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We study a solution of interacting semiflexible polymers with curvature energy in poor-solvent conditions
on the d-dimensional cubic lattice using mean-field theory and Monte Carlo computer simulations. Building
upon past studies on a single chain, we construct a field-theory representation of the system and solve it
within a mean-field approximation supported by Monte Carlo simulations in d = 3. A gas-liquid transition is
found in the temperature-density plane that is then interpreted in terms of real systems. Interestingly, we find
this transition to be independent of the bending rigidity. Past classical Flory-Huggins and Flory mean-field
results are shown to be particular cases of this more general framework. Perspectives in terms of guiding
experimental results towards optimal conditions are also proposed.

I. INTRODUCTION

Determining the phase behaviour of a solution of flex-
ible and semiflexible polymers in poor-solvent conditions
is a particularly challenging problem for several reasons.
Unlike the case of colloidal liquids, where unambiguous
gas-liquid and liquid-solid transitions are theoretically
well characterized1 and experimentally observed2, in the
case of polymer solutions the presence of chain connec-
tivity3–6 makes a full understanding of its phase behavior
much more challenging, in particular at high concentra-
tions.

One of the emerging conceptual problems hinges on the
difficulty to discriminate between purely kinetic effects
and those associated with the underlying thermodynam-
ics7,8. For instance, polymers do not completely crys-
tallize when cooled down but become structured into a
hierarchy of ordered structures9. Also, it has been argued
that on cooling a polymer melt undergoes a spinodal de-
composition thus making the crystallization metastable
and leaving the system out of equilibrium7. Another dif-
ficulty stems from the large number of thermodynamic
and structural parameters that need to be taken into
consideration: in fact, in addition to usual thermody-
namic quantities such as temperature and pressure that
control the system, many other microscopic parameters
such as interchain (in addition to the intrachain) inter-
actions, the number of monomers in a chain, the stiffness
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of the fiber and the total polymer volume fraction have
to be taken into account3–6 and become axes of a large
parameter space.

Particularly important appears to be the case of semi-
flexible polymers, as a paradigmatic example of the pro-
tein folding problem10–13 or biopolymers in a crowded
environment14, and this is currently stimulating many
studies along these lines. Our current understanding of
these system comes, in particular, from computer simu-
lations which, however, have been limited so far to par-
ticular situations. A first group of studies derived the
gas-liquid phase diagram for flexible15 and semiflexible16

bead-spring chains up to only 100 monomers per chain
using Monte Carlo (MC) simulations. In particular, they
found a phase-equilibrium diagram very similar to that
of simple liquids with some minor effects ascribed to the
bending rigidity. Similar results were obtained by more
recent and extensive simulations17. Other simulations
aimed at understanding entanglement properties between
distinct chains18–20 or the onset of nucleation process21.
However, a comprehensive picture of the phase behav-
ior of semiflexible polymers in poor-solvent solutions is
currently lacking.

Surprisingly, even in the case of a single semiflexible
polymer, a general theoretical understanding of the phase
behaviour is still lacking notwithstanding several stud-
ies with different techniques have recently appeared22–27

that remained, however, focused on rather specific ques-
tions. For instance, by using mean-field arguments sup-
ported by bead-spring MC simulations, it has been ar-
gued that the ground state of a single semiflexible chain
can be either a rod-like or a toroidal structure depend-
ing on the bending rigidity and the contour length of the
polymer28,29 and this has been confirmed recently30 by
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computer simulations which also accounts for the tem-
perature dependence. Interestingly, classical studies of
a lattice model31,32 observe only rod-like phases, in the
form of Hamiltonian paths, likely due to the geomet-
rical constraints imposed by the lattice. Remarkably,
the observed phase diagram is in excellent agreement
with mean-field predictions using a field theoretical ap-
proach13.

While a full understanding of the differences observed
in lattice and off-lattice simulations is an interesting is-
sue on its own right (and that will be discussed else-
where), the present study will focus on providing the
multi-chains counterpart of the aforementioned single
chain studies13,31,32. Specifically, in the wake of the long-
standing tradition of lattice models for modeling polymer
structure10–13,33–45, here we develop a field-theoretical
description of semiflexible self-avoiding chains with at-
tractive interactions on the d-dimensional hypercubic lat-
tice, and solve it within a mean-field approximation. Lat-
tice grand canonical MC simulations will then be pre-
sented demonstrating the remarkable accuracy of the
mean-field predictions. The multi-chain field theory ap-
proach that is proposed here build on past work by des
Cloizeaux35 that extends the classical relation pointed
out long ago by de Gennes4,34 of self-avoiding walks as
the n→ 0 limit of a spin O(n)-model, n being the number
of components of each spin on a lattice point.

Notwithstanding its limitation, the present lattice ap-
proach has the great merit of making transparent the
underlying physics and provide a guidance of the regions
of this large parameter space that warrant a more in-
depth analysis with dedicated numerical or experimental
techniques. As a by-product of the theoretical analysis,
we will re-obtain some classical results within a wider
framework, as we will see.

The paper is organized as the following. In Section II,
we provide a concise summary of the current understand-
ing of the phase behavior of interacting semiflexible poly-
mers. In particular, due to its specialized nature and
for having inspired this work, we are going to highlight
some salient aspects related to the past work of Or-
land and colleagues10,13,42. Moreover, we will also dis-
cuss some conclusions from recent computational work
by other groups which has the advantage of providing
a broader view beyond the mean-field approach. The
novel part of this work starts in Sec. IIIA, where we
will introduce the exact grand canonical partition func-
tion Z of the lattice model for a multi-chain system (i.e.,
a polymer solution) on the d-dimensional cubic lattice
which takes into account the local bending stiffness of
the polymer fiber, excluded-volume and short-range at-
tractive interactions between close-by monomers. Then,
by exploiting the analogy between self-avoiding polymers
and the spin O(n→ 0)-model, we construct (Sec. III B)
the exact field-theoretic representation of Z. Since an
exact computation of Z is unfeasible, we describe a uni-
form saddle-point approximation (Sec. IV) and obtain
the corresponding mean-field solution of the problem,

the reliability of which is demonstrated by comparison
to MC computer simulations (Secs. V and VI). Finally
we show that our results (Sec. VII) recapitulate, as par-
ticular cases, several models that have been discussed in
the past and we demonstrate the equivalence between
our approach and the classical Flory-Huggins theory46,47

for mixtures. Discussion and conclusions, with an out-
line on open problems and possible future perspective,
are presented in Sec. VIII.

II. REVIEW OF THE SINGLE-CHAIN FORMALISM:
HAMILTONIAN RINGS

Before introducing (Sec. III) our field-theoretic formal-
ism for semiflexible polymer solutions and in order to set
the stage, it proves instructive to recapitulate the single
chain formalism10,13,42.
Denoting by L the linear size of the hypercubic lattice

in d dimensions and by a the lattice spacing, we con-
sider Hamiltonian paths, polymer chains whose number
of nodes N is equal to V/ad = (L/a)d where V is the vol-
ume of the lattice: that is, we consider all lattice points
occupied and no vacancies. For simplicity, we further re-
strict our considerations to closed paths, or Hamiltonian
rings (HR), knowing that the statistics is the same in the
thermodynamic limit42.
Consider the following O(n)-vector model where the

n-component vector,

S⃗(x⃗) ≡
(
S1(x⃗), S2(x⃗), ..., Sn(x⃗)

)
, (1)

is associated to each lattice point x⃗. By defining the

scalar product S⃗(x⃗) · S⃗(x⃗′) ≡
∑n
i=1 S

i(x⃗)Si(x⃗′) between
any two vectors associated to lattice points x⃗ and x⃗′, we
assume the following constraint on the norm-square of

S⃗(x⃗):

S⃗(x⃗)2 ≡ S⃗(x⃗) · S⃗(x⃗) =
n∑
i=1

Si(x⃗)2 = n . (2)

The reduced Hamiltonian for the n-vector model in zero
external field reads

−βH =
J

2

∑
x⃗,x⃗′

∆(x⃗, x⃗′) S⃗(x⃗) · S⃗(x⃗′) , (3)

where β = 1/(kBT ), kB being the Boltzmann constant
and T being the temperature, J is the coupling constant
between the spins, and where

∆(x⃗, x⃗′) =

{
1 , if |x⃗− x⃗′| = a
0 , otherwise

. (4)

From now on we assume periodic boundary conditions
and Eq. (3) can be also written as

−βH = J
∑
x⃗

d∑
µ=1

S⃗(x⃗) · S⃗(x⃗+ êµ) , (5)



3

where êµ is the unit lattice vector pointing towards the
“+µ”-direction. Then, we introduce the integration mea-
sure,

dΩn(x⃗) = dS⃗(x⃗) δ

(
n∑
i=1

Si(x⃗)2 − n

)
, (6)

with the Dirac δ-function enforcing the constraint Eq. (2)
and the related geometrical average (or, trace operation)

⟨...⟩Ω ≡
∫ ∏

x⃗ dΩn(x⃗) (...)∫ ∏
x⃗ dΩn(x⃗)

. (7)

A very peculiar feature of the operation defined in Eq. (7)
is that, in the formal limit n→ 0, the following equality
for the moment-generating function holds4:〈∏

x⃗

eS⃗(x⃗)·φ⃗(x⃗)

〉
Ω

=
∏
x⃗

(
1 +

1

2
φ⃗(x⃗)2

)
, (8)

i.e., the moment-generating function has a simple
quadratic form. Further consequences of this fact will
be illustrated in Appendix A.

