
PASSING FROM PLAT CLOSURE TO STANDARD CLOSURE OF BRAIDS
IN R3, IN HANDLEBODIES AND IN THICKENED SURFACES
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Abstract. Given a knot or link in the form of plat closure of a braid, we describe an algorithm
to obtain a braid representing the same knot or link with the standard closure, and vice-versa.
We analyze the three cases of knots and links: in R3, in handlebodies and in thickened surfaces.
We show that the algorithm is quadratic in the number of crossings and loop generators of the
braid when passing from plat to standard closure, while it is linear when passing from standard
to plat closure.

Introduction

By classical results of Brunn and Alexander [Bru92, Ale23], any oriented knot or link in R3

is isotopy equivalent to the standard closure of a braid in some braid group Bn (see Figure 1).
Furthermore, by a theorem of Markov [Mar35], conjugation in the braid groups and the stabilization
move generate an equivalence relation in the set of all braids, such that equivalence classes of braids
are in bijective correspondence with isotopy classes of oriented knots and links (from now on links).
The Alexander and Markov theorems were used for the first time in 1984 by V.F.R. Jones for
constructing topological invariants for links described through standard closures of braids, via the
surjections of braid group algebras to Templerley-Lieb and Hecke algebras and via linear traces
on these algebras supporting the Markov property (see [Jon87]). The Jones construction has been
since successfully adapted to other knot algebras and other topological settings (as for example
for links in the solid torus [Lam99] and for framed links [CJKL16]). By considering mixed link
diagrams [LR97], we have the extension of the Alexander and Markov theorems for links in closed,
connected, orientable (from now on c.c.o.) 3-manifolds described via integral or rational topological
surgery [LR97, LR06, DL15], as well as for links in a handlebody [HOL02].

Figure 1. A classical braid closed in the standard closure and in the plat closure.

The representation of links as plat closures of braids with an even number of strands (see
Figure 1) goes back to the works of Hilden [Hil75] and Birman [Bir76], who proved that any
link in R3 may be represented as the plat closure of a braid. For example, all rational knots
and links can be represented by a braid with 4 strands, closed via plat closure, leaving the last
strand as the identity strand [BS34]. Hilden [Hil75] and Birman [Bir76] also described a set of
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moves that connect braids having isotopic plat closures, a result analogous to the classical Markov
equivalence. Since then, a lot of work has been done using the plat representation. For instance,
in [Big02] Bigelow studied the possibility of computing the Jones polynomial of a link in terms
of the action of a braid, representing the link as plat closure, over a homological pairing defined
on a covering of the configuration space of n points into the 2n-punctured disc. This result was
analyzed in recent years also from a computational point of view [GMR07, SJ08] and in order to
compute other link invariants, such as the Conway potential function [Yun11] or other polynomial
invariants [GMR06] and equivalence classes of links [Cav21b]. Using Heegaard decompositions, in
[Dol93] Doll introduced the notion of (g, b)-decomposition or generalized bridge decomposition for
links in a c.c.o. 3-manifold, opening the way to the study of links in 3-manifolds via surface braid
groups and their plat closures [BC12, CG18].

The study of links in handlebodies, thickened surfaces and c.c.o. 3-manifolds is a fertile soil of
research, with many researchers generalizing the results obtained in R3 in the more general setting
of 3-manifolds. We note that a handlebody (or Heegaard) decomposition of a c.c.o. 3-manifold
is naturally associated to the plat closure of braids, while a surgery description of the manifold is
naturally associated to the standard closure of braids.

The goal of this article is to give an algorithmic way to pass from the plat closure representative
of a link to its representation as the standard closure of a braid and vice-versa, in the three cases
of links in R3, in handlebodies and in thickened surfaces. We are especially interested in this last
case, because representation of links via plat closures of braids in c.c.o. 3-manifolds uses braids
in thickened surfaces as the starting point [CG18]. In fact, our future goal is to extend further
to the case of c.c.o. 3-manifolds and analyze also the action of this translation in term of braid
equivalences for isotopic links. We also produce a C++ program that implements our algorithms;
the program has linear computational complexity on the number of crossings and loop generators
when passing from standard to plat closure, while it has quadratic computational complexity on
the number of crossings when passing from plat to standard closure.

The paper is structured as follows. In Section 1 we present concisely our main results. In Section
2 we recall some notions and results about standard closure of braids and plat closure of braids.
In Section 3.1 we describe the first part of the main result, passing from the representation with
standard closure to plat closure. In Section 3.2 some useful constructions, needed for the proof of
the main result, are described. Section 3.2.5 contains the proof of the main result of the article,
that is the algorithm to pass from the representation with plat closure to the one using standard
closure in the setting of links in R3. In Sections 4 and 5 the analogous results are constructed for
links in handlebodies and thickened surfaces. Finally, in Section 6 we will present the main steps
of the C++ program which reproduces the main result.

1. Main results

If we take an element of the braid group on 2n strands B2n and close it via the standard closure,
we will obtain a link, which in general will not be isotopic to the link that we would obtain using
the plat closure.

As stated in the Introduction, each representation has its own advantages in theory and appli-
cations, so it would be interesting to understand how to pass from one representation to the other.
This is precisely the subject of this paper. Our result is, concisely, the following:

Theorem 1.1. Given a link L, in R3 (or S3), in a handlebody Hg or in a thickened c.c.o. surface
of genus g, N(Σg), represented by a braid B with plat closure, it is possible algorithmically to
generate a braid β which represents an equivalent link but with standard closure and vice-versa.
The algorithm from plat closure to standard closure has a computational complexity of O(N2) where
N is the number of crossings present in the braid B, while it has a computational complexity of
O(M), where M is the number of crossings present in the braid β, when going from standard to
plat closure.

As we shall see, given a link represented by a braid in standard closure in any setting, it is
straightforward to produce a braid in plat form representing the same isotopy class of the link.
It is more elaborate to find the opposite one, passing from plat to standard closure of a braid.
In what follows we will prove Theorem 1.1 separately in every topological setting. We start from
the easy way round, then, defining some useful constructions, we obtain the results for the three
settings of R3, handlebodies and thickened surfaces in sections 3.2.5, 4 and 5 respectively.
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We will usually employ capital letters for braids in plat form and small Greek letters for braids
with standard closure.

2. Preliminaries

2.1. Standard closure of braids. Let Bn be the Artin braid group [Art47]. It is defined as
the fundamental group of the unordered configuration space of n points on the real plane, i.e. a
group whose elements are equivalence classes of n paths Ψ = (ψ1, . . . , ψn), ψi : [0, 1] → R3, going
from a set of n points of the plane to itself, and never intersecting (ψi(t) ̸= ψj(t),∀t ∈ [0, 1], i, j ∈
1, . . . , n, i < j). The ψi’s are the strands of the braid. The middle illustration of Fig. 1 shows an
example of a braid in B4.

In the classical presentation, Bn is generated by elementary braids σi, i ∈ 1, . . . , n− 1, which
exchange strands i and i+ 1 as in Fig. 2, with relations:

σiσj = σjσi, if |i− j| ≥ 2

σiσi+1σi = σi+1σiσi+1.

For other information concerning the braid group, the reader could refer to [BB05, KT08].

Figure 2. The σi and σ−1
i generators.

In order for a braid to represent a link we have to ‘close’ it, for example identifying the starting set
of points on the plane with itself. This operation can be viewed as connecting the top endpoints to
their corresponding bottom endpoints with simple unlinked arcs, like in the left-hand illustration
of Fig. 1. This is called standard closure of a braid. It is important to note that this closure
naturally gives rise to an oriented link: indeed, if we consider the strands of the braid to be
oriented downward, then all closing arcs will be oriented upward and the whole orientation is
coherent.

