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Geometric Learning of Knot Topology†

Joseph Lahoud Sleiman,∗a Filippo Conforto,∗a, Yair Augusto Gutierrez Fosadoa and Davide
Michielettoa,b,‡

Knots are deeply entangled with every branch of science. One of the biggest open challenges in
knot theory is to formalise a knot invariant that can unambiguously and efficiently distinguish any
two knotted curves. Additionally, the conjecture that the geometrical embedding of a curve encodes
information on its underlying topology is, albeit physically intuitive, far from proven. Here we attempt
to tackle both these outstanding challenges by proposing a neural network (NN) approach that takes
as input a geometric representation of a knotted curve and tries to make predictions of the curve’s
topology. Intriguingly, we discover that NNs trained with a so-called geometrical “local writhe”
representation of a knot can distinguish curves that share one or many topological invariants and
knot polynomials, such as mutant and composite knots, and can thus classify knotted curves more
precisely than some knot polynomials. Additionally, we also show that our approach can be scaled
up to classify all prime knots up to 10-crossings with more than 95% accuracy. Finally, we show
that our NNs can also be trained to solve knot localisation problems on open and closed curves. Our
main discovery is that the pattern of “local writhe” is a potentially unique geometric signature of the
underlying topology of a curve. We hope that our results will suggest new methods for quantifying
generic entanglements in soft matter and even inform new topological invariants.

1 Introduction
Knots are fascinating objects that have captured the attention of
humans for centuries. From Incas’ knotted Quipus1, and Lord
Kelvin’s theory of elements as knotted ether2, to sailors and
climbers whose lives often rely on the strength of knotted rope,
knots are deeply intertwined with history and art and often carry
mystical meaning. The human obsession with knots brought Peter
Guthrie Tait to compile the first knot tabulation of up to 10 cross-
ings by hand3; currently, more than one million unique knots up
to 16 crossings have been tabulated using computer programs4.

To rigorously prove that the early tabulated knots did not con-
tain duplicates, so-called topological invariants and knot polyno-
mials were developed, the first of which was the Alexander poly-
nomial1,5,6, followed more recently by the Jones and HOMFLY
polynomials1,7. Knot polynomials are mathematical constructs
that can be computed on knot diagrams and are invariant under
smooth deformations of the curve, i.e. deformations that pre-
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serve the curve topology. However, there are knots that share
many topological invariants and cannot even be distinguished
by knot polynomials. Famously, the 11-crossing Conway knot
has the same Alexander polynomial as the unknot and shares
the same Jones polynomial of its mutant, the Kinoshita–Terasaka
(KT) knot1. More generally, all mutants of a knot have the same
HOMFLY polynomials and the same hyperbolic volume1, while
some composite knots share the same homeomorphic comple-
ments8–10.

Alongside the development of topological invariants, several
attempts were made to identify a relationship between a specific
geometric embedding of a knot and its underlying topology11.
We note that this relationship is different from the one sought
between so-called geometric and algebraic invariants12,13, e.g.
between the hyperbolic volume of a knot and its Jones polyno-
mial14. Perhaps one of the most rigorous results in this direction
is the Fáry-Milnor theorem, stating that the total absolute curva-
ture of non-trivially knotted curves must be greater than 4π 15.
Unfortunately, this result only imposes a weak constraint on the
topology of the underlying curve, as an unknot can itself have
large total curvature due to, for example, deformations of its con-
tour. In parallel, a large body of work on so-called “ideal knots”
was done with the aim of finding geometric features that could
reflect the underlying knot topology. One impressive result in this
context is that different DNA knots display a spatial separation
when run on a gel electrophoresis that is linearly proportional
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Fig. 1 A Examples of equilibrium knotted polymer conformations colour coded to show the knot contour (red, white, and blue). In this figure we
consider the 5 simplest knots: 01, 31, 41, 51 and 52. B A graphical representation of StS writhe ωStS(x,y) showing a situation of low and high writhe
between two segments. C Examples of patterns for ωStA(x) for three different knots. D A graphical representation of the (feed-forward) network. The
input layer contains N (or 3N) neurons corresponding to the size of the input feature representation, and the output layer yields a probability for each
knot class. E Accuracy score, tested on unseen polymer conformations for different input features. The StA writhe classifies the 5-simplest knots with
99.9% accuracy irrespectively of the network architecture. F Confusion matrices obtained by training the network with XYZ and StA writhe input
features.