Let us consider now the quantity ⟨e−βH⟩Ω. One can
show that, in the formal limit n → 0, the following ex-
pansion holds:

〈
e−βH

〉
Ω
= 1 + n

(
N∑
ℓ=1

Jℓ Zℓ

)
+O

(
n2
)
, (9)

where Zℓ is the total number of self-avoiding closed paths
of total length ℓ (extended details on the derivation
of Eq. (9), which is non-trivial, are provided in Ap-
pendix A). At the same time, by using the standard
Hubbard-Stratonovich transformation48,49, we obtain

〈
e−βH

〉
Ω
=

∫ ∏
x⃗ dφ⃗(x⃗) e

−A
〈
e
√
J
∑

x⃗ S⃗(x⃗)·φ⃗(x⃗)
〉
Ω∫ ∏

x⃗ dφ⃗(x⃗) e
−A , (10)

where

A =
1

2

∑
x⃗,x⃗′

∆−1(x⃗, x⃗′) φ⃗(x⃗) · φ⃗(x⃗′) , (11)

with ∆−1 the inverse of the matrix ∆ (Eq. (4)). At this
point it has to be noted that, strictly speaking, the ma-
trix ∆ is not positive definite, therefore the Hubbard-
Stratonovich transformation itself is, in principle, ill-
defined. However, this technical difficulty can be over-
come through the more rigorous approach42,44 involving
Fresnel integrals which leaves the final results unaffected.
In the end then and in the limit n→ 0, the numerator of

Eq. (10) can be easily computed by resorting to Eq. (8),
granting the result

⟨e−βH⟩Ω =

∫ ∏
x⃗ dφ⃗(x⃗) e

−A ∏
x⃗

(
1 + J

2 φ⃗(x⃗)
2
)∫ ∏

x⃗ dφ⃗(x⃗) e
−A . (12)

We now notice that ZN in Eq. (9) – which coincides with
the total number of HR on our lattice – can be formally50

obtained as

ZN = lim
n→0

lim
J→∞

1

n

1

JN
⟨e−βH⟩Ω . (13)

Finally, by combining Eq. (12) with (13) we get the fol-
lowing expression for ZN ,

ZN = lim
n→0

1

n

∫ ∏
x⃗ dφ⃗(x⃗) e

−A ∏
x⃗

1
2 φ⃗(x⃗)

2∫ ∏
x⃗ dφ⃗(x⃗) e

−A , (14)

which was introduced first in42. It is important to stress
that, in order to compute ZN , we have used the fact that
the trace operation Eq. (7) has the very peculiar proper-
ties described in Appendix A. Finally, for the purpose of
computing ZN , the geometrical origin of this trace (i.e.,
constraining the spin vectors on the surface of a sphere
of radius

√
n) becomes completely irrelevant.

We demonstrate now that there exists an alternative
method51 of finding ZN (14) that represents both a short-
cut with respect to the approach presented so far and has
the great advantage of being exportable to the more gen-
eral situation considered here (Sec. III) in a relatively
straightforward manner.
The method consists in defining a priori a trace opera-

tion – that we denote by the symbol ⟨·⟩0 – characterized
by the desired mathematical properties:

⟨1⟩0 = 0 , (15)

⟨Si⟩0 = 0 , (16)

⟨SiSj⟩0 = δij , (17)

⟨Si1Si2 ... Sik⟩0 = 0 , if k ≥ 3 , (18)

between spin components on the same lattice site, while
S-vectors on different sites are independent from each
other. Notice that the only difference from the trace (7)
is that now the trace of 1 is equal to 0 (see Appendix A).
Based on the definitions (15)-(18) and by taking J = 1

in the Hamiltonian of the n-vector model (Eq. (3)), the
partition function (14) of the HR is equivalent to:

ZN = lim
n→0

1

n

〈
e−βH

〉
0
. (19)

In fact, by taking the Hubbard-Stratonovich transforma-
tion of the term inside brackets (Eq. (10) with J = 1),
we have
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ZN = lim
n→0

1

n

∫ ∏
x⃗ dφ⃗(x⃗) e

−A
〈∏

x⃗ e
S⃗(x⃗)·φ⃗(x⃗)

〉
0∫ ∏

x⃗ dφ⃗(x⃗) e
−A

= lim
n→0

1

n

∫ ∏
x⃗ dφ⃗(x⃗) e

−A ∏
x⃗

〈
1 + (S⃗(x⃗) · φ⃗(x⃗)) + 1

2 (S⃗(x⃗) · φ⃗(x⃗))
2
〉
0∫ ∏

x⃗ dφ⃗(x⃗) e
−A

= lim
n→0

1

n

∫ ∏
x⃗ dφ⃗(x⃗) e

−A ∏
x⃗

1
2 φ⃗(x⃗)

2∫ ∏
x⃗ dφ⃗(x⃗) e

−A , (20)

and the last line of Eq. (20) is identical to Eq. (14). No-
tice that the factorization of the product in the second
line of Eq. (20) and the expansion up to second-order
follow straightforwardly from definitions (15)-(18). This
concludes the proof.

In Sec. III, we will present a suitable generalization
of definitions (15)-(18) to treat solutions of semi-flexible
polymers with bending stiffness and monomer-monomer
attractive interactions for poor-solvent conditions.

III. THE MANY-CHAIN FIELD THEORY

A. The model

We generalize here the formalism introduced in Sec. II
and we consider a system (i.e., a solution) of semiflexi-
ble linear polymer chains with attractive interactions be-
tween non-bonded monomer pairs modelling poor-solvent
conditions6.

Chains are arranged on the same hypercubic lattice in
d dimensions introduced in Sec. II. Again, lattice spacing,
linear side length, volume and total number of sites are
denoted, respectively, by: a, L, V = Ld and N = V/ad.
Chains are self- and mutually-avoiding, i.e. any two
monomers – be they from the same or different chains
– can not occupy the same lattice site. Chain stiffness is
modeled by introducing a bending energy penalty ϵa > 0
for two consecutive bonds along the same chain forming a
turn (or, an angle), while attractive interactions between
non-bonded monomers are accounted for by an energy
reward −ϵi < 0 (ϵa, ϵi > 0) for any two monomers which
are separated by a unit lattice distance and either are
non-consecutive if they belong to the same chain or they
are on distinct chains.

For computational convenience, we work in the grand
canonical ensemble where neither the number of chains
nor the number of bonds are fixed and we introduce the
grand canonical partition function,

Z = Z(κ, η, ϵa, ϵi) =
∑
{C}

w(κ, η, ϵa, ϵi; C) , (21)

where the sum is intended over the set of all possible
configurations {C} and where the thermal (Boltzmann)

PBC

PBC

FIG. 1. Schematic illustration of a particular configura-
tion C on the square lattice (d = 2). By assuming periodic
boundary conditions (PBC, see text for details), we have:
Nc(C) = 4 chains, Nb(C) = 27 bonds, Na(C) = 14 turns
or angles (marked as blue corners), and Ni(C) = 15 pairs of
interacting monomers (connected by dashed red lines, with
two pairs interacting through PBC.

weight for each conformation C,

w(κ, η, ϵa, ϵi; C) = κNb(C) η2Nc(C) e−βϵaNa(C)+βϵiNi(C) ,
(22)

depends on: (a) Nb(C), the total number of bonded
monomer pairs with corresponding bond fugacity κ; (b)
Nc(C), the total number of chains with corresponding
chain fugacity52 η2; (c) Na(C) and Ni(C), respectively
the total number of corners and the total number of non-
bonded monomer pairs separated by one lattice distance.
Again, β = 1/(kBT ) is the Boltzmann factor at tempera-
ture T and kB is the Boltzmann constant, and we assume
periodic boundary conditions through the hypercubic lat-
tice. Less obviously, we anticipate here and justify briefly
in Sec. III B that closed chains are ruled out in our field
theory. An example illustrating a particular configura-
tion C on the square lattice (d = 2) is shown in Fig. 1.
Notice that, per our definition, the smallest length of a
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single chain corresponds to 1 lattice bond.