Conversely, by a result of H. Brunn and of J.W. Alexander [Ale23, Bru92]:

Theorem 2.1 (The Alexander theorem). Every oriented link in R3 can be represented as the
standard closure of a braid in some Bn.

Of course, different braids (also with a different number of strands) can be closed to give the
same (oriented) link up to isotopy. Since Knot theory studies knots and links up to isotopy, a
theorem by A.A. Markov [Mar35] gives us a way of determining whether closing two braids results
in isotopic links or not:

Theorem 2.2 (The Markov theorem). Let βn ∈ Bn, βm ∈ Bm be two braids, and let Ln, Lm be
the two links obtained by the standard closure of βn, βm respectively. Then Ln is equivalent to Lm

if and only if βn can be obtained from βm after a finite sequence of these two moves (see Fig. 3):
• Conjugation: β ∼ γβγ−1, β, γ ∈ Bn;
• Stabilization move: β ∼ βσ±1

n ∈ Bn+1, β ∈ Bn.

The Markov theorem opened the possibility of studying the problem of knot and link classifi-
cation via the Artin braid groups, and this possibility was exploited successfully by V.F.R. Jones
with the discovery of the homonymous Jones polynomial.

Some years ago Lambropoulou and Rourke proved in [LR97] another version of the Markov
theorem, with only one equivalence move: the L-move. This is defined as follows (see Fig. 4): take
a braid β ∈ Bn and a point P on one of its strands and not aligned to any of the crossings; cut
the arc at P and bend the two resulting smaller arcs apart by a small isotopy and introduce two
new vertical arcs to two new top and bottom end-points in the same vertical line as P . These two
new arcs are both oriented downwards and they run either both under or both over all other arcs
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Figure 3. The conjugation (on the left) and the stabilization move (on the right).

Figure 4. An example of L-move. The two results are the under and over L-
moves.

of the diagram, thus obtaining an under L-move (or Lu-move) and a over L-move (or Lo-move)
respectively.

The new statements is the following:

Theorem 2.3 (One-move Markov theorem). Let βn ∈ Bn, βm ∈ Bm be two braids, and let Ln, Lm

be the two links obtained by the standard closure of βn, βm respectively. Then Ln is equivalent to
Lm if and only if βn can be obtained from βm after a finite sequence of L-moves and braid isotopies.

2.2. Plat closure of braids. One can also close a braid in a different way. Suppose that the
braid has an even number of strands, i.e. it belongs to some B2n. One can close the open ends
by connecting adjacent top and bottom endpoints using simple, unlinked arcs (see right side of
Fig. 1). This procedure is called plat closure of a braid, see [Hil75], [Bir76] and references therein.

It is important to note that the plat closure of a braid is not compatible with the natural
orientation of the braid, as it was the case with the standard closure, since the short closing arcs
would connect two downward strands. So, the result of the plat closure of a braid is an unoriented
knot or link, which will be referred to as plat.

In [Bir76] J. Birman proves the analogue of the Alexander theorem for the plat closure, that is:

Theorem 2.4 (Birman). Every link can be represented as the plat closure of a braid in some B2n.

The idea of the proof is simple: in a projection plane equipped with top to bottom direction,
consider a knot or link diagram with no horizontal arcs. Then pull by an isotopy every local
maximum to the top and every local minimum to the bottom. The result will be a plat. See also
Theorem 3.2 for an alternative proof.

We further note that, one can extend the notion of plat closure also to braids with an odd
number of strands as follows:

Definition 2.5. Let β ∈ B2n−1. We consider β′ to be the image of β under the natural embedding
ϕ2n−1 : B2n−1 ↪→ B2n, and we define the plat closure of β as the plat closure of β′ with the procedure
described above. In practice, we add an extra strand in the far right of the braid β.

In the above definition, one could consider, analogously, the embedding ϕi of B2n−1 into B2n,
whereby an extra free strand is added in the braid between the ith and the (i+1)st strands. This
extra strand could run equally entirely over or entirely under the rest of the braid, as the two
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resulting plats would be isotopic, see Fig. 10. We point out, though, that the plats resulting from
different embedding maps will, in general, be non-isotopic.

Since its importance in the equivalence theorem of links represented by plat closure of braids,
now we want to recall a subgroup of the braid group, the Hilden braid subgroup [Hil75], K2n.
Following the construction of [Bir76], consider a braid as an embedding in R3, such that the
closure arcs of the bottom part of the braid lie at level π : {z = 0}. This plane π cuts R3 into
two halves; let the upper half be R3

+ and let the set of endpoints of the closure arcs in π be
A = (a11, a12, . . . , an1, an2), as in Fig. 5. Then the group of isotopy classes Ψ = [ψ] of orientation-
preserving homeomorphisms ψ : (π,A) → (π,A) is the classical braid group B2n. We define K2n

as the subgroup of B2n generated by equivalence classes of homeomorphisms of R3
+ leaving the set

of closure arcs invariant on its boundary.

Figure 5. The braid embedded in R3 such that the closure arcs lie on the planes
π : z = 0 and π′ : z = 1.

In [Hil75] Hilden proves that K2n is finitely generated, and in [Bir76] Birman finds the presen-
tation with the smallest number of generators and in terms of elements of B2n:

Proposition 2.6. The group K2n is generated by {σ1;σ2σ2
1σ2;σ2iσ2i−1σ2i+1σ2i, 1 ≤ i ≤ n− 1}.

A visual representation of these generators is depicted in Fig. 6.

Figure 6. The three types of generators of K2m.

Furthermore, Birman also proves in [Bir76] an analogous result to the Markov theorem, con-
cerning equivalence between plat closures of braids:

Theorem 2.7 (Birman). Let L1, L2 be two links, and let B1 ∈ B2n1 , B2 ∈ B2n2 be two braids such
that their plat closures define the same link types as L1, L2 respectively. Then L1 is equivalent to
L2 if and only if there exists an integer t ≥ max(n1, n2) such that, for each m ≥ t the elements
(see Fig. 7):

B′
i = Biσ2niσ2ni+2 . . . σ2m−2 ∈ B2m, i = 1, 2

are in the same double coset of B2m modulo the Hilden subgroup K2m.
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Figure 7. The picture shows a braid B ∈ B2n and the braid
Bσ2ni

σ2ni+2 . . . σ2m−2 ∈ B2m. It can be seen using Reidemeister I moves that
these two braids, closed in the plat way, give rise to the same link isotopy class.

3. The R3 case

3.1. From standard closure to plat closure of braids. Let L be a link in R3 and β ∈ Bm be
a braid which represents L via standard closure. We want to produce a new braid B ∈ B2n which
represents the same link but via the plat closure. It is easy to produce B from β: in fact, it can be
done by pulling every i-th closing arc by isotopy to the left and behind the braid up to the right of
the i-th strand, becoming the (2i− 1)-th and 2i-th strands respectively in the plat representation.
Fig. 8 is an abstraction of the transformation, while Fig. 9 illustrates our favourite example.

Figure 8. Passing from standard closure to the canonical plat form.

Note that, given the standard orientation of a classical braid, all the new strands from the
closure are oriented upward (the red arcs in Fig. 8).

In algebraic terms, it is possible to obtain the transformation replacing each σk
j by:

(1) σk
j → σ−1

2j−1σ
k
2jσ2j−1, k = ±1.