to the so-called average crossing number16,17; this result entails
that there is an intimate relationship between the physical shapes
assumed by knots and their underlying topology. Another result
that inspired our work is that the total so-called “writhe” (see be-
low) of an ideal knot is the same (up to a constant that is only
a function of the curve length) as that of a non-ideal, thermally
agitated curve with the same topology18. Though this suggests
that “writhe” may be a good measure that is invariant under ther-
mal fluctuations, there is no one-to-one relationship between the
global writhe of a knot and its underlying topology; for instance,
the global writhe of the 41 knot is 0, the same as the unknot11.

Thus, the problem of determining a curve topology only based
on the geometric information of its segments (without using any
projection and algebraic invariant) is an open challenge in knot
theory that has ramification in many fields, for instance polymer
physics, biophysics and fluid dynamics. In this paper, we propose
to address this open challenge by using the power of artificial
intelligence, and in particular deep learning, at recognising and
classifying patterns in certain knot geometric features. Our main
discovery is that by using a quantity we dub “local writhe”, even
simple machine learning (ML) algorithms can identify the topol-
ogy of knotted curves undergoing thermal fluctuations with more
than 99% accuracy. We argue that this is an example of geomet-
ric learning as the only quantity we pass to the ML algorithm is

a quantity that can be computed from the Cartesian positions of
a curve’s segments, without the need of computing algebraic in-
variants such as Alexander or Jones polynomials. Our method
can even distinguish 11-crossing knots that are otherwise impos-
sible to distinguish using standard invariants (the Conway and KT
knots). Finally, we show how this algorithm can be scaled to clas-
sify all 250 prime knots up to 10 crossings with 95% accuracy and
that can even be employed to solve knot localisation problems.
Overall, we argue that local writhe is an excellent feature – based
purely on the 3D position of a curve segments – that displays pat-
terns that can be easily identified by ML algorithms. We hope
that out results will be applied to other classification problems
such as threading19,20 and entanglements21,22 and also prompt
knot theorists to employ local writhe to define new geometric
knot invariants.

2 Results

Two recent papers by Vandans23 and Braghetto24 have shown
that machine learning is a promising tool to solve knot classifica-
tion problems. They mostly considered Cartesian position of the
monomers or adjacent monomer distances and dihedrals to clas-
sify the 5 simplest knots. In this work, we set out to test the use of
a different type of geometric features that our group recently con-
sidered to identify essential crossings of a knot and plectoneme-
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like double folding of ring polymers25,26. More specifically, we
focused on a generalisation of the Gauss linking integral applied
to a single closed curve, often associated with its writhe27 and
average crossing number25,28. This choice is inspired by the in-
tuition that writhe captures the geometrical entanglement of a
curve with itself, and we thus define a generalised local segment-
to-segment (StS) writhe as

ωStS(x,y) =
(ttt(x)× ttt(y)) · (rrr(x)− rrr(y))

|rrr(x)− rrr(y)|3
, (1)

where rrr(x) and ttt(x) are the 3D position of, and the tangent at, seg-
ment x, respectively. Intuitively, Eq. (1) captures the magnitude
and the chirality of the entanglement between segment x and seg-
ment y (Fig. 1A-B). The quantity ωStA(x) =

∮
γ

ωStS(x,y)dy is the
local segment-to-all (StA) writhe and characterises how geomet-
rically entangled segment x is with respect to the whole closed
curve γ. In practice, the calculation of StS and StA writhe are
conducted on discrete segments, taking a finite “window” with
length lw = 10σ to smooth out short length fluctuations (see SI
for details).