B. Partition function and field-theoretic representation

The central quantity of our work, the grand canonical
partition function Z (21), admits a field-theoretic repre-
sentation.

To show it, the first point consists in devising a method
“to count” the total number of bonds (Nb), chains (Nc),
angles (Na), and non-bonded monomer-monomer pairs
(Ni) characterizing each given chain configuration C. To
this purpose, we start by defining the scalar function for
the configuration C,

ωC(x⃗) =


1 , if lattice position x⃗

is occupied by a monomer

0 , otherwise

(23)

By using the matrix ∆(x⃗, x⃗′) (Eq. (4)), we have

Nb(C) +Ni(C) =
1

2

∑
x⃗,x⃗′

∆(x⃗, x⃗′)ωC(x⃗)ωC(x⃗
′) , (24)

and the Hubbard-Stratonovich transformation48,49 of the

exponential of the r.h.s of Eq. (24) is equivalent to the
expression containing the scalar field ψ = ψ(x⃗)

∫
Dψ exp

−1

2

∑
x⃗,x⃗′

∆−1(x⃗, x⃗′)ψ(x⃗)ψ(x⃗′) +
∑
x⃗

ωC(x⃗)ψ(x⃗)


(25)

with

Dψ ≡ (2π)−N/2 (det∆)−1/2
∏
x⃗

dψ(x⃗) . (26)

Then, at each lattice position x⃗ we introduce d n-

component vectors, S⃗µ(x⃗) ≡ (S1
µ(x⃗), S

2
µ(x⃗), ..., S

n
µ(x⃗))

with µ = 1, 2, ..., d, obeying the generalized trace rules:

⟨1⟩0 = 1 , (27)

⟨Siµ⟩0 = 0 , (28)

⟨SiµSjν⟩0 = δij [δµν + (1− δµν)e
−βϵa ] , (29)

⟨Si1µ1
Si2µ2

... Sikµk
⟩0 = 0 , if k ≥ 3 . (30)

Again, S-vectors on different sites are independent from
each other under the trace operations just defined.
By using Eqs. (24)-(26) and the discussion in Ap-

pendix A,

Z =

∫
Dψ e−

1
2

∑
x⃗,x⃗′ ∆

−1(x⃗,x⃗′)ψ(x⃗)ψ(x⃗′)

× lim
n→0

〈∏
x⃗

{(
1 +H(x⃗)

d∑
µ=1

S1
µ(x⃗)

) d∏
µ=1

[
1 + h(x⃗)h(x⃗+ êµ) S⃗µ(x⃗) · S⃗µ(x⃗+ êµ)

]}〉
0

,

(31)

where êµ is the unit lattice vector pointing towards the
“+µ”-direction introduced in Sec. II and

H(x⃗) =
η

1 + (d− 1)e−βϵa
e

√
βϵi
2 ψ(x⃗) ,

h(x⃗) =
√
κe−βϵi/2e

√
βϵi
2 ψ(x⃗) .

Importantly, it must be noticed that Eq. (31) takes into
account the fact that there must be no branching points
(owing to the trace definitions (27)-(30), any branching
point gives a contribution equal to 0) and no closed loops
(from Appendix A, the statistical weight of any configu-
ration C with k closed-loops is proportional to nk and so
its contribution disappears in the n → 0 limit). In fact,
the term of Eq. (31) appearing under the limit of n→ 0
can be also written as

lim
n→0

〈∏
x⃗

{(
1 +H(x⃗)

d∑
µ=1

S1
µ(x⃗)

)
exp

[ d∑
µ=1

h(x⃗)h(x⃗+ êµ) S⃗µ(x⃗) · S⃗µ(x⃗+ êµ)

]}〉
0

= lim
n→0

〈∏
x⃗

(
1 +H(x⃗)

d∑
µ=1

S1
µ(x⃗)

)
exp

[
1

2

∑
x⃗,x⃗′

d∑
µ=1

∆µ(x⃗, x⃗
′)h(x⃗)h(x⃗′) S⃗µ(x⃗) · S⃗µ(x⃗′)

]〉
0

,

(32)

since, again because of the trace definitions (27)-(30), in the expansion of the exponential all terms higher than
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the first are of order n and they disappear in the n → 0
limit and where, by analogy with the matrix ∆ (Eq. (4)),
we have defined

∆µ(x⃗, x⃗
′) =

{
1 , if |(x⃗− x⃗′) · êµ| = a
0 , otherwise

. (33)

For expression (31) to be helpful, we have to remove

the dependence on the S⃗-vectors in favor of real fields. To
this purpose, we perform a Hubbard-Stratonovich trans-
formation48,49 of the exponential term of the last line of

Eq. (32) containing the S⃗-vectors,

e
1
2

∑
x⃗,x⃗′

∑d
µ=1 ∆µ(x⃗,x⃗

′)h(x⃗)h(x⃗′) S⃗µ(x⃗)·S⃗µ(x⃗
′) =

∫
Dφe−

1
2

∑
x⃗,x⃗′

∑d
µ=1 ∆−1

µ (x⃗,x⃗′) φ⃗µ(x⃗)·φ⃗µ(x⃗
′)+

∑
x⃗ h(x⃗)

∑d
µ=1 S⃗µ(x⃗)·φ⃗µ(x⃗) , (34)

where we have introduced the d real vector fields φ⃗µ(x⃗)
(µ = 1, . . . , d) with φ⃗µ(x⃗) ≡ (φ1

µ(x⃗), φ
2
µ(x⃗), ..., φ

n
µ(x⃗))

and the corresponding measure (see Eq. (26), for anal-

ogy)

Dφ ≡ (2π)−ndN/2
d∏

µ=1

(det∆µ)
−n/2∏

x⃗

d∏
µ=1

dφ⃗µ(x⃗) .

(35)
Finally by (i) inserting Eq. (34) into Eq. (31) via

Eq. (32); (ii) Taylor-expanding the term containing the
φ⃗µ-fields; (iii) applying the trace definitions (27)-(30) and
(iv) noticing that the first two terms in Eq. (35) give = 1
in the limit n → 0, one can show that, up to an unim-
portant multiplicative constant,

Z = lim
n→0

∫ ∏
x⃗

dψ(x⃗)

∫ ∏
x⃗

d∏
µ=1

dφ⃗µ(x⃗) exp

{
−A[{ψ}]−

d∑
µ=1

Aµ[{φ⃗µ}] +
∑
x⃗

ln
[
1 + e

√
βϵiψ(x⃗)B[{φ⃗µ(x⃗)}]

]}
, (36)

where we have defined the following functionals:

A[{ψ}] =
1

2

∑
x⃗,x⃗′

∆−1(x⃗, x⃗′)ψ(x⃗)ψ(x⃗′) , (37)

Aµ[{φ⃗µ}] =
1

2

∑
x⃗,x⃗′

∆−1
µ (x⃗, x⃗′) φ⃗µ(x⃗) · φ⃗µ(x⃗′) , (38)

B[{φ⃗µ(x⃗)}] =
κe−βϵi

2

(1− e−βϵa)

d∑
µ=1

|φ⃗µ(x⃗)|2 + e−βϵa

(
d∑

µ=1

φ⃗µ(x⃗)

)2
+

√
κηe−βϵi/2

d∑
µ=1

φ1
µ(x⃗) . (39)

Importantly, notice the explicit presence of φ1
µ(x⃗) in

Eq. (39). This is a direct consequence of the fact that,
in order to describe a system of multiple chains through
the O(n→ 0) formalism, it suffices to introduce an exter-
nal magnetic field in the spin Hamiltonian4,35. This field
can pick any arbitrary direction: in our derivation, we
have chosen the direction with µ = 1. As a validation of
Eqs. (36)-(39), we report that, in the “single-chain” limit
η → 0, we get back the original result by Doniach et al.13

for a single semiflexible chain with non-bonded attractive

interactions in the presence of lattice vacancies.