Note also that, in the process described above, a closing arc could be pulled equally well over the
rest of the braid.

We shall now define a useful notion:

Definition 3.1. We will say that a braid B representing a link via plat closure is in canonical
plat form if every pair of even numbered endpoints are joined by a simple arc running entirely
underneath the rest of the plat diagram, as abstracted in Fig. 8, and if B admits an orientation
for which these arcs are oriented upwards. See for an example the rightmost illustration in Fig. 9.

We can now state the following, which comprises an alternative proof of Theorem 2.4 and even
sharpens it:
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Figure 9. An example of passing from standard closure to the canonical plat
form.

Theorem 3.2. Every link is isotopic to a closed braid in canonical plat form. Moreover, the
algorithm from standard closure to plat closure has a computational complexity of O(N), where N
is the number of crossings in the standard closed braid.

Proof. This is easily proven by assigning an orientation to each link component and using the
Alexander theorem. Then we apply the isotopy illustrated in Fig. 8. Furthermore, since a braid
β representing a link via standard closure has a natural orientation from top to bottom, all the
red arcs in Fig. 8 are oriented upwards and connect precisely the even numbered endpoints of B.
It follows from the above that we can always turn an oriented link into a plat in canonical form,
according to Definition 3.1.

For this direction, from standard closure to plat closure, equation (1) gives the precise algebraic
transformation for each braid generator. Note that, since the substitution is done once for each
crossing, the algorithmic complexity is linear in the number of crossings. □

Furthermore we have:

Lemma 3.3. A braid B ∈ B2n in canonical plat form is equivalent to a braid B′ ∈ B2n in plat
form admitting an orientation for which every pair of endpoints (2i−1, 2i), i ∈ 1, . . . , n there exists
at least a simple arc running entirely above or entirely below the rest of the braid, and oriented
upward, which joins the corresponding pair of endpoints.

Since B is in canonical plat form, following the procedure illustrated in Fig. 10 and Fig. 11 the
proof of Lemma 3.3 is straightforward. Note that this is possible both if the even arc is entirely
over (left) or entirely under (right) the rest of the braid.

3.2. From plat closure to standard closure of braids. Let L be a link and B ∈ B2n a braid
representing L via plat closure. Our aim is to prove the following.

Theorem 3.4. Given a link L represented by a braid B ∈ B2n with plat closure, it is possible
algorithmically to generate a braid β which represents an equivalent link but with standard closure
and vice-versa. The algorithm from plat closure to standard closure has a computational complexity
of O(N2) where N is the number of crossings present in the braid B.

Our strategy for proving the direction from plat closure to standard closure is to generate from
B a plat B′ in canonical plat form with isotopic plat closure, and this will occupy the rest of this
section. We shall first give some useful constructions.

First, we give an orientation to the braid. As a standard procedure, we give downward orienta-
tion to the leftmost strand of B. Then we orient subsequent strands by following this orientation
also in the plat closures. If any strand of B lacks orientation (in the case of B representing a link
with at least 2 components) then we take the first strand from the left with no orientation (it will
be an odd strand) and give it a downward orientation.
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Figure 10. Passing one under arc of the canonical form into an over arc.

Figure 11. Passing one odd arc into an even arc, either entirely over (left) or
entirely under (right) the rest of the braid.

Then we focus on the crossings. We divide them in four categories as illustrated in Fig. 12,
where in the region of the red dot there is an over or an under crossing. We want to create a braid
with all crossing of type a. For this reason we shall apply S-moves to every crossing of type b, c, d.

Figure 12. The four possible crossings.

3.2.1. The S-move. In [Bir76] Birman introduced the stabilization move as a move between braids
in plat form with isotopic plat closure, see Fig. 13. In the figure we see a small arc of the braid
included in the disk, [b′j , bj , b′′j ], to be isotopically replaced by three consecutive arcs, [b′j , b∗j , b

#
j , b

′′
j ],

forming two spikes which reach the top and bottom part of the braid respectively. Here we use an
open-ended version of a special case of the stabilization move; this shall be called “S-move”, more
precisely:
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Figure 13. An abstraction of Birman’s stabilization move.

Definition 3.5 (S-move). The S-move is an adaptation of the stabilization move in the case of
oriented plats, with the following features:

• it is applied on up-arcs;
• the two isotopy spikes take place both entirely underneath or entirely above the rest of the

diagram according to whether it is an under or over up-arc;
• it eliminates the up-arc and produces two open-ended down-arcs which make a pair of

corresponding braid strands.

Take, for example, a b, c or d-type of crossing and consider a small piece of the up going strand
(in case d we do the operation for both strands one after the other). Fig. 14 illustrates the case of a
type b crossing where the up-arc is an ‘under’ arc. The S-move starts with isotoping this arc across
a small sliding triangle so that it is replaced by the horizontal and vertical sides of the triangle.
Then a stabilization move is applied to the vertical side of the triangle, so the two isotopy spikes
take place both entirely underneath or entirely above the rest of the diagram. In Fig. 14 this is
depicted by the addition of two blue and one red arcs. The S-move is completed by omitting the
red arc from the representation. In Fig. 15 are represented the three possible cases of crossings.
In both figures, as well in subsequent figures, we have indicated with dust-grey lines the arcs that
may appear in the plat closure. Notice that there could be instances where there are no closure
arcs (when the left hand side strand is an even numbered one).

Figure 14. The S-move.

Remark 3.6. The elimination of the up-arc in Definition 3.5 is really crucial so that the applica-
tion of an S-move will not create other b, c or d-type crossings.

3.2.2. Managing crossings on the same column. If we have different S-moves applied on the same
column, we do them in such a way that the new strands coming from the same type of crossings
never intersect each other. An example can be seen in Fig. 17: the red strands coming from the
c-type crossings are all on the left, one after the other, while the blue strands coming from the
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Figure 15. The three possible outcomes of a S-move.

b-type crossings are all on the right in a similar manner. d-type crossings generate one left and
one right strand. It is important to note that, once we have the sequence of all the crossings (with
labelled types), we can give the univocal sequence of the new crossings generated by the algorithm.

More precisely, suppose that we have, in the column i, a total number of H type c and d
crossings and a total number of K type b and d crossings (the type d crossings are counted doubly
because each one gives rise to a blue and a red strand). After an a, b, c or d-type crossing, say
σ̄i, is dealt with, we will have a situation like in Fig. 18. Here, we can see how all different cases
present different outcomes for the starting and ending original strands defining the column i. The
sequences of the final crossings can be summarized in these explicit formulae:

Ca(σ̄i) =(σδi
i σ

δi+1

i+1 . . . σ
δi+H−1

i+H−1 )(σ
δi+H+K

i+H+Kσ
δi+H+K−1

i+H+K−1 . . . σ
δi+H+1

i+H+1)σ̄i+H(2)

(σ
−δi+H−1

i+H−1 σ
−δi+H−2

i+H−2 . . . σ−δi
i )(σ

−δi+H+1

i+H+1 σ
−δi+H+2

i+H+2 . . . σ
−δi+H+K

i+H+K )

Cb(σ̄i) =(σδi
i σ

δi+1

i+1 . . . σ
δi+H−1

i+H−1 )(σ
δi+H

i+H σ
δi+H+1

i+H+1 . . . σ
δi+H+K−1

i+H+K−1)(σ
δi−1

i−1 σ
δi
i . . . σ

δi+H−2

i+H−2 )(3)

Cc(σ̄i) =(σ
δi+H+K

i+H+Kσ
δi+H+K−1

i+H+K−1 . . . σ
δi+H+1

i+H+1)(σ
δi+H

i+H σ
δi+H−1

i+H−1 . . . σ
δi+1

i+1 )(4)

(σ
δi+H+K+1

i+H+K+1σ
δi+H+K

i+H+K . . . σ
δi+H+2

i+H+2)

Cd(σ̄i) =(σδi
i σ

δi+1

i+1 . . . σ
δi+H−1

i+H−1 )(σ
δi+H+K

i+H+Kσ
δi+H+K−1

i+H+K−1 . . . σ
δi+H+1

i+H+1)σ̄
−1
i+H(5)

with δi−1, δi, δi+1, . . . , δi+H+K ∈ {+1,−1} depending on the S-moves.