The StA writhe, ωStA(x), is a 1D geometrical representation of
a knot that we hypothesise may display some patterns that are
topology-dependent (Fig. 1A-C). Since complex pattern recogni-
tion is a task that naturally lends itself to being addressed us-
ing a machine learning approach, we thus asked ourselves if a
neural network (NN) trained to recognise patterns within ωStA(x)
was able to solve ambiguous knot classification problems. To do
this, we built feed forward and recurrent (long-short term mem-
ory, LSTM) neural networks (FFNN and RNN, respectively) and
trained them using 105 statistically uncorrelated and pre-labelled
conformations for each knot. To generate these conformations,
we initialised a bead-spring polymer with known topology, N =

100 beads, and persistence length lp = 10σ (other lengths and lp

are reported in the SI) using KnotPlot (knotplot.com) and sub-
sequently evolved the polymer configurations in LAMMPS29 via
Langevin dynamics in an implicit solvent and fixed temperature
and using a Kremer-Grest model30 to preserve polymer topology
(see Methods and SI for more details). The code to generate
these conformations are open access at https://git.ecdf.ed.
ac.uk/taplab/mlknotsproject. We confirmed that the topology
was conserved either by computing their Alexander determinant
via KymoKnot (kymoknot.sissa.it)31 or, when ambiguous, vi-
sually.

The NNs were built with an input layer that was determined ac-
cording to the input representation being studied, e.g., the Carte-
sian (XYZ) coordinate representation used 3 neurons (one for
each dimension) per polymer bead. Other local input features,
such as StA writhe, used one neuron per bead, while the StS
writhe feature requires N×N input neurons. The optimal number
of hidden layers, hidden units, learning rate and batch size were
determined via an automated hyperparameter tuning method
conducted on the Cartesian representation (KerasTuner32). Un-
less otherwise stated, our NNs contained 4 hidden layers, with
around 4 · 105 trainable parameters. The output layer consisted
of C output neurons, corresponding to the C knot types being

classified, each implemented with a softmax activation function
in order to return the probability that a given input is a certain
knot type. We took the sparse categorical cross-entropy as the loss
function, as the most appropriate for individual class probabilities
and integer target labels, i.e. our knot types (Fig. 1D).

2.1 StA writhe yields NNs that are more accurate to classify
the simplest 5 knots than Cartesian features.

We first tackle a 5-knot classification problem with the 5 simplest
knots, which can be satisfactorily solved using NNs trained on
center-of-mass-corrected Cartesian coordinates (XYZ) or adjacent
bead input features23,24. In line with these previous works, we
find that our NNs can accurately predict the topology of unseen
conformations (80.1% accuracy with a FFNN and 86% accuracy
with a recurrent NN architecture, Fig. 1E). These values are lower
than the ones reported in Ref.23 because we use a smaller train-
ing dataset and smaller NNs. We then trained the same NNs using
a range of other geometric features, such as local curvature, den-
sity and 1D writhe26 (see SI for details), and found that most of
them performed more poorly, or at best equally, with respect to
the XYZ representation (Fig. 1E). A similar outcome was also ob-
tained in Ref.24. In stark contrast, models trained using ωStA(x)
outperformed all other models and are found to achieve 99.9%
accuracy, irrespective of the FFNN or RNN architectures (we also
tested random forest algorithms, see SI). Additionally, the net-
works reached the early stopping criterion in about 50% fewer
epochs or less, compared to those trained using the XYZ repre-
sentation (see SI). When plotted as a confusion matrix, the re-
sults clearly indicate that the XYZ input feature struggles to clas-
sify knots with a similar number of crossings, e.g. the 51 and 52

knots. In contrast, our local 3D writhe (StA) feature generated a
near-perfect confusion matrix (Fig. 1F).