IV. MEAN-FIELD SOLUTION: SADDLE-POINT
APPROXIMATION

The exact grand canonical partition function Z
(Eq. (36)) is the central result of this work. As for the
single chain case a direct evaluation of Z is not feasible
but the field theoretical formulation (Eq. (36)) is very
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suitable for its mean field (MF) treatment10,13,42.
We start by differentiating the exponential in Eq. (36)

with respect to φiµ(x⃗) and ψ(x⃗) and set the obtained
expressions equal to 0 in order to get the stationary so-
lution. We further take the solutions to be homogeneous
assuming translational invariance and break the O(n)
symmetry of the vector field so that

φ⃗µ(x⃗) = (φ, 0, . . . , 0) , (40)

ψ(x⃗) = ψ , (41)

for every x⃗ and every µ, thus obtaining

φ

2
=

e
√
βϵiψ(κe

−βϵiq(β)
2 φ+

√
κ η e−βϵi/2)

1 + e
√
βϵiψd

(
κe−βϵiq(β)

4 φ2 +
√
κ η e−βϵi/2 φ

) ,

(42)

ψ

2d
=

√
βϵi e

√
βϵiψd

(
κe−βϵiq(β)

4 φ2 +
√
κ η e−βϵi/2 φ

)
1 + e

√
βϵiψd

(
κe−βϵiq(β)

4 φ2 +
√
κ η e−βϵi/2 φ

) ,

(43)

where13 q(β) = 2 + 2(d − 1)e−βϵa . In terms of the so-
lutions53 φ = φ(κ, η, ϵi, ϵa) and ψ = ψ(κ, η, ϵi, ϵa) of the
MF Eqs. (42) and (43), the grand potential per lattice
site (up to unimportant additive constants) reads

βΩ(κ, η, ϵa, ϵi) =
ψ2

4d
+
dφ2

4
− ln

[
1 + d e

√
βϵi ψ

(
κe−βϵiq(β)

4
φ2 +

√
κ η e−βϵi/2 φ

)]
. (44)

Notice that with the ansatz (40) and (41) every depen-
dence upon n disappears, and thus the limit n → 0 is
trivial.

On setting η = 0, Eqs. (42) and (43) reduce to the
ones obtained in13 for the single chain model. In the
following, we will thus solve the saddle-point equations
in the case η > 0 that will be then compared with Monte
Carlo simulations (Sec. V) in Sec. VI.

V. MONTE CARLO SIMULATIONS

In order to check the validity of the MF approximation
as well as to assess its limits, we have performed Metropo-
lis54 Grand Canonical Monte Carlo (GCMC) computer
simulations of the lattice model (Sec. III) on the three-
dimensional cubic lattice. Essentially, the goal of the
GCMC simulations is to obtain a representative sample
of polymer configurations in agreement with the grand
canonical partition function (21).

The implementation of our algorithm is relatively
straightforward, and it works as the following. As ex-
plained in Sec. III, the Boltzmann weight w (see Eq. (22))
of each polymer configuration C in the ensemble is a func-
tion of the total number of bonds (Nb(C)), distinct chains
(Nc(C)), turns (Na(C)) and pairs of non-bonded nearest-
neighbor monomers (Ni(C)). Therefore, at each MC step

one single bond is randomly inserted in or removed from
the lattice, provoking a change of the configuration C0 to
the configuration C1. In order to enforce the condition of
detailed balance, we accept54 the new conformation with
probability given by the expression:

acc(C0 → C1) =


min

{
1, d

ϕb,1

w(κ,η,ϵa,ϵi; C1)
w(κ,η,ϵa,ϵi; C0)

}
(bond inserted)

min
{
1,

ϕb,0

d
w(κ,η,ϵa,ϵi; C1)
w(κ,η,ϵa,ϵi; C0)

}
(bond removed)

,

(45)
where ϕb,0 (respectively, ϕb,1) is the bond density (see
Eq. (46)) of the configuration C0 (resp., C1). Whenever
the insertion of a new bond leads to a forbidden configu-
ration (e.g., for the presence of branching points or closed
loops), the move is automatically discarded.
In order to check for finite-size effects, we have per-

formed preliminary calculations and compared corre-
sponding results for lattice sizes L/a = 4, 8, 16. This
analysis indicates that for L/a ≥ 8 the results do not
change significantly with the lattice size and hence we
will fix L/a = 8 in all calculations henceforth. This
guarantees a good compromise between computational
efficiency and accuracy.
For each chosen pair of (κ, η) values, we have led a

simulation run consisting of 107 MC steps. Then, for each
GCMC trajectory, a standard block analysis procedure55
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has been carried out in order to estimate uncertainties
on the considered physical observables. Every trajectory
has been checked individually in order to make sure that
all the curves obtained from corresponding block analyses
and representing the MC-time evolution of the distinct
quantities have completely equilibrated. This procedure
has been applied to the number of bonds, the number of
chains and the internal energy of the system.

VI. MEAN-FIELD SOLUTION VS. MONTE CARLO
SIMULATIONS

From our mean-field estimate of the grand potential,
Eq. (44), we can compute:

• The bond density,

ϕb ≡
⟨Nb⟩
N

= −βκ∂Ω(κ, η, ϵi, ϵa)
∂κ

=
d

4
φ2 ; (46)

• The chain density,

ϕc ≡ ⟨Nc⟩
N

= −βη
2

∂Ω(κ, η, ϵi, ϵa)

∂η

=
d

2

e
√
βϵi ψ

√
κ η e−βϵi/2 φ

1 + d e
√
βϵiψ

(
κe−βϵiq(β)

4 φ2 +
√
κ η e−βϵi/2 φ

) ;

(47)

• The total monomer density,

ϕ ≡ ϕb + ϕc =
1√
βϵi

ψ

2d
. (48)

In the rest of this Section, we specialize the saddle-point
equations (42) and (43) to various particular cases and
compare the corresponding results to Monte Carlo simu-
lations in d = 3.

A. Case ϵa = ϵi = 0

The simplest case to be considered is the case of non-
interacting (still non-overlapping) flexible chains with no
bending penalty nor monomer-monomer attractive inter-
actions. In spite its simplicity, this case proves to be
rather instructive. In this case Eqs. (42) and (43) read

φ

2
=

κdφ+
√
κ η

1 + d

(
κd
2 φ2 +

√
κ η φ

) , (49)

ψ

2d
= 0 . (50)

The only relevant field is thus φ and, since it satisfies the
simple cubic equation (49), in principle three (real) solu-
tions can be possible. However two additional constraints

(a)

(b)

FIG. 2. ϵa = ϵi = 0. Bond density ϕb (a) and chain density
ϕc (b) as a function of the bond fugacity κ and for chain
fugacities η = 0.2 (blue) and η = 1.5 (red). Solid lines and
symbols are, respectively, for the MF solution and the GCMC
computer simulations.

identify the only acceptable solution. First, the argu-
ment of the logarithm in Eq. (44) (i.e., the denominator
in Eq. (49)) must be strictly > 0. Second, the chain den-
sity (Eq. (47)) must satisfy the inequality 0 ≤ ϕc ≤ 1/2.
In Appendix B we provide evidence that, for every κ ≥ 0
and η > 0, there exists one and only one such solution
φ > 0 which is a continuous function of the parameters.
This solution can then be inserted in Eqs. (46) and (47)
to obtain the bond and chain density, ϕb and ϕc.
MF calculations for the bond and chain density, ϕb

and ϕc, as a function of the bond fugacity κ and for
two representative chain fugacities η = 0.2 (small) and
η = 1.5 (large) are shown as solid lines in Fig. 2 (panels
(a) and (b), respectively) and compared to corresponding
GCMC simulations (symbols). The nearly quantitative
agreement between the MF calculations and the GCMC
simulations is remarkable, thus validating our MF ap-
proach.
One striking feature of the bond density curves (see

Fig. 2(a)) is that they intersect at a certain κ = κ∗,
such that ϕb(κ

∗) ≃ 0.5. Although odd at first sight, this
behaviour can be simply rationalized as the following.
When ϕb < 0.5 it is likely that the insertion of a new
bond will also lead to the creation of a new chain. Thus,
for κ < κ∗, the bond density increases faster for larger
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values of η (red curve in Fig. 2(a)) than for smaller values
of η (blue curve) because configurations with a larger
number of chains are more favoured. Conversely, when
ϕb > 0.5 once a new bond is inserted it will link two
different chains, thus reducing their total number. Under
these conditions, for κ > κ∗ the bond density increases
faster for smaller values of η (blue curve) than for larger
ones (red curve). A further support to this interpretation
also stems by the fact that the chain density (Fig. 2(b))
has a maximum at κ ≃ κ∗.
It also proves instructive to derive simple analytical

expressions for ϕb and ϕc in the limit κ ≫ 1. In this
regime, Eq. (49) depends only on one parameter, namely
the ratio η/

√
κ, and has the following solutions

φ ≃


√

4
d − 1

2d
η√
κ
, if η√

κ
≪ 1√

2
d +

√
d
8

√
κ
η , if η√

κ
≫ 1

(51)

By plugging these results into the expressions for ϕb
(Eq. (46)) and ϕc (Eq. (47)) we find

ϕb ≃


1− 1

2
√
d

η√
κ
, if η√

κ
≪ 1

1
2 +

√
d
8

√
κ
η , if η√

κ
≫ 1

(52)

and

ϕc ≃


1

2
√
d

η√
κ
, if η√

κ
≪ 1

1
2 −

√
d
8

√
κ
η , if η√

κ
≫ 1

(53)

For κ≫ 1 the monomer density ϕ = ϕb+ϕc is always≃ 1.
However, there are two different scenarios: if η/

√
κ ≪ 1

then ϕb/ϕc ≫ 1, i.e. the number of chains is very low,
but on average they are very long. On the other hand, if
η/

√
κ ≫ 1 then ϕb/ϕc ≃ 1, that is the number of chains

is large but they are all essentially formed by one single
bond, in agreement with previous interpretation.

