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Polymers confined in corrugated channels, i.e. channels of varying amplitude, display multiple
local maxima and minima of the diffusion coefficient upon increasing their degree of polymeriza-
tion N . We propose a theoretical effective free energy for linear polymers based on a Fick-Jacobs
approach. We validate the predictions against numerical data, obtaining quantitative agreement
for the effective free energy, the diffusion coefficient and the Mean First Passage Time. Finally,
we employ the effective free energy to compute the polymer lengths Nmin at which the diffusion
coefficient presents a minimum: we find a scaling expression that we rationalize with a blob model.
Our results could be useful to design porous adsorbers, that separate polymers of different sizes
without the action of an external flow.

The transport of polymers across corrugated channels
and pores is of capital importance for several biological
scenarios and technological applications, such as cell reg-
ulation [1], DNA and protein sequencing [2–4] and poly-
mer separation [5]. Further, polymer transport across
corrugated channels is still an open challenge [6] since
it couples all polymer’s degrees of freedom (from the
monomer up to the full chain length) to the channel ge-
ometry in a non-trivial manner. Such an interplay can
lead to surprising phenomena. Polymers confined within
nanoscopic cylindrical pores exhibit an enhanced mobil-
ity as compared to polymers in bulk [7] and nano-channel
translocation of DNA can be enhanced by tailoring three-
dimensional nano-funnels at the channel entrance [8];
similar entropic traps have been used to purify [9] and
separate [10–13] DNA and to induce giant enhancement
in polymer diffusion [14].
Despite its interest, an overall understanding of polymer
transport across channels of varying section is still lack-
ing. On the theoretical side, while much attention has
been paid to the case of polymer translocation across a
pinhole of the size of the monomers [15] the general prob-
lem of translocation across varying-section pores has not
yet been fully addressed. The difficulty relies on the fact
that, compared to the former case in which the polymer
has to cross ”head-first”, in the latter case the polymer
can cross the pore’s bottleneck in a variety of configu-
rations. The translocation probability will depend on
monomer-monomer as well as on the monomer-walls ef-
fective interactions. In this regime, some analytical re-
sults have been derived for ”short” polymers, whose gyra-
tion radius is much smaller than the distance L between
subsequent bottlenecks [16]; numerical results have been
derived for both linear [17] and ring polymers [18].

In this Letter, we show that the translocation time

FIG. 1. Sketch of a linear polymer confined in a corrugated
channel, whose radius changes from hmin at the bottleneck to
hmax in the widest section. Dashed circles mark correlated
blobs of size h0 = (hmin+hmax)/2.

as well as the effective diffusion coefficient of a linear
polymers across a varying-section channel (see Fig.1) at-
tains a non-monotonous dependence on the polymer size,
N . Remarkably, the deviation of the diffusion coeffi-
cient from the expected 1/N Rouse dependence can be
10 to 100-fold. In order to understand such a behav-
ior we extend the Fick-Jacobs approximation for (short)
polymers [16] to the case of arbitrarily long polymers
by accounting, in an effective way, for the extension of
the polymer inside the corrugated channel. Once vali-
dated against the numerical data, we exploit our model
to predict the polymer size Nmin at which the diffusion
minima occur and we investigate the scaling properties
of such quantities with respect to the geometry of the
corrugated channel. These features can be captured by
a simple blob model, that yields the scaling of Nmin as
a function of the geometry of the channel. Such a classic
approach may provide a useful tool to design channels
for polymer sorting.
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We perform standard Langevin Dynamics simulations
(see Suppl. Mat. 2A)[19] for channels of length L =
25, 50σ, average width h0 = 10, 12σ and different values
of the modulation of the channel; here σ is the monomer
size, taken as the unit length. The corrugated channel
is characterized by three characteristic length scales: the
minimum and maximum widths hmin and hmax and the
corrugation length L along the channel axis (see Fig. 1).
One usually recasts hmin and hmax into the entropic
barrier ∆S = 2 ln(hmax/hmin) and the average width
h0 = (hmin + hmax)/2.
Remarkably, Fig.2b) shows that for tailored channel ge-
ometries, upon growing the polymer length N the dif-
fusion coefficient firstly decreases with N , it attains a
minimum and then it grows again. This behavior, dif-
fers from the expected 1/N Rouse behavior (i.e., upon
neglecting hydrodynamic interactions).