We found that these results are generally robust for different
choices of dataset splitting, persistence length (lp = 1 − 10 σ),
window length chosen to perform the StA calculation, and length
of the chains (see SI). Nevertheless, they do display a significant
reduction in accuracy when tested on knots generated using a dif-
ferent method (for instance freely jointed chains), and also when
the window length for the StA writhe calculation is comparable
to the full contour of the chain. In this case, the StA writhe is
constant and equals the global writhe of the knot, which is not
unique for different knots11. This is also in agreement with a
principal component analysis (PCA, see SI), where we see that
different knots are clearly separable in the reduced 2D PCA space,
yet the 01 and 41 cluster together due to the fact that they share
the global writhe (zero), which is related to the mean value of
ωStA(x) along the contour.

2.2 NNs trained with StA writhe can distinguish knots with
identical knot polynomials

Given that our NNs distinguished knots with same minimal num-
ber of crossings, i.e., the 5-crossings knots, we ask ourselves if
they could also solve more complicated problems where knots
shared algebraic knot polynomials. To this end, we first con-
sidered three knots with identical Alexander polynomial: the
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Fig. 2 A Snapshots of three knots with identical Alexander polynomial: square (3l
1#3r

1), granny (3l
1#3l

1) and 820 knots. B Examples of StA writhe
patterns from the three knots. C Confusion matrices obtained from a 3-class classification problem, training a FFNN with XYZ (91.7% accuracy) or
StA writhe (99.9% accuracy) features. D Snapshots of Conway (blue) and KT (orange) knots. E Examples of StA writhe patterns, including the one
from the unknot (black). F Confusion matrices obtained from a 3-class classification problem training a FFNN with XYZ (67% accuracy) and StA
writhe (99.6% accuracy).

square, granny, and 820 knots (see Fig. 2A). The first two knots
are 6-crossings knots consisting of trefoil composites with differ-
ent chirality (hence they are homeomorphic knot complements),
whereas the latter is an 8-crossings knot. Once again, we trained
our FFNN using the ωStA(x) profiles (Fig. 2B) and obtained a strik-
ing accuracy of 99.98%, compared with 91.8% obtained by train-
ing with COM-shifted XYZ coordinates (Fig. 2C).

We then asked ourselves if our method could also perform just
as well in situations where the knots shared multiple knot poly-
nomials. As mentioned above, mutant knots share the same hy-
perbolic volume and several knot polynomials, including HOM-
FLY. We therefore performed simulations of the Conway (K11n34)
knot and one of its mutants, the Kinoshita–Terasaka (KT, K11n42)
knot. These 11-crossings knots have a number of identical knot
invariants as they share the same Jones, Alexander, and Conway
polynomials1. Intriguingly, the latter two are also shared with the
unknot. Thus, we generated 105 statistically uncorrelated confor-
mations of N = 200 beads long polymers with the Conway, KT,
and unknot topologies (Fig. 2D), and trained our FFNN to classify
them either using a COM-subtracted XYZ or ωStA(x) (Fig. 2E) rep-
resentations. When tested on unseen conformations, we found
that the XYZ-trained NN could not distinguish the Conway and
KT knots, but both are accurately distinguished from the unknot
(Fig. 2F). In marked contrast, we discovered that the StA-trained

NN perfectly disentangles the three knots with 99.6% accuracy
(Fig. 2F). We therefore conclude that the StA-trained NN has the
ability to convert StA patterns into a topological knot classifica-
tion, even for knots sharing multiple knot polynomials, such as
mutants and composites. In turn, we argue that the StA writhe is
a geometric quantity computed on a particular 3D embedding of
a curve that carries high-density information about its underlying
topology. Importantly, we stress that to classify these knots the
network does not compute any knot polynomial, as other stan-
dard software do.