B. Case ϵa > 0, ϵi = 0

With only the contribution of the bending penalty but
no monomer-monomer attractive interactions, Eqs. (42)
and (43) read

φ

2
=

κq(β)
2 φ+

√
κη

1 + d

(
κq(β)

4 φ2 +
√
κη φ

) , (54)

ψ

2d
= 0 . (55)

It is easy to see that this is the same situation of
Sec. VIA with renormalized fugacities κ → κq(β)/2d

and η → η
√

2d
q(β) . Since 2 ≤ q(β) ≤ 2d, introducing

(a)

(b)

FIG. 3. ϵa/kBT = 1 , ϵi = 0. Bond density ϕb (a) and chain
density ϕc (b) as a function of the bond fugacity κ and for
chain fugacities η = 0.2 (blue) and η = 1.5 (red). Solid lines
and symbols are as in Fig. 2.

a non-zero bending stiffness leads ultimately to a lower
effective bond fugacity and a larger effective chain fugac-
ity. Hence, as seen in Sec. VIA, again we have only one
acceptable solution which is a continuous function of the
parameters.

By fixing the bending stiffness to the convenient value
ϵa = kBT , MF calculations for the bond and chain den-
sity, ϕb and ϕc, as a function of the bond fugacity κ and
for chain fugacities η = 0.2 and η = 1.5 are shown as solid
lines in Fig. 3 (panels (a) and (b), respectively) and com-
pared to corresponding GCMC simulations (symbols).
As in previous Sec. VIA, the agreement between MF
calculation and GCMC simulations is remarkable.

In principle, here one would have expected an
isotropic-to-nematic transition which would be observ-
able as a singularity in the average “angle” density, ϕa.
However, due to the fact that the only contribution of
the bending stiffness is to renormalize the fugacities, our
MF treatment does not display the appearance of such
transition. This is made evident in Fig. 4 where we show
the average angle density as obtained in the MF approx-
imation (solid lines, see formula (64)) in favorable com-
parison to the results of GCMC simulations (symbols).
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FIG. 4. ϵa/kBT = 1 , ϵi = 0. Angle density ϕa as a function
of the bond fugacity κ and for chain fugacities η = 0.2 (blue)
and η = 1.5 (red). Solid lines and symbols are as in Fig. 2.

C. Case ϵa = 0, ϵi > 0

This is the complementary case of previous one, where
monomer-monomer attraction is present but there is no
bending penalty. In this case, Eqs. (42) and (43) read

φ

2
=

e
√
βϵiψ(κe−βϵidφ+

√
κ η e−βϵi/2)

1 + e
√
βϵiψd

(
κe−βϵid

2 φ2 +
√
κ η e−βϵi/2 φ

) ,

(56)

ψ

2d
=

√
βϵi e

√
βϵiψd

(
κe−βϵid

2 φ2 +
√
κ η e−βϵi/2 φ

)
1 + e

√
βϵiψd

(
κe−βϵid

2 φ2 +
√
κ η e−βϵi/2 φ

) .

(57)

which do not admit a simple closed solution for ψ as
in the previous cases. Hence these equation have to be
solved numerically with the two constraints discussed
in Sec. VIA plus the condition 0 ≤ ϕ ≤ 1, that im-
plies 0 ≤ ψ ≤ 2d

√
βϵi, for the total monomer density

ϕ (Eq. (48)). Interestingly, in this case one finds that
there are multiple acceptable solutions for this system,
and hence the most stable solution corresponds to that
minimizing the grand potential Ω (Eq. (44)). In particu-
lar, this leads to the appearance of discontinuities in ϕb
and ϕc (see Appendix C for details).
In fact, by fixing the monomer-monomer interaction

to the convenient value ϵi = kBT , MF calculations for
the bond and chain density, ϕb and ϕc, as a function of
the bond fugacity κ and for chain fugacities η = 0.15 and
η = 0.25 are shown as solid lines in Fig. 5 (panels (a) and
(b), respectively) and compared to corresponding GCMC
simulations (symbols). In both panels one can easily dis-
tinguish two different phases, with both densities acting
as order parameters. In the first (gas-like) phase, the
total monomer density ϕ = ϕb + ϕc is close to 0 and
ϕb/ϕc ≃ 1. This is valid up to some critical value κcr

(a)

(b)

FIG. 5. ϵa = 0 , ϵi/kBT = 1. Bond density ϕb (a) and chain
density ϕc (b) as a function of the bond fugacity κ and for
chain fugacities η = 0.15 (blue) and η = 0.25 (red). The dis-
continuity predicted by MF calculations (lines) is confirmed
by GCMC simulations (symbols), yet the critical value of κ
is slightly different between theory and simulations.

above which ϕ is close to 1 and ϕb/ϕc > 1 (liquid-like
phase).
By varying systematically the parameters βϵi and η,

we have extracted each corresponding critical value κcr
through the numerical solution of the coupled Eqs. (56)
and (57). Three illustrative “coexistence” lines corre-
sponding to the values βϵi = 0.75, 1.00 and 1.25 are
shown in panel (a) of Fig. 7 (solid lines). Similarly (panel
(b), filled symbols), we have determined the values of the
total monomer density ϕ (Eq. (48)) at the coexistence by
varying βϵi systematically and for the two representative
fugacity values η = 0.1 and η = 0.3. We will discuss
these results in full fledged way in Sec. VIII.

D. Case ϵa > 0, ϵi > 0

When both the attractive monomer-monomer interac-
tion and bending stiffness are non-zero, we need to solve
the complete system of Eqs. (42) and (43). Again, the
strategy is the same as in Sec. VIB: renormalizing the fu-

gacities (κ → κq(β)/2d and η → η
√

2d
q(β) ) to absorb the

terms accounting for the bending stiffness and obtain a
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(a)

(b)

FIG. 6. ϵa/kBT = ϵi/kBT = 1. Bond density ϕb (a) and
chain density ϕc (b) as a function of the bond fugacity κ and
for chain fugacities η = 0.15 (blue) and η = 0.25 (red). As in
the case with no bending stiffness (Fig. 5), the discontinuity
predicted by MF calculations (lines) is apparent and its pres-
ence is confirmed by GCMC simulations (symbols). Again,
the critical value for κ is quantitatively different between the-
ory and simulations.

system of equations which is equivalent to that presented
in Sec. VIC. The general behavior of the solutions will
thus be exactly the same (and, so, the discontinuities in
ϕb and ϕc) as for a system with no bending stiffness, the
only difference being in the changing of the coexistence
line between the two phases in the (κ,η)-plane, depending
on the value of ϵa.

By fixing again the bending stiffness and the monomer-
monomer interaction to the values ϵa = ϵi = kBT , MF
calculations for the bond and chain density, ϕb and ϕc, as
a function of the bond fugacity κ and for chain fugacities
η = 0.15 and η = 0.25 are shown as solid lines in Fig. 6
(panels (a) and (b), respectively) and compared to cor-
responding GCMC simulations (symbols). As expected,
GCMC simulations confirm MF calculations and we can
distinguish once again the gas (ϕ = ϕb + ϕc ≈ 0) and
liquid (ϕ ≈ 1) phases. Finally, analogously to Sec. VIC,
we produce examples of coexistence and gas-liquid tran-
sition lines, see panel (a) (dashed lines, different colors
are for different ϵi (see caption)) and panel (b) (empty
symbols, different colors are for different η (see caption))
of Fig. 7.

