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Abstract: We performed coarse-grained molecular dynamics simulations of DNA polymers pushed
inside infinite open chiral and achiral channels. We investigated the behavior of the polymer metrics
in terms of span, monomer distributions and changes of topological state of the polymer in the
channels. We also compared the regime of pushing a polymer inside the infinite channel to the case of
polymer compression in finite channels of knot factories investigated in earlier works. We observed
that the compression in the open channels affects the polymer metrics to different extents in chiral
and achiral channels. We also observed that the chiral channels give rise to the formation of equichiral
knots with the same handedness as the handedness of the chiral channels.
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1. Introduction

Polymers are long molecules consisting of many building units called monomers [1].
The units can be chemically identical, and still it is possible to think of an infinite number of
polymers that could be constructed and yet differ by only how the monomers are connected.
As such, the polymers represent a combinatorial problem that is suitable for studying by
computer simulations.

The way the monomers are connected defines the polymer’s topology. A relatively
new topology is represented by polymer knots [2]. The knots are formed by winding a
long polymer chain around itself. The polymer knots occur naturally both in synthetic and
biological polymers, such as DNA and proteins. The first synthetic knots with controlled
topology were made possible by the end of the 1980s [3]. Knotted polymers have been
drawing increasing scientific attention given the progress in macromolecular synthesis,
biology, mathematics, and molecular simulations.

It is difficult to pinpoint when and how this scientific interest in knotted molecules
began, whether it was sparked by imagination or, as is often the case, by observing nature.
But now, it is clear that the topological state of molecules has strong biological and tech-
nological effects and implications. While in biology, the knots can be very harmful on a
genome [4–8] but very important on proteins [9–11], whose biological function is yet to be
fully revealed, the distinct effects of polymer knotted topology currently pose problems
that need to be engineered due to a current lack of polymers with a well-defined knotted
topology and methods to synthesize them in sufficient amounts.

As pointed out above, polymers, especially with regard to their topology, represent a
problem suitable to be studied using computers. While the progress in polymer synthesis
enabled controlled preparations of knotted molecules of up to eight crossings [12], in com-
puter simulations, knotted polymers with well-defined topology are easily prepared. Thus,
computer simulations are currently a useful and indispensable approach in investigating
knotted polymers.

As we also mentioned, the knots are formed naturally by biological processes [13,14],
but are also inevitable in physical processes, when the probability of a polymer being
knotted increases with its length [15]. The simplest and most practical way to produce
knots would be using a diluted solution of long polymers and ligating the ends of the
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polymer. This would, however, lead to the production of a wide spectrum of knots.
Computer simulations are useful to provide a prediction of how the length of polymers,
such as DNA, and ionic environments would be used to control the topology of the polymer
knots [16–18].

The next layer of complexity is added by investigating polymer knotting in con-
fined spaces. The confinement state is the most typical state where polymers occur in
nature [19,20]. Confinement is a state where the natural dimension of the polymer is
larger than the size of the confinement geometry. Biopolymers, such as DNA, are naturally
confined in such small spaces as viral capsids or cellular nuclei. The state of polymer
confinement is also essential for nanotechnology, including nanocomposite or nanoflu-
idic experiments involved in genomic studies. The confinement of polymers, yet while
a very complex state, being a subject of experimental, theoretical, and simulations stud-
ies, is known to enhance and stabilize the knottedness of polymers [17,21,22]. Computer
simulations provide insights beyond the possibilities of experimental imaging.

Consequently, the level of the complexity of the problem can be extended by adding
external forces into consideration that induce compression of the confined polymer. The
compression of polymer chains under confinement was studied by means of Monte
Carlo (MC) [23–25] and molecular dynamics (MD) simulations [26–35] in channels with
square [23,31–34], cylindrical [24,25,27–30,35], or helical [36] sections or in structured chan-
nels [26,37,38], where the compressive force was applied by pulling on distant ends of the
confined polymer in a direction against each other [23,24,27], by using a piston compres-
sion similar to the gaskets used in the experiments described in [24,25,28,29,31–36] or by
flow of media [26,37,38], while compression in a spherical confinement was also inves-
tigated [39,40]. While previous research has generally highlighted the enhanced effects
of compression in generating entanglements within polymers, only a few studies have
investigated the topology of compressed polymers [28,36,40]. These works quantified knot
complexity and the populations of knots as a function of compressive force.

It has been demonstrated that the theoretical and computational insights into polymer
compression within nanochannels can be experimentally validated by confining DNA
within nanofluidic channels and inducing compression through specific experimental se-
tups [41,42]. More recently, the earlier computational findings regarding knot formation in
confined spaces, along with developed nanofluidic experiments, have led to the creation of
the ‘knot factory’ nanofluidic device. This innovative device produces knots when polymer
chains are compressed inside nanochannels [43]. Furthermore, computer simulations have
been instrumental in exploring various aspects of this device, including the compression
duration and the compressive force’s impact on knot topology [28]. Our own computational
work has also contributed by investigating the effects of nanofluidic channel sizes and the
strength of confinement [36]. The computer simulations carried out by us [36] extrapolated
the model [28] used previously to model the experimental setup in [43], and also devised
an in silico experiment to test whether the chiral geometry of the channels can induce the
handedness and influence the chirality of knotted structures.