Somewhat unsatisfactorily, we cannot fully pinpoint why StA
writhe is so powerful at identifying different topologies. We
hypothesise that the 1D patterns generated by StA writhe, and
specifically the sequence, sign and amplitudes assumed by con-
secutive maxima and minima, contain information on the relative
orientation and severity of consecutive entanglements. As men-
tioned above, the average value of ωStA(x) is related to the global
writhe of the knot, which itself contains non-unambiguous infor-
mation on its topology. Thus, we argue that the NNs can extract
additional information from the full ωStA(x) patterns that is re-
lated to the chirality of individual entanglements and render the
information unique. This hypothesis is also supported by the fact
that considering unsigned StA writhe (which cannot distinguish
chirality) yields in general a lower accuracy (see Fig. 1E). We
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Fig. 3 A Two example conformations of 51 (blue) and 72 (orange) knots. B The XYZ-trained NN on a 15-class classification problem yields 63.8%
accuracy and a rather non-diagonal confusion matrix. C Examples of ωStA(x) curves for the two knots, displaying a degree of similarity between the
pattern of maxima and minima. D The ωStA(x)-trained NN achieves 98% accuracy and the confusion matrix shows that 51 and 72 are the knots that
are most confused with each other. E Examples of ωStS(x,y) geometric feature for the two knots corresponding to the ωStA(x) profiles shown in C. F
Confusion matrix for a StS-trained FFNN, achieving 99.8% accuracy. G Accuracy as a function of number of knot classes to be distinguished, up to
10-crossing (250) prime knots.

thus hypothesise that the information encoded in the pattern of
the StA writhe may be related to the underlying knot’s Dowker
code. These hypotheses will be tested in more detail in future
works.

2.3 StS writhe outperforms StA writhe on knots with more
than 7 crossings

To understand to what extent StA-trained NNs can be used to
classify knotted curves, we trained our NNs on increasingly more
complex classification problems, and generated conformations of
all prime knots up to 10-crossings. Among these 250 prime knots,
there are over 30 that share the same Alexander polynomial (see
SI for a table), making them challenging to classify using standard
tools (for instance Kymoknot). We first noticed that XYZ-trained
NNs rapidly declined in accuracy when we included knots with 6
or more crossings (Fig. 3A-B). In contrast, the confusion matrices
from StA-trained NNs retained relatively high accuracies. How-
ever, we noticed that the knots 51 and 72 created some confusion
even in the StA-trained NNs, causing a drop in accuracy to 98%
(Fig. 3C-D). We argue that this was due to the fact that ωStA(x)
displayed similar patterns between the two knot types. For in-
stance, we show two knots that yield particularly similar ωStA(x)
patterns in Fig. 3C. Thus, to further distinguish these (and po-
tentially other knots with similar ωStA(x) curves) we decided to
consider our original proposition of using the local StS writhe
(Eq. (1)); two examples of ωStS(x,y) maps are reported in Fig. 3E,

for the same 51 and 72 knots configurations used to compute
ωStA(x) in Fig. 3C. Interestingly, the ωStS(x,y) maps appear very
different, despite generating very similar StA curves when inte-
grated along y and around the polymer contour. This is because
a given segment x may itself have a certain sequence of negative
and positive entanglements with other segments y. Once inte-
grated along the contour in the y direction, different sequences
may lead to similar overall values. Motivated by this, we trained
our FFNNs using the StS writhe representation of the knots, and
discovered we could restore a very high (99.8%) accuracy for the
case of a database containing all knots up to 7-crossings (Fig. 3F).
More specifically, the confusion between 51 and 72 knots is now
solved thanks to the StS writhe. Ultimately, the StS-trained NNs
produced the most accurate models, achieving 95% for a 250-
class classification task including all knots up to 10 crossings. In
comparison, the XYZ-trained and StA-trained NNs achieved 17%
and 72% on the same problem, respectively (Fig. 3G).

