
P and the chemical potential μ of the nematic phase by differenti-
ating the free energy density with respect to the volume V and the
number of particles N of the system, respectively,

P(ρ)
kBT

= −
1

kBT
(
∂(Vau)

∂V
)

N,T

= ρ +
ρ2

2
⟨E1⟩[

ρveff(5 − 3ρveff)

4(1 − ρveff)
3 + η], (29)

μ(ρ)
kBT

=
1

kBT
(
∂(Vau)

∂N
)

V ,T

= ln (ρσ3
) + ∫ dû fu(û) ln fu(û)

+
ρ
2
⟨E1⟩[

ρveff(5 − 3ρveff)

4(1 − ρveff)
3 + 2η] + const, (30)

where E1(ûA, ûB), calculated according to Eq. (19), is simply the
excluded volume calculated for a given orientation of the two par-
ticles. The densities of the isotropic ρiso and the nematic ρnem phases
in the coexistence regime are obtained from the solution of the
following system of equations:

⎧⎪⎪
⎨
⎪⎪⎩

P(ρnem) = Piso(ρiso),

μ(ρnem) = μiso(ρiso),
(31)

where Piso(ρ) and μiso(ρ) are the pressure and the chemical potential
of the coexisting isotropic phase, obtained by enforcing c = 0 in the
ODF. The packing fractions of the coexisting nematic and isotropic
phases calculated for the three investigated systems are reported in
Table III.

D. Calculations for the contour plots of the average
excluded volume

The spatially resolved contributions to the average excluded
volume, ⟨E1⟩, shown in the plots of Fig. 5 for deformations of
cylindrical symmetry are calculated as follows: (i) the XZ plane is
discretized into a square grid of mesh size b; (ii) the orientational
average of the Mayer function eAB is evaluated in each cell by sam-
pling the orientations of the particles A (fixed at the origin, see Fig. 2)
and B (with its c.m. at the center of the current cell) from their ODFs
[Eq. (5)]; (iii) each cell value is scaled by a factor equal to the distance
from the Z axis so that the total excluded volume would be obtained
by simply summing over all cells and multiplying by b2π. Calcula-
tions are performed for fixed values of the c and q parameters (q = 0
for the undeformed system).

IV. RESULTS
A. Microscopic free energy density
for different deformations

Figures 3 and 4(a) show the deformation free energy density
[Eq. (10)] as a function of the wavenumber q, calculated for dif-
ferent distortions of the nematic phase of THSRs with M = 12, at
volume fraction ϕ = 0.282. In all cases the calculated points were fit-
ted (R2

> 0.99) to a parabolic function and from the coefficients the

FIG. 2. Sketch of the pair configurations considered to calculate contour plots of
the average excluded volume: particle A (in yellow) has its c.m. fixed at the origin
whereas particle B (in red) moves in the XZ plane. When the center of mass of par-
ticle B is outside the circle of radius Mσ, there cannot be any overlap between the
two particles. The circle encloses the positions of the c.m. of B in which overlapping
with particle A may occur.

bulk and surface-like elastic constants were evaluated (see Table I).
Figure 3 shows Δadef

d (0, q) for splay, twist, bend, Δ, and double
twist deformations, whose curvatures provide K11 = 1.54 kBTσ−1,
K22 = 0.60 kBTσ−1, K33 = 20.18 kBTσ−1, and K24 = 2.17 kBTσ−1.

Interestingly, K24 is larger than K22, which is confirmed by
direct calculation of the difference K22 − K24 from the curvature of
the deformation free energy density for double twist deformation.

Figure 4(a) shows the deformation free energy as a function
of the wavenumber q for generalized splayed director fields, corre-
sponding to values of w (see Table I) ranging from −1 to 2.5 in steps
of 0.5. We can see that the deformations have different costs and,
in particular, we can observe a change in curvature between w = 1.5
and w = 2. The coefficients 𝒞DS(w) obtained from the parabolic fit-
ting in q of these data are reported in Fig. 4(b). From the linear
fitting of such coefficients as a function of w according to the expres-
sion reported in Table I, we obtain K13 = 3.29 kBTσ−1. Thus, the