When dealing with this transformation is easy to check that we actually create some local
minima or maxima along our braid. Checking all possibilities of subsequent a, b, c and d-type
crossings, according to the orientation of the strands, the situation can be brought to a standard
braid with a local isotopy move or a Reidemeister I move. In Fig. 19 there are some interesting
cases. Note that, in fact, these are the only cases where Reidemeister I will appear, indeed when
we consider braids with multiple columns, the process will eliminate all up arcs in the boundary
of the columns with the process we describe. If we have a Reidemeister I move it is important to
note that we have to eliminate the related crossing, following this scheme:

• two d-type crossings one after the other on the same column: remove σδi
i and σ

δi+H+K

i+H+K

from the first Cd;
• a b-type crossing followed by a c-type crossing on the same column: remove σδi−1

i−1 from Cb;
• a c-type crossing followed by a b-type crossing on the same column: remove σδi+H+2

i+H+2 from
Cc;

3.2.3. Top part and bottom part management. Now that we have dealt with all the possibilities
in the braid, we have to address the problem of the intersections of the new strands with the
plat closure arcs of the braid. In fact the new strands and these intersections are formed with
applications of S-moves, since the new strands extend higher than the top plat closure and lower
than the bottom plat closure.
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Figure 16. The S-move applied on different crossings of same types on the same
column (c-type and b-type respectively), which create only left or only right new
strands.

Figure 17. The S-move applied on different crossings of types c and b on the
same column.

For this reason, we have some possibilities occurring, depending on the orientation of the top
(resp. bottom) plat closure arc and the possible crossings present right after (resp. above) it.

Let us consider the top part first. Observing that only the odd labelled columns contain the
plat closure arcs, we will only focus on these, because we will not add crossings in the top part
while performing the S-move along the even columns. We will address the odd column that we
are working on with label i. We have two possible orientations for the plat closure arc, from left
to right and from right to left, and we will analyze them separately.

With orientation from right to left, it is easy to see that, if there are crossings in columns i or
i+ 1, the first that joins the up arc of the closure arc one needs to agree to the orientation: type
b or d in column i, type c or d in column i+ 1.
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(a) a-type (b) b-type

(c) c-type (d) d-type

Figure 18. The four possible outcomes after all the S-moves in a column.

Figure 19. Some cases where the Reidemeister I move is needed to bring the
braid into standard position.

Of course, in the first case, we will need to perform a S-move on the crossing, obtaining the
situation depicted in Fig. 20a. Considering the number of type c and d crossings as before, it is
straightforward to check that in this case the new crossings form the word:

(6) TL,i = σi+H+K−2σi+H+K−3 . . . σi+1σi

with signs depending on the S-moves. It is important to note that, as we saw in the previous
paragraph, we can apply a Reidemeister I move in the top right part to get the braid into a
standard position: we would have also a σi+H+K−1 but we have removed it.

In the same way, for the i+1 case we get the construction in Fig. 20b and obtain the expression:

(7) TL,i+1 = σi+H+K−1σi+H+K−2 . . . σi+1σi

with signs depending on the S-moves, and no Reidemeister moves.
With orientation from left to right, in the same way as before, we can see that if there are

crossings in columns i or i− 1, the first one joining the up-arc of the closure arc needs to agree to
the orientation: type b or d in column i − 1, type c or d in column i. Analogously, following the
construction in Fig. 20c-20d, we obtain the two expressions:

(8) TR,i−1 = σiσi+1 . . . σi+H+K−2σi+H+K−1

(9) TR,i = σiσi+1 . . . σi+H+K−1σi+H+K−2

with signs depending on the S-moves and a Reidemeister I move in the second case, which changes
the number of the strings and leads to the final expression.
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Now we consider the bottom part. Following the same process, we have the two possible ori-
entations and four possible cases in total for the crossings: right to left, crossing of type c or d in
column i− 1, Fig. 21a; we can check how in column i− 1 nothing changes from the standard c or
d case, but in column i we have

(10) BL,i−1 = σi+H+K−1σi+H+K−2 . . . σi

Right to left, crossing of type b or d in column i, Fig. 21b; following the picture, we can perform
the Reidemeister 2 move on the left side (since all the crossings are coupled) eliminating the
crossings on the left part and obtaining

(11) BL,i = σi+Hσi+H+1 . . . σi+H+K−2

with signs depending on the S-moves.
Left to right, crossing of type c or d in column i, Fig. 21c; as before, we perform the Reidemeister

2 move but on the right side, obtaining

(12) BR,i = σiσi+1 . . . σi+H−2

with signs depending on the S-moves.
Left to right, crossing of type b or d in column i+1, Fig. 21d; as before, in column i+1 nothing

changes from the standard b or d case, adding in column i

(13) BR,i+1 = σiσi+1 . . . σi+H+K−1

with signs depending on the S-moves.

3.2.4. Trivial cases. Until now we always considered the case of a column with at least one crossing.
If we have no crossings in two subsequent columns then we will have between them a strand which
goes straight from top to bottom. If it has a upward orientation then it can be considered as one
of the closures in the standard closure, putting it aside.

Moreover, if we have three consecutive empty columns, the first one of which is odd labeled,
then we will have an extra trivial component to our link.

3.2.5. Proof of Theorem 3.4. We are ready to prove the main theorem of the section:

Proof. Following the procedure of last section, give an orientation to the braid and label each
crossing following Fig. 12. After this procedure, if any of the strands oriented upwards is entirely
over or entirely under the rest of the braid, following Lemma 3.3 it can be considered as one of the
closures in the standard closure, putting it aside.

We now perform the S-move on every b, c, d-type crossing, obtaining only a-type crossings. If
we have a total of na, nb, nc and nd crossings of a, b, c, d-type, then performing all the S-moves
on the crossings of b, c, d-type, we add a total of nb + nc + 2 · nd new strands. If there are trivial
cases, where there are no crossings in two subsequent columns, then move the free strand above
the braid. Now all the new strands and the ones coming from the trivial cases lay entirely above
or underneath the braid. Using the result from Lemma 3.3, we have as a result that the link
represented by the newly generated braid with classical closure is equivalent to L.

The operations made are all substitutions on the crossings and are done at most once every
crossing. When we do the substitution we need to check all the other crossings on the same
column in order to write correctly the δis of equations (2), (3), (4), (5). Suppose we have ci
crossings in the column i, with N =

∑n
i=1 ci. The total number of controls needed in column i

are ci × (ci − 1), which gives a total of
∑n

i=1(c
2
i − ci) controls for the entire braid. In the worst

case scenario we have only one column containing all the crossings, so the the number of controls
needed is N × (N − 1) = N2 −N . We can deduce that the algorithm is quadratic in the number
of the crossings. □

Example 3.7. In Fig. 22 there is depicted the passing from a braid representing a link via plat
closure to a braid representing the same link but via standard closure. First we give an orientation
to the link, then we apply all the S-moves. Thereafter we remove all the redundant kinks and
obtain the final braid, which represents the same link class but via standard closure.
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(a) Top part with orientation right to left, first case;

(b) Top part with orientation right to left, second case;

(c) Top part with orientation left to right, first case;

(d) Top part with orientation left to right, second case;

Figure 20. Management of the top plat closure arcs.