(a)

(b)

FIG. 7. (a) Coexistence lines between the gas phase and
the liquid phase in the (κ, η)-plane. Solid lines correspond
to ϵa = 0, whereas dashed lines are for ϵa/ϵi = 1. Lines
colors blue, green and red are for ϵi/kBT = 0.75, 1.00 and
1.25, respectively. Below the coexistence line the system is in
the gas phase (ϕ ≃ 0), whereas above the coexistence line it is
found in the liquid phase (ϕ ≃ 1). (b) Gas-liquid transition in
the (ϕ, 1/(βϵi))-plane. Above the critical point, the system is
in a single homogeneous gas phase. Below the critical point,
the system phase-separate in a gas phase coexisting with a
liquid phase, and the figure display the coexistence (binodal)
line. Symbols colors blue and red are for η = 0.1 and η = 0.3,
respectively. Filled symbols correspond to ϵa = 0, whereas
empty symbols are for ϵa/ϵi = 1. For each data set the relative
grey symbol marks the value of the corresponding “critical”
temperature (letters “C” and “C′”), with grey lines used for
guiding the eye.

VII. CONNECTIONS TO THE FLORY-HUGGINS
THEORY OF MIXING

It turns out that it is possible to obtain some informa-
tion on the system even without directly solving Eqs. (42)
and (43). As we are interested in the free energy rather
than in the grand potential, we perform a Legendre trans-
form in order to have a dependence upon ϕc and ϕb. To
this aim, we need to be able to express κ and η in terms
of these densities.

Making use of Eqs. (46) and (47), and without an ex-
plicit derivation of the solutions for φ and ψ, one can
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express the fugacities η and κ in terms of ϕb and ϕc as:

η =

√
q(β)ϕc e

−dβϵi(ϕb+ϕc)√
d (1− ϕb − ϕc) (ϕb − ϕc)

, (58)

κ =
(ϕb − ϕc) e

βϵi

q(β)ϕb (1− ϕb − ϕc) e2dβϵi(ϕb+ϕc)
. (59)

This allows us to compute the reduced free energy per
site

βf = βΩ+ ϕb lnκ+ 2ϕc ln η (60)

where it is clear that f depends on both, ϕb and ϕc.
However, it is more convenient to express it in terms of
ϕ and ℓ̄ = ϕ/ϕc (i.e., a measure of the average number
of monomers per chain):

βf = −d βϵi ϕ2 + (1− ϕ) ln(1− ϕ)

+ϕ

{
1

ℓ̄
lnϕ−

(
1− 2

ℓ̄

)
ln

(
q(β)

e

)
+

(
1− 1

ℓ̄

)
βϵi +

(
1− 2

ℓ̄

)
ln

(
ℓ̄− 2

ℓ̄− 1

)
−1

ℓ̄
ln

(
d ℓ̄ (ℓ̄− 1)

e

)}
, (61)

where e = 2.71828... is the Euler’s number. Eq. (61) is a
key result of our mean-field analysis. Notice that, since
in our model the minimum length of a chain is defined
to be = 1 bond (i.e., 2 monomers), it must be ℓ̄ ≥ 2.
Now that we have a mean-field estimate of the free

energy, we employ Eq. (61) and compute the internal
energy U of the system:

U

N
=
∂βf

∂β
=

⟨Ni⟩
N

(−ϵi) +
⟨Na⟩
N

ϵa . (62)

where

⟨Ni⟩
N

= dϕ2 − ϕ

(
1− 1

ℓ̄

)
, (63)

⟨Na⟩
N

=
q(β)− 2

q(β)

(
1− 2

ℓ̄

)
ϕ . (64)

Eqs. (63) and (64) bear interesting physical interpreta-
tions. Let us first discuss Eq. (63). Within our mean-
field approach the number of interactions per lattice site
⟨Ni⟩
N is not guaranteed to be always non-negative. From

Eq. (63) in fact, we readily see this to be true only when

ϕ ≥ 1
d

(
1 − 1

ℓ̄

)
. On the other hand, in the limiting case

ϕ = 1, it is easy to check that the density of interactions
is exactly that predicted by Eq. (63), namely d−(1−1/ℓ̄).
Also, the interaction density is a decreasing function of
the average chain length, as it should be since the interac-
tion is only between non-consecutive nearest neighbour
monomers. Then we focus on Eq. (64), noticing that
the density of angles is linear in ϕ and the value of the

bending rigidity can only modify the corresponding pro-
portionality constant. From the dependence of Eq. (64)
on the number of monomers per chain ℓ̄, we see that: (i)
if ℓ̄ = 2 (i.e., all chains consist of 1 bond only) the total
number of angles is = 0, as expected; (ii) increasing ℓ̄
leads to a larger number of angles; (iii) the proportional-
ity constant between the angle density and ϕ is less than
1 for every value of βϵa and ℓ̄, as it should.
Further insights can be obtained by comparing our

results with past work by Flory who also derived a
statistical thermodynamics theory for semiflexible chain
molecules on a lattice using combinatorial arguments33.
A central quantity of his theory is the mean bending de-
gree of the chain,

gF =
2(d− 1)e−βϵa

1 + 2(d− 1)e−βϵa
, (65)

which results to be independent of the concentration.
The same quantity can be computed (by using Eq. (64))
within our approach as well, i.e.

g =
⟨Na⟩
N

1

ϕc(ℓ̄− 2)
=

(d− 1)e−βϵa

1 + (d− 1)e−βϵa
, (66)

is the average monomer fraction where the polymer chain
displays a turn. As a direct consequence of Eq. (64), our
estimate of g is also independent of the concentration ϕ,
in agreement with Flory. This means that the degree
of bending is only dependent on the temperature, irre-
spective of whether the chain is in a melt or in a dilute
solution56.
Note that a comparison between the two estimates

gives g < gF . On the other hand we can also argue
that gF is clearly overestimating the true value because it
means that at each position along the chain, the possible
directions available to make a turn are always 2(d − 1),
thereby not accounting for the long-range correlations
due to self-avoidance. By contrast, Eq. (66) implies that
the number of possible directions to make a turn at each
step along the chain is on average d− 1, thus effectively
accounting for possible long-range correlations induced
by self-avoidance.
As both estimates Eqs. (65) and (66) are independent

of the concentration as remarked, it seems not plausible
that it may act as an order parameter for a phase tran-
sition. Nevertheless, Flory postulates the existence of a
phase-separated, ordered state (g = 0) also at T > 0,
and assumes that the entropy of such state is 0. He
then proceeds in computing the free energy difference
between the latter and a completely mixed, disordered
state (g ̸= 0), the free energy of which is computed within
the same mean-field theory. He then verifies a posteri-
ori that there exists a critical temperature below which
the ordered state is thermodinamically more stable. The
premise that the entropy of the ordered state is 0 is cru-
cial for the derivation of Flory, and it is ultimately this
assumption that leads to the appearance of a critical tem-
perature, corresponding to a first-order phase transition.
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Later studies by Gujrati and coworkers36,38,40 were how-
ever able to derive an exact lower bound for the entropy
of a system of self-avoiding chains on a lattice that was
found to be strictly positive at any temperature T > 0,
therefore proving that a completely ordered state cannot
exist unless T = 0.

Another interesting point is related to the free energy
difference between a mixed and a phase separated state
at the same temperature and, therefore, at the same g.
This free energy difference is calculated as

∆f(ϕ, ℓ̄) = f(ϕ, ℓ̄)− ϕf(1, ℓ̄)− (1− ϕ)f(0, ℓ̄) (67)

By using Eq. (61), we get

β∆f(ϕ, ℓ̄) = d βϵi ϕ(1− ϕ) +
1

ℓ̄
ϕ lnϕ+ (1− ϕ) ln(1− ϕ) ,

(68)
which is essentially identical to the result of the Flory-
Huggins (FH) model6,33,47,57.
Eq. (68) deserves some comments. The energetic term

in the original FH model6,57 also includes a (Flory)
parameter accounting for the polymer-solvent and the
solvent-solvent interaction. Within our field theory, it is
not difficult to account too for the polymer-solvent inter-
actions by modifying Eq. (39) as follows

B[{φ⃗µ(x⃗)}] =
κe−2(d−1)βϵmse−βχ

2

(1− e−βϵa)

d∑
µ=1

|φ⃗µ(x⃗)|2 + e−βϵa

(
d∑

µ=1

φ⃗µ(x⃗)

)2
+√

κ η e−(2d−1)βϵmse−βχ/2
d∑

µ=1

φ1
µ(x⃗) .

(69)

In Eq. (69), we have introduced ϵms as the interaction
parameter between monomer and solvent and we have
replaced ϵi with the combination χ = βϵi+2βϵms, which
closely resembles the so called Flory parameter in the
original FH formulation6,57. By repeating the exact same
procedure of Sec. IV and by performing the same Legen-
dre transform already discussed in this section, one finds

β∆f(ϕ, ℓ̄) = dχϕ(1−ϕ)+1

ℓ̄
ϕ lnϕ+(1−ϕ) ln(1−ϕ) , (70)

where now the energetic term includes also an explicit
polymer-solvent interaction.