FIG. 3. Deformation free energy density [Eq. (10)] in the presence of splay, twist,
bend, Δ, and double twist distortions, as a function of the deformation wavenumber
q, calculated for THSRs with M = 12 at number density ϕ = 0.282 (symbols). The
solid lines show the results from fitting to Eq. (4); the corresponding parabolic
coefficients 𝒞d are reported in the legend.
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FIG. 4. (a) Deformation free energy density [Eq. (10)] as a function of the
wavenumber q, for generalized double splay director fields (see Table I), corre-
sponding to values of the w parameter ranging from −1 to 2.5 in steps of 0.5 (color
from brown to green). The results, obtained for THSRs with M = 12 at number
density ϕ = 0.282, are shown as star symbols, while the lines are the results from
fitting to Eq. (4). The dotted and the dashed lines correspond to the cases w = 1
(double splay defined in Ref. 10) and w = 2, respectively. (b) Estimated parabolic
coefficients 𝒞DS from previous fitting (black crosses) as a function of the w para-
meter. The solid red line in the same plot corresponds to their linear fit according to
the expression in Table I; from its slope an estimated value of K13 ≃ 3.29 kBTσ−1

is obtained.

saddle–splay constant turns out to be higher than all the other elas-
tic coefficients but K33. Even more important is that the inclusion of
the splay–bend term in the elastic free energy, which is ignored by
first-order theories, is needed to consistently distinguish the results
of microscopic calculations for different variants of the generalized
double splay.

A final comment is required by the negative curvatures
observed in Fig. 3 for double twist and in Fig. 4(a) for generalized
double splay with w = 2 (dashed line), which derive from K24 > K22
and K24 > K11, respectively (in the latter case there is no K13 contri-
bution). This points to a local instability of uniform uniaxial order
w.r.t such deformations. Given the form of the interparticle poten-
tial [Eq. (28)], the phenomenon has an entropic origin: it is driven by
the decrease of excluded volume between a pair of rods fluctuating
around a local director, in the presence of these deformations. This
is illustrated by the contour plots in Fig. 5, which show the point-
by-point difference between the average excluded volume for two
THSRs in the presence of a double twist (a) or a generalized dou-
ble splay with w = 2 (b) director field w.r.t. the same quantity but in
a uniform director. In the case of double twist, there is a decrease
of average excluded volume for any relative position of the parti-
cles, with a more pronounced effect when their c.m.s are close to

FIG. 5. Contour plots showing the difference between the average excluded vol-
ume (a) in double twist or (b) in generalized double splay distortion with w = 2 and
the corresponding quantity in a uniform director field. Calculations are performed
for a pair of THSRs with M = 12 (ϕ = 0.282); one has its c.m. in the XZ plane
and rotates around the other which has its c.m. at the origin of the reference frame
(n̂u∥Z). Color ranges from blue to red for increasingly negative values (white cor-
responds to zero). The deformations are defined in Table I, with qσ = 0.02. The
gray lines in (b) are tangent to the splayed director field.

each other. On the contrary, for generalized double splay, the overall
effect comes from the competition between two counteracting ten-
dencies: when the moving particle is in the region where the director
field lines diverge, the probability of overlap is higher than in a uni-
form director, whereas the opposite occurs when the particle is in
the zone of converging lines. The latter contribution is stronger than
the former; hence, the overall free energy density change is nega-
tive; this means that the distortion entails an entropic gain, which
translates into a negative value of the corresponding elastic constants
combination, (K11 − K24).

B. Elastic constants dependence on density
and aspect ratio

Figures 6 and 7 show the elastic constants as a function of
the packing fraction ϕ for THSRs with M = 6, 12, 24. Calculations
were performed using Eqs. (20)–(22), (24), and (26), which are com-
putationally advantageous over the calculation of deformation free
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FIG. 6. Bend elastic constant as a function of the packing fraction ϕ, relative to the
value at the isotropic–nematic coexistence, ϕN, for THSRs with M = 6 (dots), 12
(solid line) and 24 (dashed line). For M = 12, the value obtained from the analysis
of the deformation free energy density reported in Fig. 3 is shown (asterisk). The
inset shows the ϕ dependence of the nematic order parameter S for the three
systems.

energy density profiles described in Subsection IV A. The results
obtained by the two methods coincide within numerical errors, as
illustrated by the asterisks in the plots for the case M = 12. For K13,
we show also the values calculated according to Eq. (27), which are
practically superimposed to those obtained from Eq. (26). For ease
of visualization, the bend constants of all systems have been col-
lected in the same plot, together with the corresponding S order
parameters.