In order to clarify the physical origin of such a phe-
nomenon, we derive an analytical model that maps the
3D dynamics of the confined polymers into the dynamics
of a point particles moving in an effective 1D potential.
In order to do so, we follow the Fick-Jacobs approxima-
tion [20–24] that has been validated and used to study the
dynamics of diverse confined systems (see Ref.[25] and
references therein for a brief Review). A similar model
has been derived [16] (see Suppl. Mat. 1A for a brief
summary) under the condition that the polymer gyra-
tion radius is much smaller than the channel period, L.
If so, naming x the position of the centre of mass of the
polymer along the channel axis, it is possible to model
the effect of the confinement as a local contribution to
polymer’s free energy [16]. However, upon increasing the
degree of polymerization N , such assumption is bound to
fail. The polymer is, at some point, large enough to ex-
perience multiple channel periods at any location of the
center of mass x, as sketched in Fig. 1. Hereby, we pro-
pose an approach to construct an effective free energy
for arbitrarily long polymers. The free energy should
account for the diverse confining scenarios experienced
along the chain. Accordingly, we integrate the local free
energy from Ref. [16] over an interval equal to the average
magnitude of the end-to-end vector (Re) and centered at
the location of the center of mass

βF (x) =
1

Re

x+Re/2∫
x−Re/2

βF0(x′)dx′ (1)

where βF0(x) is the polymer free energy from Ref.[16]
and Re depends on N and on the confinement (see Suppl.
Mat. 1B). Finally, using Eq. (1), we compute the long
time diffusion coefficient via the Fick-Jacobs formula [20–
23, 25]

D

DN
=

1

(1 + Γ)⟨e−βF (x)⟩x⟨eβF (x)⟩x
(2)
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FIG. 2. a) Comparison between theoretical and numerical
free energy along the channel axis for L = 50σ, h0 = 12σ
and ∆S = 0.81. Symbols refer to numerical free energies,
lines to Eq. (1). We shift the curves so that the free energy
at the bottleneck is always zero. b) Long time diffusion
coefficient D, normalized by the diffusion coefficient of a
single monomer D0, as function of N for different values of
L, h0 and ∆S. Symbols refer to numerical data, lines to the
theoretical estimation Eqs. (1), (2).

where Γ = 2(hmax − hmin)2/L2 is the so-called Zwanzig
coefficient [20]; for most cases considered in this paper Γ
is small (Γ ≈ 10−2) and can be rather safely ignored.

First, we compare theoretical and numerical free en-
ergies in Fig. 2a as a function of the coordinate x, that
again marks the position of the centre of mass of the
polymer along the longitudinal axis of the channel, for
L = 50σ, ∆S =0.81 and h0 = 12σ. As shown, the com-
parison is very favourable up to polymers with N ≈ 125.
Afterwards, it becomes less quantitative, even though the
free energy difference β∆F is quite well captured by the
model, even at N = 200.
In Fig. 2b we compare theoretical and numerical data for
the long-time diffusion coefficient D/D0, where D0 is the
diffusion coefficient of a single monomer, as a function of
N for different values of L, h0 and ∆S. Theoretical data
are computed using Eq. (1) and (2); numerical data are
reported only if the vast majority (> 90%) of the tra-
jectories diffused at least up to one channel corrugation
from their initial point x0 (i.e. up to x0±L). (see Suppl.
Mat. 2D).
We find a good agreement between theoretical and nu-
merical data, both showing a clear non-monotonic be-
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haviour. Remarkably, the position of the diffusion mini-
mum Nmin is always rather well captured by the theory.
The non-monotonic nature of the diffusion coefficient can
be emphasized looking at D/DN (see Suppl. Mat. 2B),
DN being the bulk diffusion coefficient of a linear poly-
mer of N monomers. Such a quantity highlights the effect
of the confinement, removing the contribution due to the
increase in size. However, we highlight in Fig. 2b that the
diffusion coefficient may vary by one or even two orders
of magnitude, upon changing the polymer size roughly
by a factor of two. Thus, the difference in the diffusion
time scales for polymers of slightly different size can be
substantial: such a difference can easily be measured in
experiments or exploited for material design.