Based on these results, we argue that the StS writhe is there-
fore the most scalable and precise geometric feature to employ for
knot classification problems. Most importantly, we stress that the
impressive accuracy for a 250-class problem was achieved with a
simple feed forward NN with 4 layers (around 400k parameters).
A natural extension going forward will be to employ more com-
plex architectures and in particular convolutional NNs to classify
the 2D StS writhe maps.
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Fig. 4 A Example of a 41 knot where the knotted core is localised within ∼ 80% of the contour.B Signed and unsigned StA writhe profiles for the
conformation shown in A. C Sketch of a LSTM (recurrent) NN, encoding the sequential information of the segments. D Profile of the knot probability
Pk(x) as a function of bead index x, as predicted by the RNN with different geometric features. The ground truth was generated using KymoKnot.

2.4 StA-trained NNs can also solve knot localisation prob-
lems.

In the final part of this paper we turn our attention to the knot
localisation problem, i.e. determining the shortest knotted arc
along the polymer contour. This task is challenging and partic-
ularly important for open curves, such as linear polymers, DNA,
and proteins33–38, which may contain entanglements and knots.
In this context, identifying the shortest portion of a polymer that
is knotted is akin to being able to identify entanglements in chain
melts.

We first tackled this problem using the same FFNN architecture
as in the knot classification task, but the accuracies generated
were very low. We hypothesised that this was due to the fact
that FFNN do not preserve the sequential information along the
polymer. For this reason, we consider a long-short term memory
(LSTM), also known as recurrent NN (RNN). More specifically,
we employed a sequence-to-sequence LSTM, with an output layer
corresponding to a binary sequence of N = 100 neurons, equiva-
lent in dimension to the length of the input polymer. Each output
neuron is passed through a sigmoid function, which converts the
output into a probability between 0 and 1 representing the likeli-
hood that a given monomer is within the knotted segment of the
polymer conformation. The true output labels were generated us-
ing KymoKnot31, which employs a minimally-interfering closure
algorithm followed by a standard Alexander determinant calcu-
lation to identify the start and end monomers of the knot. This
data was then transformed into a vector of 100 bits, i.e. a value
of 0 or 1, corresponding to whether a certain monomer was part
of the knotted arc.

Unlike normal multi-class classification problems where the
classes are mutually exclusive, here we consider a multi-label
classification task, with mutually non-exclusive class labels (mul-
tiple classes per prediction)39. To quantify the error in a multi-
label classification task, we use the binary cross-entropy (BCE)
function, suited to an output layer of sigmoid functions, given by

BCE =− 1
N

N

∑
i=1

yi log(ŷi)+(1− yi) log(1− ŷi) (2)

where yi is the ith element in the true output vector, y, ŷi is the ith

element in the predicted output vector, ŷyy, and N is the dimension
of the output label, corresponding to the length of the polymer in
our knot localisation task. This error is then used to optimise the
model weights.

Finally, to determine the accuracy of the model we converted
the probabilities generated by the sigmoid function yprob into bi-
nary values using an Heaviside step function (ypred = Θ(yprob −
0.5)), and compared to the true binary value obtained using
Kymoknot. The final accuracy is given by the binary accuracy,
i.e. Accuracy = correct/total.

Overall, we find that the StA-trained RNNs perform extremely
well, reaching above 90% accuracy in localising any knot that we
tested: the 5 simplest knot types, 01, 31, 41, 51 and 52 (Fig. 4).
We argue that this excellent performance relies on the effective-
ness of RNNs in handling multi-scale sequential data and track-
ing multi-scale correlations along the polymer. This capability
likely plays a major role in allowing the network to recognise that
nearby monomers are more likely to be in the same knotted arc.
More precisely, we find that the StA writhe representation is supe-
rior to all other descriptors, with a localisation accuracy of 93%,
confirming its potential usefulness as a tool to help in knot local-
isation tasks. For instance, in Fig. 4D we report the prediction
and ground truth for the 41 knot shown in Fig. 4A-B. In this case,
the StA writhe perfectly agrees with the kymoknot ground truth,
whereas the XYZ and unsigned StA writhe yield less accurate lo-
calisation predictions.