As expected, with increasing particle length the
isotropic–nematic transition occurs at lower ϕ and the bend
constant increases dramatically, whereas the other two bulk con-
stants, which are both smaller than K33 and obey K22 < K11, are
much less sensitive to the aspect ratio. What is more interesting,
because much less known, is the behavior of the two surface-like
constants: analogously to the bulk ones, they increase with increas-
ing density and at any density they are higher than both K11 and
K22, irrespective of the aspect ratio of the particles.

The results shown in Fig. 7 confirm the local instability of the
uniform nematic state against double twist and certain variants of
double splay as general features of hard rod nematics. This, however,
does not necessarily translates into the appearance of a deformed

ground state in finite samples because energetically favorable direc-
tor distortions may be unable to fill 3D Euclidean space;54 hence,
they must be accompanied by defects or by other deformations,
which give a positive contribution to the total free energy.55 We must
also mention that the value that we calculate for K11 could be an
underestimate, since an additional cost was pointed out for long lin-
ear particles, which originates from the coupling between changes
in orientational order and density variations, and can be related to
the decrease of entropy caused by the different density of particle
heads and tails in the presence of splay.56,57 Thus, a “renormalized”
splay elastic constant can be approximated as the sum of the two
contributions,

KR
11 ≈ K11 +

1
2

kBTlρ0, (32)

where l is the average longitudinal projection of a particle and ρ0 = ρl
is the areal number density of particles. The second term was found
to dominate the splay constant in Monte Carlo simulations of rela-
tively stiff polymers.58 The dashed lines in the plots of Fig. 7 show the
“renormalized” splay elastic constant of THSRs, calculated assum-
ing l = (M − 1)σ ⟨∣uZ ∣⟩u, and we can see that indeed this linear term
gives a significant contribution to the splay constant, especially for
long chains.

V. CONCLUSIONS
The main novelties of the present work can be summarized as

follows:

(i) We have presented a general formulation of Onsager theory
for hard rod nematics that allows us to calculate the defor-
mation free energy density for any arbitrary director field,
without necessarily introducing the customary approximation
of long wavelength distortions. The only assumption is a con-
stant value of the nematic order parameter S, which might be
relaxed in future, more general approaches.

(ii) From the analysis of Δ and double twist deformations, we
obtain consistent estimates of the saddle–splay constant K24.
This result is intriguing because it implies an intrinsic ten-
dency of hard rods towards double twist, i.e., towards spon-
taneous breaking of the mirror symmetry.42 For the same

FIG. 7. Elastic constants as a function of the packing fraction ϕ, for THSRs with (a) M = 6, (b) 12, and (c) 24. For K13, the solid line and the crosses represent values obtained
from numerical evaluation of Eq. (26) and from Eq. (27), respectively. The dashed line corresponds to the renormalized splay elastic constant, defined in Eq. (32). In plot (b),
the asterisks indicate the elastic coefficients obtained from the analysis of the deformation free energy density reported in Figs. 3 and 4.
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systems, we find also K24 > K11, but this result could be
questionable, since the inequality would be reversed if the
additional contribution to the splay constant coming from
density-director coupling was taken into account.

(iii) The splay–bend contribution, which is missing in first order
elastic theories, turns out to be crucial to explain the difference
between the (microscopic) deformation free energy density
calculated for variants of double splay, and the K13 constant
is found to be higher than all the other constants but the bend
one.

(iv) We have obtained also explicit expressions for the full set of
elastic constants and the results are in agreement with those
obtained from direct analysis of the microscopic deforma-
tion free energy densities outlined in (i), in the limit of long
wavelength deformations. Calculations for rods over a wide
range of thermodynamic conditions confirm that K24 > K22
and large K13 are general results, irrespective of aspect ratio
and density.