In many of biological scenarios, a relevant quantity is
the time at which the polymer crosses a bottleneck for
the first time i.e. its first passage time. Typically, the
mean of the first passage time distribution is take as rep-
resentative of the ”typical time” taken by the polymer to
cross a barrier. However, in several systems [26–29] the
distribution of the first passage time is quite broad and
skewed, thus its mean may not be so significant. Accord-
ingly, we employ Eq. (1) to compute the Mean First Pas-
sage Time (MFPT) T1, its variance σT1

and, the so-called
coefficient of variation γ = σT1

/T1 [26–29] that quantify
the statistical likelihood of a departure from the mean.
Following[29], we define the Mean First Passage Time as
the time required to the centre of mass of the polymer to
displace a distance L in either directions along the chan-
nel axis, from its initial point. From Eq. (1), the MFPT
can be computed as

T1(x0) =
1

DN

x0+L∫
x0

dx′eβF (x′)

x′∫
x0

dx′′e−βF (x′′) (3)

where x0 is the initial point of the trajectory (see Suppl.
Mat. 1E, 2D).

We report, in Fig. 3, the comparison between numer-
ical and analytical results for both T1 and γ. In par-
ticular, we observe in Fig. 3(a) that the comparison for
the MFPT is again quantitative; the comparison for γ
(Fig. 3 b and c) is instead mostly qualitative. This has
to be expected: for γ ≈ 1 the standard deviation is com-
parable to the mean and a considerable amount of data
is required for a precise estimation of σT1

. Nevertheless,
theory and simulations agree on the range of values of γ
as well as on the qualitative trends.

Such a remarkable agreement shows that the simple
model in Eq. (1) not only provides quantitatively reli-
able predictions for average quantities such as the diffu-
sion coefficient and the MFPT, but it is also reliable for
what concerns higher moments of the first passage time
distribution.

This motivated us to examine the predictions of the
theory for a broad range of L, h0 and ∆S values, ex-
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FIG. 3. (a) Mean Passage Time T1τ0, normalized over time
unit τ0, and (b),(c) coefficient of variation γ as a function
of N for different values of ∆S, h0 and L. Symbols refer to
results from simulations, lines to theoretical calculations.

ploiting the predictive power of Eq. (1). It is instruc-
tive to look at the theoretical results as a function of
N . In Fig. 4 we plot the theoretical estimates for β∆F
(Fig. 4a) and for D/DN (Fig. 4b). The theory predicts a
periodic dependence for both quantities on the polymer
size N , as also observed in our simulation data and in
the literature[18]. The period of the oscillations as well
as that the ratio between the diffusion coefficient at the
extrema, Dmax/Dmin, varies with the channel average
section h0. As expected, the theoretical approach iden-
tifies β∆F as the “driving force” for the non-monotonic
diffusion: indeed, the frequency of the oscillation of β∆F
is always half the frequency of the oscillation of D/DN .
As shown in Fig. 4, the extrema of β∆F correspond to
the minima of D/DN , while the zeros of β∆F , indicating
a flat free energy landscape, correspond to the maxima
of the diffusion.

Finally, we focus on the theoretical prediction of the
position of the diffusion minima. Fig. 5a shows the scal-
ing properties of the first minimum of the diffusion coef-
ficient as function of the channel width. Remarkably, the
data obtained at different values of ∆S and L collapse
onto a master curve, when reporting Nmin as a function

of h
2/3
0 L/σ5/3. Considering all the subsequent minima

Nmin(n̄) in Fig. 5b, ranked by their appearance index,
for ∆S = 0.81 and different values of L and h0, we can
clearly observe a linear behaviour. Both results can be
understood using a blob model [30] (see Appendix A),
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FIG. 4. (a) Theoretical free energy difference β∆F and (b)
theoretical diffusion coefficient D/DN as a function of the
degree of polymerization N for a channel of length L = 50σ,
∆S =0.81 and h0 = 12σ (light blue), h0 = 20σ (red), h0 =
28σ (green), h0 = 48σ (blue). Symbols refer to the position of
(a) the extrema and the zeros of ∆F (b) maxima and minima
of D.

that predicts the scaling reported above; indeed, the
blob model properly captures not only the position of
the first minimum but also that of all the other minima
( Fig. 5b). It also suggests that the position of the min-
imum (and, actually, of all minima) is independent on
∆S. Such a finding is in agreement with the free energy
model (see Appendix B).

The blob model can inspire alternative approaches to
an effective free energy. If h0 is the blob length scale,
then one may introduce non-local contributions to the
free energy via an effective channel width, averaging the
channel profile over the length scale Re. Albeit less pre-
cise, this alternative approach still maintains a very good
agreement with numerical data (see Appendix B). This
shows that the idea of incorporating contributions by a
suitable averaging is robust.