4. The handlebody case

Let Hg be the abstract handlebody of genus g. Hg can be constructed from a 3-ball with g
1-handles attached. Equivalently, it can be constructed as the product space of the g-punctured
disc, Dg, cross the interval. See Fig. 23. Namely,

Hg = Dg × [0, 1]

Hence, the ‘decompactified’ Hg may be viewed as embedded in R3 and as the complement of the
identity braid Ig on g indefinitely extended strands. For viewing Hg in S3 we consider all strands
of Ig meeting at the point at infinity, see Fig. 24(a). Then a thickening of the resulting graph is
the complementary handlebody of Hg in S3.
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(a) Bottom part with orientation right to left, first case;

(b) Bottom part with orientation right to left, second case;

(c) Bottom part with orientation left to right, first case;

(d) Bottom part with orientation left to right, second case;

Figure 21. Management of the bottom plat closure arcs.

Let now L be a link in Hg. Then, using the above representation and fixing Ig pointwise, L may
be unambiguously represented by the mixed tangle (or mixed link) Ig ∪L, see Fig. 24(b). Ig forms
the so-called fixed part or fixed subbraid of the mixed link, while L forms the so-called moving part
of the mixed link (see [LR97, HOL02]).

4.1. Mixed braid groups. It is shown in [HOL02] that a mixed link may be isotoped to the
standard closure of a mixed braid, providing an analogue of the Alexander theorem for knots and
links in Hg. Furthermore, a corresponding mixed braid equivalence is proved.

A mixed braid on n moving strands, denoted Ig ∪ B, is an element of the Artin braid group
Bg+n which contains the identity braid on g strands, Ig, as a fixed subbraid (see abstraction in
Fig. 24(c)). By removing Ig we are left with the moving subbraid B on n strands. In the picture of
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Figure 22. An example of passing from a braid in plat closure to one in standard
closure.

∼
Figure 23. Abstract handlebody.

Hg = Dg × [0, 1], the top n endpoints of the braid B in Hg lie in Dg × {0} and the corresponding
bottom n endpoints of B lie in Dg × {1}.

Figure 24. (a) representing Hg in S3; (b) a mixed link; (C) a mixed braid.

Furthermore, it is established in [HOL02] that the mixed braid groups Bg,n [Lam00], n ∈ N,
comprise the algebraic counterpart of knots and links in Hg. Bg,n is the subgroup of all elements
of Bg+n for which, by removing the last n strands we are left with the identity braid Ig. Of course,
if we take g = 0, we obtain the standard definition of the Artin braid group in R3, Bn. Elements
of Bg,n are called mixed braids.

In [Lam00], it is proved that the following is a presentation for Bg,n:

(14) Bg,n =

〈
α1, . . . , αg

σ1, . . . , σn−1
|

σkσj = σjσk, |k − j| > 1
σkσk+1σk = σk+1σkσk+1, 1 ≤ k ≤ n− 1

αiσk = σkαi, k ≥ 2, 1 ≤ i ≤ g
αiσ1αrσ1 = σ1αrσ1αi, 1 ≤ i ≤ g

αi(σ1αrσ
−1
1 ) = (σ1αrσ

−1
1 )αi, r ≤ i

〉
,
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where the σj generators are the elementary crossings among moving strands while the “loop”
generators αi represent a looping of the first moving strand around the i-th fixed strand, as defined
in Fig. 25.

Figure 25. The generators of Bg,n.

Note 4.1. It should be mentioned that in [Lam00] and consequently in [HOL02] and [LR06] the
loop generators αi are denoted by ai. In this paper we prefer to avoid the notation ai, as this is
used in the next section for denoting a type of loop generators of the surface braid group.

4.2. The standard closure and the plat closure for mixed braids.

Definition 4.2. Let β ∈ Bg,n be a mixed braid. The standard closure of β is an oriented mixed link
defined by joining with simple unlinked arcs each pair of corresponding endpoints of the moving
braid strands. See thin grey arcs in Fig. 26(a).

Conversely, an oriented mixed link can be braided to a mixed braid with standard closure
[HOL02] (an analogue of the classical Alexander theorem for knots and links in Hg). Moreover,
mixed link isotopy is translated in [HOL02] into a mixed braid equivalence in

⋃
n Bg,n (an analogue

of the classical Markov theorem). For details the reader may consult [HOL02].

Figure 26. A mixed braid: with standard closure (β); with plat closure (B).

Definition 4.3. Let B ∈ Bg,2n be a mixed braid with an even number of moving strands. The
plat closure of B is a mixed link defined as follows: we first number the set of top (resp. bottom)
endpoints from left to right, with numbers 1, 2, . . . , 2n (resp. 1′, 2′, . . . , 2n′). To each pair (2i−1, 2i)
(resp. (2i− 1′, 2i′)) we use a simple arc, say γi (resp.γ′i), as joining arc for the pair of endpoints.
See thin grey arcs in Fig. 26(b). The resulting unoriented mixed link shall be referred to as mixed
plat.

Note that the notion of plat closure in the definition above is well-defined, by recalling that B is
an element in Bg+2n and adapting the definition of plat closure for a classical braid. Note further
that Definition 4.3 could be extended also in the case of an odd number of moving strands, using
the same rationale as in S3; recall discussion after Definition 2.5.
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Although it is shown in [HOL02] that any link L in the handlebody Hg can be represented by a
mixed braid with isotopic standard closure, for the plat closure case we have to adapt the braiding
algorithm of [Bir76, CG18] to the handlebody setting. As it turns out, L can be braided to a mixed
braid B in some Bg,2n, representing the link via plat closure. This is presented in a sequel paper
to this one (as well as the corresponding plat equivalence) [LC23]. We will also prove the braiding
here as a corollary, after giving a transformation from standard to plat closure.

4.3. From standard closure to plat closure. Let now B ∈ Bg,2n and β ∈ Bg,m be two mixed
braids representing a link L in Hg via plat closure and standard closure respectively. The question
is how these mixed braids are related.

The first part of the result in the setting of handlebodies is obtained in the same way as in the
case of R3:

Theorem 4.4. Let Hg be a handlebody of genus g. Given a link L in Hg represented by a
mixed braid β ∈ Bg,m with standard closure, it is possible algorithmically to generate a mixed
braid B ∈ Bg,2m which represents an equivalent link but with plat closure. The algorithm has a
computational complexity of O(M), where M is the number of crossings present in the braid β.

Proof. Let L be a link in Hg. Recall that by the results in [HOL02] and [LC23], there exist mixed
braids representing L via the standard closure as well as via the plat closure. Recall also that the
mixed braid group Bg,n is generated by the elementary crossings σj , j ∈ {1, . . . , n − 1} and the
loop generators αi, i ∈ {1, . . . , g}, see Fig. 25. For this proof we shall use the techniques employed
for proving Theorem 3.2 for the case of R3, and we will expand them for taking care of the loop
generators.