The capability to obtain estimates of the full set of elastic con-
stants is especially valuable for predicting and interpreting liquid
crystal configurations in confined and structured geometries. In the
future, it will be interesting to extend the approach, which here has
been implemented for hard rods, to other forms of the interaction
potential. In particular, it will be worth investigating whether the
tendency towards spontaneous twist, associated with K24 > K22, is
a distinct character of excluded volume interactions or a more gen-
eral property, and how it is affected by features of the mesogenic
particles, such as their shape and flexibility.
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APPENDIX A: MACROSCOPIC-TO-MICROSCOPIC
CORRESPONDENCE IN THE FREE ENERGY
OF DEFORMATION

In Ref. 42, it was shown how to link the integral of the elastic
free energy density [Eq. (1)] performed over a sub-region of vol-
ume V contained in a nematic sample of volume V to the following
microscopic expression for the deformation free energy:

∫
V

dR Δadef
d (R, q) = −

ηρ2 kBT
2 ∫

V
dRA∫

V
dRB ∫ dûA ∫ dûB

× fd(ûA, RA, q) fd(ûB, RB, q)

× eAB(RAB, ûA, ûB) − (Vaex
u ). (A1)

The first term on the rhs of Eq. (A1) comes from the division of
the original integration domain V for the variable RA into smaller
sub-regions separated by virtual walls. In particular, the sub-region
of volume V we are interested in is thought of as being far enough
from the nematic sample’s physical boundaries that its free energy
is purely bulk in nature. The second term at the rhs of Eq. (A1) is
simply the free energy of the region when the nematic director field
is uniform.

Equation (A1) establishes an unambiguous macroscopic (first
member) to microscopic (second member) connection. In princi-
ple, there is no lower bound to the size of the volume of interest
V : it is therefore tempting to push the macroscopic-to-microscopic
connection even further by shrinking such domain down to a sin-
gle point. With this operation, a correspondence between R and
RA is found, and by dropping the now superfluous A subscript one
can write

Δadef
d (R, q) = −

ηρ2 kBT
2

× ∫ dûA ∫ dûB fd(ûA, R, q) fd(ûB, RB, q)

× ∫
V

dRB eAB(RAB, ûA, ûB) − aex
u . (A2)

Equation (A2) is a more general form of Eqs. (8)–(10), valid for any
point R.

In the past, an objection was raised32 on the legitimacy of this
mapping to a density: indeed, it was argued that, by performing
changes of variables involving both RA and RB in Eq. (A1), one could
obtain different expressions for Δadef

d that in turn would lead to dif-
ferent values for the surface-like elastic constants. As an example, the
following change of variables was proposed:

⎧⎪⎪
⎨
⎪⎪⎩

R0 = (RA + RB)/2

RAB = RB − RA.
(A3)

By applying this transformation in the first term at the rhs of
Eq. (A1), both in the kernels and in the integration domains,
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one can in principle establish this new macroscopic-to-microscopic
correspondence

∫
Ṽ

dR Δãdef
d (R, q) = −

ηρ2 kBT
2 ∫

Ṽ
dR0∫

Ṽ(R0)
dRAB

× ∫ dûA ∫ dûB fd(ûA, R0 − RAB/2, q)

× fd(ûB, R0 + RAB/2, q)eAB(RAB, ûA, ûB)

− (Ṽaex
u ). (A4)

Now, by shrinking again the transformed volume Ṽ down to a point,
one would obtain a different expression for the free energy den-
sity, Δãdef

d . However, Δãdef
d has the unphysical characteristic of being

R0-dependent even in absence of deformation, through its domain of
integration. Analogous conclusions were derived, from a different
perspective, in Ref. 33.59

APPENDIX B: EQUIVALENCES BETWEEN INTEGRALS

In this Appendix, we derive some equivalences between inte-
grals employed in the main text, which are a consequence of the
uniaxial symmetry of the undeformed ODF [Eq. (6)]. There are two
groups of such equivalences: the first one is

⟨ER2
X
u2

BXu2
BZ⟩ = ⟨ER2

Y
u2

BY u2
BZ⟩, (B1)

⟨ER2
X
(u2

BX − u2
BZ)⟩ = ⟨ER2

Y
(u2

BY − u2
BZ)⟩, (B2)

⟨ERX RZ uBXuBZ⟩ = ⟨ERY RZ uBY uBZ⟩, (B3)

⟨ER2
X
u2

BZ⟩ = ⟨ER2
Y
u2

BZ⟩. (B4)

The second group is

2⟨ERX RY uBXuBY⟩ = ⟨ER2
X
u2

BX⟩ − ⟨ER2
Y
u2

BX⟩, (B5)

2⟨ERX RY uBXuBY u2
BZ⟩ = ⟨ER2

X
u2

BXu2
BZ⟩ − ⟨ER2

Y
u2

BXu2
BZ⟩. (B6)

We will explicitly demonstrate one equivalence per group since the
procedure is similar for all the others.