In summary, we have shown that the diffusion coeffi-
cient of linear polymers across varying-section channels
has a non-monotonous dependence on the polymer length
N . In particular, we observe that the deviation from
the Rouse behaviour can be significant (10 − 100−fold)
and can be exploited to design devices aiming at polymer
sorting. In order to understand such a counter-intuitive
behavior we have derived (and validated against numer-
ical data) an effective free energy approach which cap-
tures the non-monotonic behavior quantitatively. The
approach, based on the Fick-Jacobs theory, incorporates
non-local effects of the confining channel through the av-
erage of the local free energy. Our model shows that the
non-monotonous (and oscillating) behavior is due to the
(periodic) smearing out of the effective free energy barrier
for polymers that occupy an integer number of channels
(see Fig. 4). Remarkably, a similar behavior has been
observed experimentally, for example in the case of poly-
mer transported across an array of entropic traps [14] as
well as for pluronic gels [31]. Moreover, in many circum-
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FIG. 5. (a) Scaling of the position of the first minimum of

the diffusion coefficient as a function h
2/3
0 L/σ5/3 for different

values of L and ∆S. (b) Scaling of the positions of the dif-
fusion minima Nmin as a function of their appearance index
for different values of L and h0 at ∆S = 0.81. The black star
symbols refer to the numerical data, extracted from Fig. 2b.

stances, the dynamics is controlled by the first passage
of polymers across a pore. We have used our model to
predict both the mean and the variance of the first pas-
sage time distribution. As shown in Fig. 3 our model
precisely predicts the mean and qualitative captures the
dependence of the variance of the first passage distribu-
tion on N .

Finally, we exploited the remarkable agreement be-
tween theoretical and numerical data to investigate the
scaling of the minima of the diffusion coefficient as a func-
tion of the channel geometry and we have captured such
scaling via blob theory. Even though our model and nu-
merical results do not account for finite bending rigidity,
this can be effectively accounted for by renormalizing the
monomer size in the model to the persistence length and
the number of monomers to the number of Kuhn seg-
ments [32]. Accordingly, we expect our results to hold
in presence of a moderate bending rigidity and deviation
can be expected when the persistence length becomes
comparable with the full contour length of the polymer as
well as for rigid rods [33]. Our findings present a signifi-
cant theoretical improvement in the understanding of the
diffusion of polymers in complex landscapes and, further,
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provide very useful tools for characterizing the diffusion
properties in complex porous materials. One could, for
example, envisage a ”sponge”, designed to have pores
of different roughness that can effectively sort different
polymers by size in a passive way. Such a device could
be useful in situation where it is hard to produce a flow
or where the polymers may be degraded by the action of
an external force. Finally, from a theoretical perspective,
it would be interesting to check if this effective approach
works far from equilibrium, for example with active poly-
mers. Work is in progress in that respect, with the aim of
unravelling the effect of activity on the polymer dynamics
in corrugated channels.
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APPENDIX A: BLOB MODEL

We describe here the blob model, employed to ratio-
nalize the scaling of the diffusion minima reported in
the main text. We assume that the polymer organizes
into blobs of radius ∼ h0/2. A polymer made of N
monomers has nb = N/M blobs, where M is the num-

ber of monomers in a blob, given by αM
3
5 = h0/(2σ), α

being a dimensionless constant, and σ the monomer size.
It follows that

M =

(
h0

2ασ

) 5
3

(4)

In blob theory, the length of a polymer ℓ scales linearly
with the number of blobs; in our case ℓ = nbh0. We argue
that, when ℓ exactly matches an integer multiple of L ℓ =
n̄L (n̄ = 1, 2, 3, ...) we expect β∆F to be null, i.e. βF (x)
to be constant. In fact, for such a case, the polymer
experiences the ”same confinement” (in the sense of the
effective free energy) irrespective of the position of the
center of mass, as a consequence of the periodicity of the
corrugation profile. Since this is true only for the set of
values ℓ = n̄L (n̄ = 1, 2, 3, ...), this also entails that β∆F
as a function of N is oscillating; the extremal point will
be then placed at ℓ = n̄L/2. As seen in the main text,
the extrema in the free energy difference correspond to
minima in the diffusion: thus

n̄

2
L = nmin

b h0 =
Nmin

M
h0 (5)

sets the condition for Nmin. Accordingly, we get

Nmin =
n̄

2

L

h0

(
h0

2ασ

) 5
3

=
n̄

2

1

α
3
5

L

σ

(
h0

2σ

) 2
3

(6)