In the SI (Fig. S9), we also used our StA-trained RNN model to
track the unknotting of a 51 knot tied on an open curve. Despite
the fact that the algorithm was not trained on open curves, the re-
sults were surprisingly accurate. The model can be seen to clearly
detect the presence of short knotted arcs even at the final step
before complete unknotting. Once again, also in this case we find
that the StA-trained model is largely superior to the XYZ-trained
model.

Overall, our results highlight the power of StA and StS writhe
in not only classifying but also localising knots. We acknowledge
that our results are non-exhaustive and more work will be needed
in the future to find the best architectures and models to optimally
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solve these tasks.

3 Conclusions
In conclusion, we have discovered that local “segment-to-all” and
“segment-to-segment” writhe (Eq. (1)) are geometric descriptors
of a curve that contain information about its underlying topol-
ogy. Our AI-driven approach can classify, using a single quantity,
complex knot topologies that would otherwise be impossible to
disentangle using a single algebraic invariant. More specifically,
we demonstrated, for the first time, that NNs can utilise the in-
formation encoded in StA and StS writhe to classify the curve
topology significantly more accurately than what can be achieved
using the Cartesian coordinates of the curve’s segments or other
local geometric quantities (Fig. 1). We hypothesise that our NNs
trained on local 3D writhe representations may numerically en-
code a new type of geometric topological invariant. This conjec-
ture is supported by the fact that even a simple FFNN architec-
ture can distinguish the topology of knot mutants and composites
that share several algebraic knot polynomials (Fig. 2). Finally, we
showed that our new proposed geometric feature (Eq. (1)) is ro-
bust to more complex knots than the ones tackled in the literature
so far; indeed, we have managed to classify all 250 prime knots
up to 10-crossings with 95% accuracy (Fig. 3). We argue that
deeper NN or convolutional NN may be able to push this result
further, to >10 crossing knots.

We stress that this method only requires a snapshot of a knot
embedding with a list of 3D coordinates for each polymer seg-
ment and is trained on thermal conformations under a readily
tunable temperature. For this reason, it will require longer train-
ing for longer polymers but should be essentially insensitive to the
number of non-essential crossings, as shown by the excellent ac-
curacy achieved in spherically confined polymers24. This feature
is in marked contrast of standard knot topology algorithms, that
take 2D projections and need to compute matrices as big as the
number of crossings in a given projection, irrespectively whether
essential or not1. Finally, we show that by deploying recurrent
NNs, our geometric StA descriptor can also solve a knot localisa-
tion problem (Fig. 4). More work will be needed in the future to
find optimal NN architectures.

We note that albeit we do not have a full understanding of how
the NNs are using StA and StS writhe features to identify knots,
we hypothesise that they are classifying the patterns of consec-
utive maxima and minima, thus capturing the entanglement of
pairs of segments, accounting for their chirality and magnitude.
This argument directly suggests that employing a distance map
between segments or other geometric “unsigned” representations
will yield lower accuracies, due to the fact that they do not cap-
ture the chiral nature of the entanglements between segments.
For these reasons, we believe that StS (or StA) representations
are possibly the best ones to connect the geometry a given curve
embedding to its underlying topology. A possible limitation of this
method is that it is restricted to pair-wise entanglement. General-
ising the Gauss linking number to higher-order relations is itself
an active field of research, and it is foreseeable that a local version
of the Milnor triple linking number40 may be used to generate 3D
tensors of Brunnian links, for example.

In conclusion, we established that StS-trained NNs are pow-
erful tools to accurately classify and localise knots in thermally
equilibrated curves. Importantly, knot classification and localisa-
tion are achieved without any explicit calculation of Alexander or
other algebraic invariants. In other words, we propose that the lo-
cal writhe – once fed through deep NNs – yields an accurate map
from the configurational space of a curve to its underlying topol-
ogy. The approach we reported in our paper naturally lends itself
to be applied to protein folding34,41, DNA42,43 and, in general,
entanglements in open curves and complex systems20,21,36,44–47.
We hope that our results will also inspire mathematicians and
topologists to formulate new topological invariants based on the
geometrical embedding of knotted curves.
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