Let us start from the lhs of Eq. (B1), whose explicit form is

⟨ER2
X
u2

BXu2
BZ⟩ =

1
Q2 ∫ dûA ec[û A ⋅Ẑ ]2

∫ dûB ec[û B ⋅Ẑ ]2

× [û B ⋅ X̂ ]2[û B ⋅ Ẑ ]2 ∫ dR eAB

× (ûA, ûB, R)[R ⋅ X̂ ]2. (B7)

If we perform a rotation of 90○ around the Z axis of the refer-
ence frame, the quantities involved in the last expression transform
according to the following relations:

ûA → û′A X̂ → Ŷ , (B8)

ûB → û′B Ŷ → −X̂, (B9)

RAB → R′AB Ẑ → Ẑ. (B10)

Therefore, we obtain

1
Q2 ∫ dû′A ec[û ′A ⋅Ẑ ]2

∫ dû′B ec[û ′B ⋅Ẑ ]2

[−û ′B ⋅ Ŷ ]
2
[û ′B ⋅ Ẑ ]

2

× ∫ dR′ eAB(û′A, û′B, R′)[−R′ ⋅ Ŷ]2 = ⟨ER′2Y
u′2BY u′2BZ⟩. (B11)

By dropping the prime, one recovers the rhs of Eq. (B1).
Let us now examine the lhs of Eq. (B5) from the second group

of equivalences

2⟨ERX RY uBXuBY⟩ =
2

Q2 ∫ dûA ec[ûA ⋅Ẑ ]2

∫ dûB ec[ûB ⋅Ẑ ]2

× [ûB ⋅ X̂][ûB ⋅ Ŷ]∫ dR eAB(ûA, ûB, R)

× [R ⋅ X̂][R ⋅ Ŷ]. (B12)

If we perform a rotation of 45○ around the Z axis of the refer-
ence frame, the quantities involved in this expression transform
according to the following relations:

ûA → û′A X̂ →
1
√

2
(X̂ − Ŷ), (B13)

ûB → û′B Ŷ →
1
√

2
(X̂ + Ŷ), (B14)

RAB → R′AB Ẑ → Ẑ. (B15)

Therefore, Eq. (B12) becomes

2⟨ERX RY uBXuBY⟩ =
1

2Q2 ∫ dû′A ec[û ′A ⋅Ẑ ]2

∫ dû′B ec[û ′B ⋅Ẑ ]2

× [û′B ⋅ (X̂ − Ŷ)][û′B ⋅ (X̂ + Ŷ)]

× ∫ dR′ eAB(û′A, û′B, R′)[R′ ⋅ (X̂ − Ŷ)]

× [R′ ⋅ (X̂ + Ŷ)]. (B16)

Rearranging the terms, we obtain

4⟨ERX RY uBXuBY⟩ =
1

Q2 ∫ dû′A ec[û ′A ⋅Ẑ ]2

∫ dû′B ec[û ′B ⋅Ẑ ]2

× ∫ dR′ eAB(û′A, û′B, R′)

× [u′BX − u′BY][u
′
BX + u′BY][R

′
BX − R′BY][R

′
BX + R′BY]

=
1

Q2 ∫ dû′A ec[û ′A ⋅Ẑ ]2

∫ dû′B ec[û ′B ⋅Ẑ ]2

× ∫ dR′ eAB(û′A, û′B, R′)[u′2BX − u′2BY]

× [R′2BX − R′2BY], (B17)

and then by dropping the prime, we can write

4⟨ERX RY uBXuBY⟩ = ⟨ER2
X
u2

BX⟩ + ⟨ER2
Y
u2

BY⟩+

− ⟨ER2
X
u2

BY⟩ − ⟨ER2
Y
u2

BX⟩. (B18)
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Using the equivalences ⟨ER2
Y
u2

BY⟩ = ⟨ER2
X
u2

BX⟩ and ⟨ER2
Y
u2

BX⟩

= ⟨ER2
X
u2

BY⟩, which again can be obtained performing 90○ around
the Z axis of the reference frame, Eq. (B5) is recovered.
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