As noticed in the main text, this relation can be recast
as

N
3/2
min

(L/σ)5/2
∝ h0/L (7)

which highlights the two length scales of the system h0

and L. As noticed in the main text, this relation is un-
aware of ∆S, which is also reflected by the numerical
data (see Suppl. Mat. Section 1.E). Finally, it is inter-
esting to notice that, via our model, a similar scaling is
expected also for the maxima of the diffusion coefficient.

APPENDIX B: EFFECTIVE FREE ENERGY
APPROACHES

We consider three different approaches to construct an
effective free energy; each one is characterized by a dif-
ferent approximation. While all of them qualitatively
explain the non-monotonicity of the diffusion coefficient
as a function of N , the agreement with numerical data
varies quantitatively.
We start recalling the definition of the free enrgy in the
case of a polymer whose gyration radius is much shorter
then the channel length

βF0(x) = − (d− 1)

{
ln

[
16h(x)

h0π2

]

+ ln

[ ∞∑
p=1,3,..

1

p2
exp

(
−π2p2

(
Rg

2h(x)

)1/ν
)]}

(8)

where the values of ν and Rg depend on the polymer
chain considered (Gaussian or self-avoiding). For our
purposes, we used the following functional form for the
bulk gyration radius Rb

g = 0.58735 ·N0.588 ·(1−0.435588 ·
N−0.2228), with thus ν = 0.588.
The first approach is the one reported in the main text:
we average the free energy Eq.(8) over the characteris-
tic length scale given by the magnitude of the (average)
end-to-end vector. This approach provides the best com-
parison with the numerical data. The main idea is to
include non-local contributions to the free energy. These
contributions come from the fact that a sufficiently large
polymer is, at any given time, extended along the chan-
nel and experiences different degrees of confinement. The
resulting free energy reads

βF (x) =
1

Re

∫ x+Re/2

x−Re/2

βF0(x′)dx′ (9)
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where βF0(x′) is the polymer free energy from Ref.[16]
and Re depends on N and on the confinement.
The second approach aims at incorporating the hypothe-
sis of the blob model (see Appendix A) into the calcula-
tion of the free energy. The blob model assumes that the
polymer organizes into sections with correlation length
(blob radius) h0; thus h0 is the relevant length scale of
the confinement. Yet, for a single blob picture, such as
the one proposed here, an effective confinement length h∗

0

is necessary; it has to include the contributions of non-
locality and of the channel geometry. We thus define
h∗
0(x) as

h∗
0(x) =

1

Re

∫ x+Re/2

x−Re/2

h(x′)dx′ (10)

The free energy is given by Eq. (8) where h(x) is replaced
with h∗

0(x).
Finally, the third approach aims at introducing a min-
imal perspective. Indeed, we compute the free energy
difference using the first approach but we drastically sim-
plify the functional form by considering a piece-wise lin-
ear function

βF (x) =

{
− 2|β∆F |x

L x < L/2

−2|β∆F | + 2|β∆F |x
L x ≥ L/2

(11)

In Fig. 6, we report the comparison between the first
and second approach. The first approach incorporates
non-local effect averaging the free energy, the second ap-
proach averaging of the corrugation profile. In Fig. 6(a)
we compare the theoretical free energies for different val-
ues of N for the same systems considered in the main
text, i.e. for ∆S = 0.81, L = 50σ, h0 = 12σ. The com-
parison is favourable and, upon increasing N the two
approaches produce the same free energy difference. In-
deed, as reported in Fig. 6(b), the diffusion coefficient
predicted by the two approaches are very similar (here
for ∆S = 0.81, L = 25σ, h0 = 10σ). Albeit the second
approach is slightly less precise, it is able to reproduce
very well the important features of the numerical data,
such as the position of the two diffusion minima. It also
remains predictive even when the polymer size is larger
then the corrugation length (see Suppl. Mat. 2.C). Fur-
ther, in the inset of Fig. 6(b) we plot the difference be-
tween the free energy difference for the two approaces
in a large span of values of N . Notably, the absolute
difference never exceeds 0.6 kBT (0.1 kBT if N > 200).