Let β ∈ Bg,m be a mixed braid representing L via the standard closure. View abstraction in
rightmost illustration of Fig. 26. We follow the same construction of Section 3.1: we take the i-th
closing arc and we let it pass isotopically underneath the mixed braid till it comes to the right of
the i-th strand, becoming the (2i−1)-th and 2i-th moving strands in the plat representation, recall
Fig. 8. Note that, during this process the fixed part of the mixed braid (representing the holes
of the handlebody) does not interfere, since the closing arcs lie on the right of the mixed braid.
Therefore, the algebraic transformation for the generators σj is still equation (1). Note that, since
the substitutions are done once for each crossing, the computational complexity is linear in the
number of crossings. □

4.4. From plat closure to standard closure. In this section we will describe an algorithm that,
knowing the representation of L through a braid closed via plat closure, it gives us a representative
of L in the other closure. The operation for Hg is quite similar to the one described in the previous
sections for the case of R3. We only need to, additionally, take care of the loop generators αi of
the mixed braid. We now state our main result for this section.

Theorem 4.5. Let Hg be a handlebody of genus g. Given a link L in Hg represented by a mixed
braid B ∈ Bg,2n with plat closure, it is possible algorithmically to generate a mixed braid β ∈ Bg,m
which represents an equivalent link but with standard closure. The algorithm has a computational
complexity of O(N2) where N is the number of crossings present in the braid B.

Proof. This way round, from plat closure to standard closure, needs more attention than the
previous case. Let B ∈ Bg,2n be a mixed braid representing L via plat closure. View abstraction
in rightmost illustration of Fig. 26. After giving an orientation to the moving part of our mixed
braid, the situation is very similar to the one that we have already described in Section 3.2, but
with one difference: now we can also have loop generators, oriented upward or downward.

As for the case of R3, we identify the space between moving strand i and moving strand i+1 as
the i-th column. We then call “0”-th column the one defined between the g-th fixed strand and the
first moving strand of the mixed braid. Now we are ready to apply our transformation for turning
B into an algebraic mixed braid β with equivalent closure.

We first deal with the crossings between moving strands. These are treated exactly as in
Theorem 3.4, since the moving strands are all gathered in the right-hand-side of the mixed braid.
Furthermore, as their numbering is the same as for classical braids, formulae (2), (3), (4) and (5)
apply directly on the columns 1, 2, . . . , 2n − 1 of the word B ∈ Bg,2n. The only point of concern
is the first column, from which loop generators may be reaching out to the fixed strands. Yet,
according to our algorithm, the new braid strands (red and blue) created by the applications of
S-moves, lie entirely within the columns where the S-moves are applied. This means that the loop
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generators will not be affected by the above formulae. After dealing with all moving crossings of
types b, c and d, we are left with only type-a crossings.

Figure 27. Twisting an αk
i oriented upward changes k and generates a d-type

crossing.

We shall next deal with the loop generators α1, . . . , αg and their inverses. In the final mixed
braid with standard closure that we will obtain, all loop generators and their inverses need to
be oriented downward. So, if a loop generator (or its inverse) is oriented downward it remains
unchanged. If, however, a loop generator or its inverse is oriented upward, we perform a twist
following the isotopy depicted in Fig. 27, causing a change of its orientation and its type (from
unoriented positive to inverse and vice-versa) and creating at the same time a d-type moving
crossing in the 0-th column.

The next thing to do is to perform an S-move for every d-type moving crossing. Assume we
have k loop twists and, thus, S-moves in total. When we focus on the result in the 0-th column,
we have (see Fig. 28):

• any non-twisted α±1
i becomes σ2kσ2k−1 . . . σk+1σ

−1
k σ−1

k−1 . . . σ
−1
1 α±1

i σ1σ2 . . . σkσ
−1
k+1σ

−1
k+2 . . . σ

−1
2k

• any twisted α±1
i becomes α∓1

i σ1σ2 . . . σk−1σ2kσ2k−1 . . . σk+1σk

Of course, if we have two S-moves one after the other, without any σ1 in the middle, we will have
to perform a Reidemeister I move in order to bring the braid into standard position, as shown in
Fig. 28.

The last thing to do is the top part and bottom part management for the plat closure arcs.
Again, as these do not interfere with the fixed strands, they are dealt exactly as described in
Section 3.2.3 for the case of R3.

Note finally that all the substitutions made on the αi generators are done in linear time, because
all the S-moves done in the first column are of the same type. Then, following the line of reasoning
of 3.2.5, the computational complexity remains quadratic in the number of the σi generators.

□

Example 4.6. In Fig. 29 we illustrate an example for passing from a mixed braid representing
a link via plat closure to a mixed braid representing the same link but via standard closure in
the handlebody setting. First we give an orientation to the link, then we apply all the S-moves.
Thereafter we remove all the extra crossings and twist the loop generators oriented upward. We
apply the last S-moves in the 0-th column and remove again all the extra crossings, obtaining the
final braid which represents the same link class but via standard closure.

As a corollary of Theorem 4.5 and by results in [HOL02] (recall Section 4.1), we have proven
the analogue of the Alexander theorem for a link in a handlebody being isotopic to the plat closure
of a mixed braid:

Theorem 4.7. Let Hg be a genus g handlebody. Every link L in Hg may be braided to a mixed
braid in Bg,n, the plat closure of which is isotopic to L.
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Figure 28. The result after all the twists and S-moves on the 0-th column.

Figure 29. An example of passing from a mixed braid in plat closure to one in
standard closure in the handlebody setting.

Remark 4.8. The loop generators of the mixed braid group lead to a further consideration.
Namely, a (classical or mixed) pure braid can be expressed in terms of loop generators ([Art47],[Lam00])
and this can be extended to any (classical or mixed) braid, namely it can be expressed as a com-
position of a pure braid and a standard permutation braid (see [Cho48],[Lam00]). So, both in the
classical case and the handlebody case, one could use in the algorithm for passing from plat to
standard closure the technique of twisting the opposite oriented pure braid loop generators (instead
of classical crossings) and handling a controlled number of classical crossings. We would like to
thank Dimitrios Loulas for providing the idea of using pure braid generators in place of crossings.
Even though the number of extra strands that we create during this different algorithm can be
slightly optimized than in our standard case, the computational complexity of the algorithm is not
improved. For this reason, it could be useful to use this remark when looking for a lower bound for
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the creation of extra strands while passing from one closure to the other. The above considerations
apply also to the thickened surface case discussed next.

5. The thickened surface case

5.1. Surface braid groups. Let Σg be a c.c.o. genus g surface and let Σg × [0, 1] be a thickening
of Σg, view Fig. 30.

Figure 30. Abstract illustration of a thickened surface.

Consider further the set of points P = {P1, . . . , Pn} in Σg. Following [Bel04], the surface
braid group BΣg,n is defined as the fundamental group of the configuration space of P in Σg.
This is the group with elements n-tuples Ψ = (ψ1, . . . , ψn) of paths ψi : [0, 1] → Σg such that
ψi(0) = Pi, ψi(1) ∈ P,∀i ∈ {1, . . . , n} and ψ1(t), . . . , ψn(t) are distinct points of Σg,∀t ∈ [0, 1]. It
is important to note that, by the definition of the surface braid group BΣg,n, it is always possible to
consider the points in P lying in a small disc A ⊂ Σg away from the genus holes (see [Bel04],[CG18]),
as illustrated in Fig. 31.

Figure 31. The set of points P1, . . . , Pn on the two levels Σg×{0} and Σg×{1}.