Beyond their formal resemblance, it must be also
stressed that Eq. (70) is more general than the original
FH theory, since it includes also the case when the sys-
tem is polydisperse. The monodisperse limiting case is
selected when dividing by the average chain length ℓ̄ in
the second term. Finally, it is evident from Eq. (70) that
∆f does not depend on ϵa. Although this may appear
surprising at a first sight, it is a natural consequence of
the fact that all the terms featuring the bending stiff-
ness are linear in ϕ, therefore they disappear when one
computes the free energy variation as defined in Eq. (67).

VIII. DISCUSSION AND CONCLUSIONS

The goal of the present study was to shed some light
on the challenging problem of predicting the phase be-
havior of a system of interacting semiflexible polymers in
solution because of its important consequences on protein
aggregations58,59 as well as on polymer crystallization9.
To this aim, we made the following approximations.

First, we work with implicit solvent where both intra-
chain and interchain interactions display a short-range
attraction mimicking the effect of the solvent. Second,

we work on a d-dimensional lattice where these attrac-
tive energies are taken to be equal and acting only be-
tween non-consecutive nearest-neighbours chain points,
and bending rigidity is represented by an energy penalty
attributed on each turn of a chain. Hence the system of
interacting semiflexible polymers is represented by a sys-
tem of self-avoiding walks where each turn is penalized
and each nearest-neighboring occurrence is rewarded. Fi-
nally, we constructed a field theory representation of this
system and solved it within a mean-field approximation.
Specifically, we have derived a mean-field solution of the
grand potential Ω(κ, η, ϵa, ϵi) of the system (Eq. (44))
obtained by making use of a field-theoretical representa-
tion based on the polymer-magnet analogy (O(n→ 0)-
model4,13,34).

By solving the saddle point equations (42) and (43),
we have deduced the bond (Eq. (46)), chain (Eq. (47))
and, hence, monomer (Eq. (48)) density as a function of
the parameters of the model. A discontinuity appears
only (Secs. VIC and VID) for non-zero attractive in-
teraction between non-consecutive nearest-neighbouring
monomers where there is an abrupt shift in the total
monomer density ϕ (taken here as the order parameter)
from a gas phase (ϕ ≃ 0) to a liquid-like phase (ϕ ≃ 1).
Notably, Grand Canonical Monte Carlo simulations of
the lattice model were found in very good agreement
with (and, hence, confirm) the mean-field results. Notice
that a similar gas-liquid transition was observed also in
previous MC simulations of multi-chain systems16,17 and
in experiments9. Last but not least, our theory predicts
(Sec. VII) that the free energy variation upon mixing has
a Flory-Huggins-like form, yet our result is slightly more
general as it accounts for the situation where the system
remains polydisperse. Otherwise, since each contribution
to the free energy depending on the bending stiffness is
linear in ϕ, the free energy variation upon mixing is in-
dependent of the bending stiffness.
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In principle, different transitions might be expected17.
First, a gas-liquid transition from a low density to a
high density phase. Second, a isotropic-nematic transi-
tion from a randomly oriented isotropic phase to a phase
where the stiffness induces an overall tendency to align
along a common director. Finally, a coexistence of these
two might also be present as the isotropic-nematic tran-
sition can be located either on the high-density (liquid)
side of the gas-liquid transition for small stiffness, or on
the low-density region of the low-density (gas) side for
sufficiently stiff chains. Triple points then might also be
present.

Quite surprisingly, the bending rigidity plays no role in
our theory, its effect being to renormalize the bond and
chain fugacity in apparent contradiction with numerical
simulations17 predicting instead the liquid phase to be
nematic. The origin of this discrepancy is likely to be
ascribed to the fact that within our approach chains are
polydisperse, and polydispersity is known to destabilize
the isotropic-nematic transition60.
Our approach extends previous mean-field analysis for

a single chain13 to multi-chain systems by accounting,
in an intuitive and transparent manner, for all the fun-
damental ingredients of polymer solutions (chain connec-
tivity, bending stiffness, monomer-monomer interactions,
role of dilution). While few mean-field theories do exist
in the literature for multi-chain systems33,35,37,41, none
of them considered the general approach proposed here.
Overall, we trust that our theory will provide a guidance
toward more dedicated approaches dealing with specific
cases. For instance, a recent study61 discussed the possi-
bility of tailoring the conditions for observing the folding
of a double helix from the self-folding of a single semiflex-
ible polymer. Providing a guidance for navigating in the
large parameter space that is usually required for such
investigations would prove an invaluable tool.
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Appendix A: Derivation of Eq. (9)

In order to demonstrate Eq. (9), we start by charac-
terizing first the consequences of the geometrical average
Eq. (7) and, in particular, of the quadratic form (Eq. (8))
of the corresponding moment-generating function in the

limit n→ 0. For instance, it is easy to see that the m-th
moment of the spin component Si,

lim
n→0

⟨(Si)m⟩Ω = lim
n→0

∂m

∂(φi)m
⟨eS⃗·φ⃗⟩Ω

∣∣∣∣
φ⃗=0

, (A1)

is different from 0 only if m = 0 or m = 2. Similarly, the
moment containing different components

lim
n→0

⟨SiSj⟩Ω = lim
n→0

∂

∂φi
∂

∂φj
⟨eS⃗·φ⃗⟩Ω

∣∣∣∣
φ⃗=0

(A2)

gives δij . To summarize, given the previous two equa-
tions it is not difficult to see that in the limit n→ 0, the
geometrical average Eq. (7) has the following properties:

⟨1⟩Ω = 1 , (A3)

⟨Si⟩Ω = 0 , (A4)

⟨SiSj⟩Ω = δij , (A5)

⟨Si1Si2 ... Sik⟩Ω = 0 , if k ≥ 3 . (A6)

We focus now on Eq. (9). By using the expression for
the lattice Hamiltonian Eq. (5) we have:

lim
n→0

⟨e−βH⟩Ω = lim
n→0

〈∏
x⃗

d∏
µ=1

(
1 + JS⃗(x⃗) · S⃗(x⃗+ êµ)

+
J2

2
(S⃗(x⃗) · S⃗(x⃗+ êµ))

2

)〉
Ω

. (A7)

It is, in fact, sufficient to stop at the second term in the
expansion because of the property Eq. (A6), or every
term in which a spin at a given site appears more than
twice gives contribution = 0.
Interestingly, we can assign the following meaning to

each of the terms in Eq. (A7):

• The term 1 corresponds to an empty site;

• The term S⃗(x⃗) · S⃗(x⃗ + êµ) corresponds to a bond
connecting sites x⃗ and x⃗+ êµ;

• The term (S⃗(x⃗) · S⃗(x⃗+ êµ))
2 correspond to a two-

step closed loop between sites x⃗ and x⃗+ êµ.

Let us consider the particular bond configuration de-
picted in panel (a) of Fig. 8. The corresponding term
is

J4⟨(S⃗(x⃗2) · S⃗(x⃗6)) (S⃗(x⃗6) · S⃗(x⃗7)) (S⃗(x⃗2) · S⃗(x⃗3)) (S⃗(x⃗3) · S⃗(x⃗7))⟩Ω
= J4

∑
i1,i2,i3,i4

⟨Si1(x⃗2)Si1(x⃗6)Si2(x⃗6)Si2(x⃗7)Si3(x⃗2)Si3(x⃗3)Si4(x⃗3)Si4(x⃗7)⟩Ω (A8)

that, since spins on different sites are independent under the geometrical average ⟨·⟩Ω, can be factorized as
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(a)

(b)

(c)

FIG. 8. Examples of some possible configurations on the 2d
square lattice. (a) A single closed loop. (b) An open chain.
(c) A configuration made of two disjointed closed loops.