Finally, we compare the second and third approaches
with numerical data. In Fig. 7(a) we compare the diffu-
sion coefficient while in Fig. 7(b) we compare the Mean
Passage Times. In both cases we observe that the alter-
native approaches are less precise then the free energy
average but retain the salient features, such as the posi-
tion of the minimum, and provide a decent comparison
with numerical data, considering there are no free pa-
rameters and no input from the simulations.
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FIG. 6. (a) Comparison between the free energy from the
first approach Eq. (9) (solid lines) and the second approach
Eqs. (8) and (10) (dashed lines), as a function of the channel
coordinate. Curves have been shifted arbitrarily. (b) Com-
parison between the prediction of the first two theoretical ap-
proaches and numerical data as a function of N . Inset: Dif-
ference between the free energy differences obtained through
the first and second theoretical approaches as a function of N .
In all panels ∆S = 0.81 while panel (a): L = 50σ, h0 = 12σ;
panel (b) L = 25σ, h0 = 10σ

50 100 150 200

N

10
-4

10
-3

10
-2

D
/D

0

∆S = 0.20
∆S = 0.40
∆S = 0.81
∆S = 1.24

L=50σ, h
0
=12σ

(a)

50 100 150 200

N

10
4

10
5

10
6

T
1
 /

 τ
0

∆S = 0.20
∆S = 0.40
∆S = 0.81

50 100 150 200

N

10
4

10
5

10
6

T
1
 /

 τ
0

∆S = 0.81

L/σ = 50, h
0
/σ = 12

(b)

L/σ = 25, h
0
/σ = 10

FIG. 7. Comparison between the alternative theoretical ap-
proaches and the numerical data for (a) the diffusion coeffi-
cient and (b) the Mean Passage Time, for different values of
∆S, L and h0.



7

∗ emanuele.locatelli@unipd.it
† p.malgaretti@fz-juelich.de

[1] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts,
and P. Walter, Molecular Biology of the Cell (Garland
Science, Oxford, 2007).

[2] W. Reisner, J. N. Pedersen, and R. H. Austin, Reports
on Progress in Physics 75, 106601 (2012).

[3] C. Rathnayaka, C. A. Amarasekara, K. Akabirov, M. C.
Murphy, S. Park, M. A. Witek, and S. A. Soper, Journal
of Chromatography A 1683, 463539 (2022).

[4] B. M. Floyd and E. M. Marcotte, Annual Review of Bio-
physics 51, 181 (2022).

[5] M. Sonker, D. Kim, A. Egatz-Gomez, and A. Ros, An-
nual Review of Analytical Chemistry 12, 475 (2019).

[6] M. Ding and L. Li, Macromolecules 54, 9773 (2021).
[7] K. Shin, S. Obukhov, J.-T. Chen, J. Huh, Y. Hwang,

S. Mok, P. Dobriyal, P. Thiyagarajan, and T. P. Russell,
Nature Materials 6, 961 (2007).

[8] J. Zhou, Y. Wang, L. D. Menard, S. Panyukov, M. Ru-
binstein, and J. M. Ramsey, Nat Commun 8, 807 (2017),
number: 1 Publisher: Nature Publishing Group.

[9] P. Agrawal, Z. Bognár, and K. D. Dorfman, Lab Chip 18,
955 (2018), publisher: The Royal Society of Chemistry.

[10] J. Han, S. W. Turner, and H. G. Craighead, Phys. Rev.
Lett. 83, 1688 (1999).

[11] L. Liu, P. Li, and S. Asher, Nature 397, 41 (1999).
[12] J. Han and H. G. Craighead, Science 288, 1026 (2000).
[13] Y. M. Lee and Y. L. Joo, The Journal of Chemical

Physics 127, 124902 (2007).
[14] D. Kim, C. Bowman, J. T. Del Bonis-O’Donnell,

A. Matzavinos, and D. Stein, Phys. Rev. Lett. 118,
048002 (2017), publisher: American Physical Society.

[15] M. Muthukumar, Polymer translocation (CRC Press,
Boca Raton, 2011).

[16] V. Bianco and P. Malgaretti, The Journal of Chemical

Physics 145, 114904 (2016).
[17] D. Mondal and M. Muthukumar, The Journal of Chem-

ical Physics 145, 084906 (2016).
[18] M. Marenda, E. Orlandini, and C. Micheletti, Soft Mat-

ter 13, 795 (2017).
[19] See Supplemental Materials at [URL will be inserted by

publisher] for additional definitions and theoretical de-
tails, model and simulation details, and additional nu-
merical data, including Refs.[68-73].