In [Bel04] Bellingeri obtains a presentation for the surface braid group BΣg,n, as follows: the
generators of the group are:

• crossings σj , j = 1, . . . , n − 1, which exchanges points Pj and Pj+1, and keeps fixed all
other points;

• loop generators ai, i = 1, . . . , g, which keep fixed all points but P1 and loop around the
longitude of the i-th genus hole;

• loop generators bi, i = 1, . . . , g, which keep fixed all points but P1 and loop around the
meridian of the i-th handle.

An illustration of the generators of BΣg,n as elements of the fundamental group of the configuration
space of P in Σg, is given in Fig. 32, where we have dropped the notation Pi for the ith point.

Figure 32. The generators of BΣg,n represented on the surface Σg.

A complete set of relations for BΣg,n is the following:
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• Braid relations:

σjσj+1σj = σj+1σjσj+1, j = 1, . . . , 2n− 2

σjσk = σkσj , j, k = 1, . . . , 2n− 1, |j − k| ≥ 2

• Mixed relations:

arσj = σjar, 1 ≤ r ≤ g, j ̸= 1

brσj = σjbr, 1 ≤ r ≤ g, j ̸= 1

σ−1
1 arσ

−1
1 ar = arσ

−1
1 arσ

−1
1 , 1 ≤ r ≤ g

σ−1
1 brσ

−1
1 br = brσ

−1
1 brσ

−1
1 , 1 ≤ r ≤ g

σ−1
1 asσ1ar = arσ

−1
1 asσ1, s < r

σ−1
1 bsσ1br = brσ

−1
1 bsσ1, s < r

σ−1
1 asσ1br = brσ

−1
1 asσ1, s < r

σ−1
1 bsσ1ar = arσ

−1
1 bsσ1, s < r

σ−1
1 arσ

−1
1 br = brσ

−1
1 arσ1, s < r

[a1, b
−1
1 ] . . . [ag, b

−1
g ] = σ1σ2 . . . σ

2
2n−1 . . . σ2σ1

where [a, b−1] = ab−1a−1b.

Note 5.1. For geometric interpretations of surface braids we consider the lifting of a surface braid
B, such that all the σj generators are lying in the cylinder A× I, as illustrated in Fig. 31. In this
setting, the crossing generators σj are lifted as depicted in Fig. 25. The loop generators ai are
lifted as depicted in the right-hand side of Fig. 33 (see [Lam00]). In the left-hand side of the figure,
the loop generators αi of the mixed braid group Bg,n are illustrated (recall Note 4.1). Finally, the
loop generators bi around the handles and their inverses are represented in [CG18] by abstract
arrows, as illustrated in Fig. 34.

The above geometric interpretations allow us to further represent in R3 surface braids in BΣg,n

as augmented classical braids in Bg+n with the first g strands fixed, forming the identity braid Ig,
and the last n strands moving. Namely as augmented mixed braids in the mixed braid group Bg,n
[CG18]. So, a surface braid can be represented as a mixed braid augmented by abstract arrows.
As for Bg,n and the case of handlebody, the fixed subbraid Ig represents topologically the genus
holes of Σg. An example of a surface braid in this setting is depicted in Fig. 35.

Figure 33. Two different loop generators around the genus: on the left, the ones
used in [Lam00] for the handlebody, and on the right the ones used in [CG18] for
the thickened surface.

Note 5.2. As we see in Fig. 33, the definitions of the two genus loop generators αi in [Lam00]
and ai in [CG18] are slightly different. More precisely, they are related via the equation:

(15) αk
i = a−1

g a−1
g−1 . . . a

−1
i+1a

−k
i ai+1 . . . ag−1ag, k = ±1

The first step of the conversion from αk
i to a−k

i in Equation (15) is depicted in Fig. 36.
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Figure 34. The bi generator of BΣg,n. Note that the small arrow is added only
to clarify the number of the hole and the direction around it.

Figure 35. An example of surface braid.

Figure 36. Transformation from [Lam00] to [CG18].

5.2. The plat closure and the standard closure for surface braids.

Definition 5.3. Let B be an element of some surface braid group BΣg,2n, where P has even
cardinality 2n. The plat closure of B is defined, in analogy to the classical case and the handlebody
case, by using small simple arcs ⊂ A connecting points P2i−1 and P2i, i = 1, . . . , n, both at level
{0} and {1}, see Fig. 37. The resulting unoriented surface link shall be referred to as surface plat.

Note that, as in the case of mixed braids, the notion of plat closure in the definition above is
well-defined, by recalling that B is an augmented element in Bg,2n and thus also in Bg+2n and
adapting the definition of plat closure for a classical braid. Note, further, that Definition 5.3 may
be extended also in the case of an odd number of moving strands, using the same rationale as in
S3 and in the case of handlebody. Recall discussion after Definition 4.3.

Definition 5.4. Given a braid β ∈ BΣg,m, we define the standard closure of β as the one obtained
using simple arcs connecting the corresponding points of P at level {0} and at level {1} on the
boundary of A× I, following the red arcs as in Fig. 38.

Note that, as in the case of mixed braids, the notion of standard closure in the definition above
is well-defined, by recalling that β is an augmented element in Bg,2n and thus also in Bg+2n and
adapting the definition of standard closure for a classical braid.

A braiding algorithm for unoriented links in thickened surfaces represented as plat closures of
surface braids having an even number of moving strands is presented in [CG18], as well as a plat
braid equivalence (analogue of the Markov theorem). For the representation of oriented links in
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Figure 37. An example of plat closure in our setting. Note that here the number
of points is even.

Figure 38. The representation of standard closure in a thickened surface. The
red arcs are on the boundary of A× I.

thickened surfaces as standard closures of surface braids (as well as their equivalence), we have
proven the analogous results in [LC23]. We will also prove the braiding here as a corollary, after
showing the existence of a transformation from plat to standard closure.

5.3. Passing from standard closure to plat closure. For the passage from standard closure to
plat closure of a surface braid, we use the same construction of Section 3.1, obtaining the following:

Theorem 5.5. Let Σg be a c.c.o. surface of genus g. Given a link L ⊂ N(Σg), a neighbourhood
of Σg, represented by a braid β ∈ BΣg,m with standard closure, it is algorithmically possible to
generate a braid B ∈ BΣg,2m which represents an isotopic link but with plat closure. The algorithm
has a computational complexity of O(M), where M is the number of crossings present in the braid
β.

Proof. The proof builds on Theorems 3.2 and 4.4 concerning the passing from standard to plat
closure for the cases of R3 and that of the handlebody. Since the moving subbraid of a surface
braid can be considered to have the endpoints on the right part of the fixed subbraid, it is always
possible to isotope the closing arcs behind the moving strands without interfering with the ai
and bi loop generators. The algebraic transformation is still equation (1). Furthermore, since the
substitution is done once for every crossing, the computational time is linear in the number of the
σi generators. □

5.4. Passing from plat closure to standard closure. For the transformation of a given surface
braid representing a link in a thickened surface via plat closure to an isotopic one but via standard
closure, we shall follow the same algorithm as in Section 4, after observing that Note 5.1 enables
us to use the same definition of S-move as in S3, since in this case the move is done locally in
the cylinder A × I. All this is possible because we represent surface braids via augmented mixed
braids in R3, so we can easily generalize the algorithm to take care of the bi loop generators.

Theorem 5.6. Let Σg be a c.c.o. surface of genus g. Given a link L ⊂ N(Σg), a neighbourhood
of Σg, represented by a braid B ∈ BΣg,2n with plat closure, it is algorithmically possible to generate
a braid β ∈ BΣg,m which represents an equivalent link but with standard closure. This algorithm
has a computational complexity of O(N2) where N is the number of crossings present in the braid
B.