J4
∑

i1,i2,i3,i4

⟨Si1(x⃗2)Si3(x⃗2)⟩Ω ⟨Si1(x⃗6)Si2(x⃗6)⟩Ω ⟨Si3(x⃗3)Si4(x⃗3)⟩Ω ⟨Si2(x⃗7)Si4(x⃗7)⟩Ω . (A9)

It is now easy to realize that, in order for this term to be
non-zero, the only possibility is to take i1 = i2 = i3 =
i4 = i, leading to the result:

J4
n∑
i=1

1 = nJ4 . (A10)

It is not difficult to extend this result and conclude that
every possible self-avoiding loop of k steps will appear in

the expansion with a weight nJk. Let us now consider an
open chain as, for instance, the one in panel (b) of Fig. 8
corresponding to the term:

J3⟨(S⃗(x⃗2) · S⃗(x⃗6)) (S⃗(x⃗2) · S⃗(x⃗3)) (S⃗(x⃗3) · S⃗(x⃗7))⟩Ω
= J3

∑
i1,i2,i3

⟨Si1(x⃗2)Si1(x⃗6)Si2(x⃗2)Si2(x⃗3)Si3(x⃗3)Si3(x⃗7)⟩Ω

(A11)
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Again, we can factorize

J3
∑
i1,i2,i3

⟨Si1(x⃗2)Si2(x⃗2)⟩Ω ⟨Si2(x⃗3)Si3(x⃗3)⟩Ω ⟨Si1(x⃗6)⟩Ω ⟨Si3(x⃗7)⟩Ω . (A12)

Notice that, since the spins in positions x⃗6 and x⃗7 appear
only once, because of the trace properties (A3)-(A6) the
weight of this configuration is = 0. We conclude then,
that a single-chain configuration has non-zero weight if
and only if each spin (i.e., each lattice site) appears ex-
actly twice or does not appear at all, in other words if
the configuration corresponds to a self-avoiding closed
loop. Finally, let us consider the last scenario illustrated
in panel (c) of Fig. 8, namely two disjointed loops. The
corresponding contribution to the partition function has
a similar form as of Eq. (A9), with 8 occupied lattice
sites instead of 4 and where again each lattice sites ap-
pears exactly twice. One can easily check that, of the 8
component indices, only the indices of spins belonging to
the same connected part of the configuration need to be
equal in order for the term to give a non-zero contribu-
tion. In turns, this leads to the following contribution to
the partition function:

J8
n∑

i,j=1

1 = n2J8 . (A13)

More in general, configurations with k disconnected loops
have a weight proportional to nk. This concludes the

proof of Eq. (9).
Let us now see briefly why the definitions (15)-(18) lead

directly to the enumeration of Hamiltonian paths. The
crucial point is that ⟨1⟩0 = 0. Since spins on different
sites are independent under the trace operation, the only
non-zero terms in Eq. (A7) are those where every spin
appears exactly twice. Based on the previous discussion,
it is easy to see that such terms correspond to Hamilto-
nian closed paths. Again, these terms will have a weight
proportional to n.
To conclude, we discuss briefly the trick to count mul-

tiple open chains instead of single closed loops. The basic
idea is to introduce an external magnetic field in an ar-
bitrary direction in the O(n)-model Hamiltonian. Let us
denote by H the external magnetic field along the di-
rection 1. The expansion of ⟨e−βH⟩Ω can be truncated
at

lim
n→0

〈∏
x⃗

(
1+HS1(x⃗)

) d∏
µ=1

(
1+JS⃗(x⃗) · S⃗(x⃗+ êµ)

)〉
Ω

.

(A14)
The term HS1(x⃗) now corresponds to the presence of
a chain end located at site x⃗. Thus, for instance, the
configuration of Fig. 8(b) would be described by the term

H2J3⟨S1(x⃗6) (S⃗(x⃗6) · S⃗(x⃗2)) (S⃗(x⃗2) · S⃗(x⃗3)) (S⃗(x⃗3) · S⃗(x⃗7))S1(x⃗7)⟩Ω . (A15)

Notice that now, with the introduction of the external
field, each spin appears exactly twice and, therefore, the

weight of the configuration is non-zero. By proceeding
with the factorization we get

H2J3
∑
i1,i2,i3

⟨S1(x⃗6)S
i1(x⃗6)⟩Ω ⟨Si1(x⃗2)Si2(x⃗2)⟩Ω ⟨Si2(x⃗3)Si3(x⃗3)⟩Ω ⟨Si3(x⃗7)S1(x⃗7)⟩Ω . (A16)

The fact that the component 1 appears now explicitly
determines a crucial difference with respect to the previ-
ous cases: in order for this term to be non-zero, all the
component indices must be equal to 1, i.e. the direc-
tion of the external magnetic field. Therefore, only one
term in the summation survives and the weight of the
configuration is simply H2J3, i.e. it is of order n0. It
can be easily checked with the same type of calculations
that the weight of a configurations with p chains and k

total bonds is H2pJk. Once again, the weight of config-
urations consisting of closed loops remains non-zero and
of order n. Therefore, in the limit n → 0, we account
for only those configurations with no contribution from
closed loops.
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Appendix B: Solutions of Eq. (49) for η > 0

By noticing that the denominator on the r.h.s. of the
saddle-point equation (49) is equal to the argument of
the logarithm in the grand potential (44) and, therefore,
it must be strictly positive, we may rearrange the (49) in
the cubic form:

p(φ) ≡ d2κ

4
φ3+

d
√
κ η

2
φ2+

(
1

2
−dκ

)
φ−

√
κη = 0 . (B1)

FIG. 9. Two possible scenarios for the function p(φ) in
Eq. (B1). In the first scenario (blue line) p(φ) is monoton-
ically increasing, whereas in the second one (orange line) a
local maximum and a local minimum appear. In both situ-
ations, the curve intersects the positive φ-semiaxis once and
only once.

Then we notice that the coefficient of the cubic term is
positive, so p(φ→ −∞) → −∞ and p(φ→ +∞) → +∞,
while p(0) ≤ 0. In order to gain some insight on the
possible solutions of (B1), we study the first derivative
of p(φ) with respect to φ,

p′(φ) =
3d2κ

4
φ2 + d

√
κ η φ+

(
1

2
− dκ

)
. (B2)

By setting p′(φ) = 0, only two scenarios are possible (see
Fig. 9):

• If η <
√

3
2 and κ < 1

d

(
1
2 − η2

3

)
then p(φ) is a

monotonically increasing function. Since p(0) ≤ 0,
Eq. (B1) has only one real solution, > 0 for any
κ > 0 and = 0 for κ = 0.

• For all other values of κ and η, p′(φ) = 0 has two
solutions,

φ± = −d
√
κη

[
1±

√
1 +

(
dκ− 1

2

)
3

η2

]
, (B3)

corresponding to a local maximum (φ+) and a lo-
cal minimum (φ−) for p(φ). Since the local maxi-
mum is for φ+ < 0, and always remembering that
p(0) ≤ 0, also in this case Eq. (B1) has only one
real positive solution.

Appendix C: Numerical solutions of Eqs. (56) and (57)

It is not difficult to see that Eqs. (56) and (57) can be
recast as the following two equations, both expressing ψ
as a function of φ only:

ψ

2d
√
βϵi

=
dφ2

4

φ+ 2η
d
√
κ
eβϵi/2

φ+ η
d
√
κ
eβϵi/2

, (C1)

ψ

2d
√
βϵi

=
1

2d βϵi
log

(
φ/2

−d2κ e−βϵi φ3/4− d
√
κ η e−βϵi/2 φ2/2 + dκ e−βϵiφ+

√
κ η e−βϵi/2

)
. (C2)

In fact Eq. (C1) follows from the ratio of the original
two, while Eq. (C2) can be obtained from Eq. (56) by
extracting ψ as a function of φ. Then, it is an elemen-
tary exercise to solve numerically the system of these two
equations for given values of d, η, κ and ϵi.

As an example – and without lack of generality – we
consider again (Sec. VIC) the three-dimensional case
study with ϵi/κBT = 1 and chain fugacity η = 0.15 (red
lines in Fig. 5). Then, based on the value of the the bond
fugacity κ, four scenarios are possible (see Fig. 10). For
low κ (panel (a)) only one solution exists, corresponding
to the gas-like phase (namely, ϕb ≃ ϕc ≪ 1). At some
intermediate κ (panel (b)), another solution appears yet

the most stable one (i.e., with the lowest grand potential
βΩ (Eq. (44))) remains the gas-like phase. Finally (panel
(d)), for κ larger than some “critical” κcr (panel (c)) the
most stable solution corresponds to the liquid-like one
(namely, ϕ = ϕb + ϕc ≃ 1). For other chain fugacities
(as well as in the case of polymers with non-zero bending
stiffness, Sec. VID) the picture remains essentially the
same, thus justifying Figs. 5 and 6.
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(a) κ=0.005

βΩ=-0.000126
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(b) κ=0.009
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(c) κ=κcr=0.0324
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(d) κ=0.04

βΩ=-0.0011

βΩ=0.265

βΩ=-0.158

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

φ

ψ
/
(2
d

β
ϵ i
)

FIG. 10. Numerical solutions (large dots) for the system of Eqs. (C1) (solid lines) and (C2) (dashed lines) in the physically

admissible interval φ ∈ [0,
√

4/d] (see Eq. (46)) for d = 3, η = 0.15 and ϵi/kBT = 1 (see Sec. VIC and Fig. 5) and four
representative values of the bond fugacity κ (see legends, notice the “critical” value κcr of panel (c)). The corresponding values
for the grand potential per lattice site βΩ (Eq. (44)) are also shown.
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