[20] R. Zwanzig, J. Phys. Chem. 96, 3926 (1992).
[21] D. Reguera, G. Schmid, P. S. Burada, J. M. Rubi,

P. Reimann, and P. Hänggi, Phys. Rev. Lett. 96, 130603
(2006).

[22] I. Pineda, J. Alvarez-Ramirez, and L. Dagdug, J. Chem.
Phys. 137, 174103 (2012).

[23] A. M. Berezhkovskii, L. Dagdug, and S. M. Bezrukov,
J. Chem. Phys. 143, 164102 (2015).

[24] I. Malgaretti, P. Pagonabarraga and M. Rubi, Frontiers
in Physics 1, 21 (2013).

[25] P. Malgaretti and J. Harting, Entropy 25, 470 (2023).
[26] T. Mattos, C. Mej́ıa-Monasterio, R. Metzler, and G. Os-

hanin, Phys. Rev. E 86, 031143 (2012).
[27] T. Mattos, C. Mej́ıa-Monasterio, R. Metzler, G. Oshanin,

and G. Schehr, in First-Passage Phenomena and Their
Applications, edited by R. Metzler, G. Oshanin, and
S. Redner (2014).

[28] D. S. Grebenkov, R. Metzler, and G. Oshanin, Commu-
nications Chemistry 1, 96 (2018).

[29] P. Malgaretti and G. Oshanin, Polymers 11, 251 (2019).
[30] P. deGennes, Scaling concepts in polymer physics (Cor-

nell University Press, Ithaca, 1979).
[31] S. You, L. Wei, S. Shanbhag, and D. H. Van Winkle,

Phys. Rev. E 95, 042602 (2017), publisher: American
Physical Society.

[32] M. Doi and S. Edwards, The theory of polymer dynamics
(Clarendon Press, 1986).

[33] P. Malgaretti and J. Harting, Soft Matter 17, 2062
(2021).

mailto:emanuele.locatelli@unipd.it
mailto:p.malgaretti@fz-juelich.de
http://dx.doi.org/10.1088/0034-4885/75/10/106601
http://dx.doi.org/10.1088/0034-4885/75/10/106601
http://dx.doi.org/10.1016/j.chroma.2022.463539
http://dx.doi.org/10.1016/j.chroma.2022.463539
http://dx.doi.org/10.1146/annurev-biophys-102121-103615
http://dx.doi.org/10.1146/annurev-biophys-102121-103615
http://dx.doi.org/ 10.1146/annurev-anchem-061417-125758
http://dx.doi.org/ 10.1146/annurev-anchem-061417-125758
http://dx.doi.org/10.1021/acs.macromol.1c00909
http://dx.doi.org/ 10.1038/s41467-017-00951-4
http://dx.doi.org/10.1039/C7LC01355H
http://dx.doi.org/10.1039/C7LC01355H
http://dx.doi.org/10.1103/PhysRevLett.83.1688
http://dx.doi.org/10.1103/PhysRevLett.83.1688
http://dx.doi.org/10.1038/16426
http://dx.doi.org/10.1126/science.288.5468.1026
http://dx.doi.org/10.1063/1.2777157
http://dx.doi.org/10.1063/1.2777157
http://dx.doi.org/10.1103/PhysRevLett.118.048002
http://dx.doi.org/10.1103/PhysRevLett.118.048002
http://dx.doi.org/10.1063/1.4961505
http://dx.doi.org/10.1063/1.4961505
http://dx.doi.org/ 10.1103/PhysRevLett.96.130603
http://dx.doi.org/ 10.1103/PhysRevLett.96.130603
http://dx.doi.org/10.1063/1.4761826
http://dx.doi.org/10.1063/1.4761826
http://dx.doi.org/10.3390/e25030470
http://dx.doi.org/10.3390/polym11020251
http://dx.doi.org/10.1103/PhysRevE.95.042602
http://dx.doi.org/10.1039/D0SM02045A
http://dx.doi.org/10.1039/D0SM02045A

	The bigger the faster: non-monotonous translocation time of polymers across pores
	Abstract
	Acknowledgments
	Appendix A: Blob model
	Appendix B: Effective free energy approaches
	References