Proof. After giving an orientation to the surface braid B in plat form, ais and bis generators will
possibly be in an upward going strand.

In the remaining part of the braid we can apply the algorithm of Theorem 3.4. Since all the
S-moves are done locally in the cylinder A×I, it is possible to perform the transformation shown in
Fig. 8 (and also the one depicted in Fig. 10), thus turning the strands containing the σi generators
from plat to standard closure.

Now we deal with the upward ai’s and bi’s as shown previously; we will twist the piece containing
the ai or bi generator as in Fig. 27 and Fig. 39. In this way, the generators will change their sign,
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and a type d crossing will appear into the 0-th column. After performing the S-move for every
twist done in this way, say k twists in total, we will have:

• any not twisted ai becomes σ2kσ2k−1 . . . σk+1σ
−1
k σ−1

k−1 . . . σ
−1
1 aiσ1σ2 . . . σkσ

−1
k+1σ

−1
k+2 . . . σ

−1
2k

• any twisted ai becomes a−1
i σ1σ2 . . . σk−1σ2kσ2k−1 . . . σk+1σk

• any not twisted bi becomes σ2kσ2k−1 . . . σk+1σ
−1
k σ−1

k−1 . . . σ
−1
1 biσ1σ2 . . . σkσ

−1
k+1σ

−1
k+2 . . . σ

−1
2k

• any twisted bi becomes b−1
i σ1σ2 . . . σk−1σ2kσ2k−1 . . . σk+1σk

In the same way as before, if we have two S-moves one after the other, without any σ1 in between,
we will have to perform a Reidemeister I move in order to bring the braid into standard position,
as shown in Fig. 40 and Fig. 28.

Again note that, since all the substitutions made on the loop generators are done in linear time
(the S-moves done in the first column are of the same type), the computational complexity of the
algorithm remains quadratic in the number of the σi generators. □

Figure 39. Twisting a bki belonging to an oriented upward strand changes k and
generates a d-type crossing. The black arrow marks the orientation of the strand,
while the red one marks the direction of bi generator.

Figure 40. The result after all the twists and S-moves on the 0-th column over
the bi generators. Note that the red arrow mark only the direction of the bi
generators.

Example 5.7. In Fig. 29 there is depicted the passing from a braid representing a link via plat
closure to a braid representing the same link but via standard closure in the thickened surface
setting. First we give an orientation to the link, then we apply all the S-moves. Thereafter we
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remove all the extra crossings and twist the loop generators oriented upward. Note that the black
arrow represents the sign of the b1 generator, while the blue one represents its orientation. We
apply the last S-moves in the 0-th column and remove again all the extra crossings obtaining the
final braid, which represents the same link class but via standard closure.

Figure 41. An example of passing from a braid in plat closure to one in standard
closure in the thickened surface setting.

As a corollary of Theorem 5.6 and results in [CG18] (recall the end of Section 5.2), we have
proven the analogue of the Alexander theorem for an (oriented) link in a thickened surface being
isotopic to the standard closure of a surface braid:

Theorem 5.8. Let Σg be a genus g surface. Every oriented link L in the thickened surface Σg× I
may be braided to a surface braid in BΣg,n, the standard closure of which is isotopic to L.

6. The C++ Algorithm

In this last section we describe the algorithm implemented in C++ which realizes the procedures
described in the previous sections. The source code can be found on GitHub [cav21a]. The
algorithm takes as input the word associated to a link described by a braid in plat resp. standard
closure, and then it computes the word associated to an equivalent link represented by a braid via
standard resp. plat closure.

https://github.com/Paolo-Cavicchioli/plat_standard_representation
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If the algorithm is asked to compute the plat representation, then it just substitutes each crossing
according to Equation (1). On the other hand, if the algorithm is asked to compute the standard
representation, it gives first an orientation to the plat braid. The pseudo-code implementation is
the following:

Algorithm 1 Giving an orientation to the crossings
while i ̸= 1 do

First cycle i← 1
for generators ∈ word from left do

if generator is σi or σi−1 then
i follows the strand
Add counter to the generator

end if
end for
Change strand once arrived at the bottom closure
for generators ∈ word from right do

if generator is σi or σi−1 then
i follows the strand

end if
end for
Change strand once arrived at the top closure

end while

The variables are all initialized during the orientation part of the program. Before applying the
algorithm from Theorem 3.4, the program checks if there are any strands oriented upward entirely
over or under the rest of the braid, and proceeds to eliminate all the crossings where it is the case.
In this way the program is optimized if the braid is given in canonical plat form.

Then the main part starts. First of all, if we are not in the case of R3, we deal with column
zero. Every ai or bi generator is substituted with the relative word, with respect to its orientation
(recall Sections 4 and 5 for details). Since all the S-moves are of the same type, we do not need to
check the signs of the other ai’s and bi’s of the same column. For this reason the computational
cost of this part of the algorithm is linear in the number of the ai and bi generators.

Then, cycling over every column, the number of type a, b, c and d crossings (see Fig. 12) is
computed, and their type (over or under crossing) is memorized. Every crossing is then substituted
by the appropriate Ca, Cb, Cc or Cd formula, checking for each crossing the signs of the other
crossings in the same column, in order to use the right signs for the newly generated σi’s. For this
reason the computational cost of the algorithm is quadratic in the number of the σi generators.
In this part we also keep track of possible Reidemeister I move necessities. In this eventuality, we
will eliminate the extra crossing, obtaining a well-defined braid.

Now, for every odd labeled column we deal with the top and bottom part management, following
the rules in Section 3.2.3 and checking which one of the cases depicted in Figures 20a, 20b, 20c,
20d and 21a, 21b, 21c, 21d occurs.

Finally, the algorithm gives as output the new word associated to the resulting braid. Since
every old generator was substituted in some way, the new word pieces are written following the
old sequence of generators.

The source files of the program can be found in the GitHub repository at [cav21a].

7. Conclusion

In this paper we provided algorithms for passing from the plat closure representation of a braid
to the standard closure and vice versa, retaining the isotopy class of the resulting link (be it in
the classical setting, in a handlebody or in an thickened surface), and estimated the computational
complexity.

Our next goals will be, first to construct a direct braiding algorithm for links represented as
standard closures of braids in thickened surfaces and, subsequently, a Markov-type theorem in
this setting, complementing the results of Cattabriga and Gabrovšek for links represented as plat
closures of surface braids [CG18]. Then, we will be focusing on constructing a direct braiding
algorithm and a Markov-type theorem concerning plat closures of braids in handlebodies, com-
plementing the results of Häring and Lambropoulou for links represented as standard closures of
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braids in handlebodies [HOL02]. Cf. [LC23]. These two gaps in knot theory will be the floor to
our next steps, namely the generalization of our algorithm to the case of c.c.o. 3-manifolds. Let M
be a c.c.o. 3-manifold. We note that a handlebody (or Heegaard) decomposition of M is naturally
associated to the plat closure of braids, while a surgery description of M is naturally associated to
the standard closure of braids. The two Markov-type theorems for links in c.c.o. 3-manifolds via
the standard closure [LR97] and via the plat closure [CG18] are directly related to the description
of the 3-manifold. The study of the relation between the two Markov-type theorems will be a
further step.

Our results could apply to enhance the computation of link invariants, such as the Jones poly-
nomial, for knots and links in 3-manifolds.
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