Chirality is a prominent property of knots. As mentioned above, knots are formed
by a substantially long polymer chain winding around itself. One of the parameters to
characterize knots is the crossing number that quantifies how many times the polymer
winds around itself. The direction of the polymer winding around itself defines the
chirality of the knot. The crossing number is a combinatorial property, and the number
of possible knot types that can be constructed with a given crossing number increases
substantially. This is why it is feasible to create as many as 1.7 million prime knots with
up to 16 crossings, out of which fewer than 2000 knots are achiral [44]. The chirality of
polymer knots exhibits unique physical properties. However, due to the limited availability
of polymers with well-defined knotted topologies, practical applications are currently
largely theoretical. Nevertheless, experimental evidence suggests that chiral knots play a
role in biology [45], can be employed to control optical properties [46], offer potential for
new energy-harvesting sources at the nanoscale [47], and they may find applications in



Polymers 2023, 15, 4185 3 of 18

stereoselective chemosensing [48] and also in the progress in organized entanglements in
chemistry [49].

In the context of knot formation, a recent computer simulation was devised to ex-
plore an intriguing scenario of whether and how knotting could be induced by simply
pushing DNA inside nanochannels, without the need for the more complex lab-on-chip
nanofluidic experiments [34]. This scenario holds practical significance because it offers a
relatively straightforward way to induce knot formation in polymers, which has relevance
in various applications where polymers are pushed through narrow channels, such as in
chromatographic resins or membranes. Additionally, experimental efforts are underway
to develop chiral membranes capable of separating chiral enantiomers based on their geo-
metric properties, which includes the use of structures like helical nanochannels [50,51].
The emerging applications of chiral knots mentioned above together with chiral separation
devices are part of the emerging field of chiral nanotechnology [52], where our computer
simulations contribute by proposing methods for producing knotted structures while
controlling chirality through physical means.

In our current study, we are exploring the formation of knots in polymers as they
are pushed into open, infinitely long nanochannels with varying sizes and geometries. To
simulate chiral environments, we designed these channels with a helical geometry and
induced different chirality by altering the winding direction of the helical loops within
the nanochannels. We developed a novel computational approach to identify the chiral
properties of the knots that form in the DNA strands as they are pushed inside these
channels. Our method utilizes Knoto-ID [53], a topological software, to determine the
chirality of the knots in reference to the Rolfsen knot table [54]. Furthermore, it identifies
handedness based on a new, biologically motivated knot table [55]. We compare and
discuss the simulations also with respect to the compression in finite channels by pushing
against an impenetrable wall developed and modeled in Ref. [36]. The structure of this
manuscript is as follows: in Section 3.1, we present the results concerning polymer metrics;
in Section 3.2, we discuss various aspects of monomer distribution; Section 3.3 explores
knotting probabilities; Section 3.4 introduces the computational routine used to analyze
knot handedness, and, finally, in Section 3.5, we discuss the possible mechanism through
which the chiral environment impacts the handedness of knots. We believe that our
findings significantly contribute to our current understanding of polymers in confined
spaces, especially under compressive forces. These insights can have implications in the
fields of DNA biology, polymer physics, and the emerging field of chiral nanotechnology.

2. Materials and Methods
2.1. Model of DNA

The dsDNA is modeled as a discretized beaded chain consisting of N = 300 beads
representing DNA portions with a width of 1 σ corresponding to 2.5 nm [56]. The beads
interact via bonded and nonbonded interactions. The bonded interactions are represented
by covalent bonds modeled by bond-stretching and angle-bending potentials. The bond-
stretching is modeled by a harmonic potential in the form US(r) = Ks(r−r0)2, where r is
the position vector of the bead, r0 is the equilibrium value set to r0 ≡ ` = 1 σ, and KS is
the penalty against bond stretching. In order to prevent artificial strand passages under
compressive forces of confinement and piston compression, the force constant KS was set
to 80 ε0, where ε0 = kBT represents energy of thermal fluctuations. The angle-bending
interaction is modeled by a harmonic potential in the form Ub(θ) = Kb(θ − θ0)2, where θ is
the angle between vectors of two consecutive monomers in the chain, θ0 is the equilibrium
angle set to θ0 = π, and Kb is the force constant of the interaction representing the energy
penalty against bending of the angle. The force constant Kb relates to the persistence length
of the DNA molecule and we set the value Kb = 20 σ/ε0, thus imposing on the beaded chain
a common value for the persistence length of the DNA molecule [57]. The nonbonded terms
of the potential involve excluded volume interaction. The excluded volume interaction
describes the volume occupied by monomers of the chain and it was modeled by fully repul-
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sive cut and shifted Lennard-Jones potential Uex(rij) = 4ε0[(σ/|rij|)12 − (σ/|rij|)6] + 1/4
if |rij| < 21/6σ and Uex(rij) = 0 otherwise, where |rij| is a distance between a pair of beads
position vectors ri and rj, where i 6= j.

2.2. Model of Nano-Channels

The channels were modeled by using an implicit helical confinement with a helical
geometry developed in the previous work [36]. The channel is modeled as a tube with
radius Rch and central axis described by the equation of a helix given as r0(t) = ktî +
RHcos(wt)ĵ + RHsin(wt)k̂, where t is a periodic parameter in radial space and ω gives
a subtended angle as t increases [58]. The parameter ω also carries information on the
handedness of the channels, where ω/|ω|<0 corresponds to left-handed channels with
negative winding and ω/|ω|>0 is used to model right-handed channels with positive
winding. The channels are defined by four parameters: sign(ω), radius of the channel
Rch, radius of the helix, RH, and the pitch, k. The pitch of the channel determines the
distance between the helical loops of the channel, dH = 2πkσ. If the radius of helix is
set to RH = 0, the geometry of the channel corresponds to a simple cylindrical channel
regardless of the settings of k and ω. The model for implicit helical confinement was
implemented into the Extensible Simulation Package for Research on Soft Matter Systems
(ESPResSo v. 4.2) software that was used in the simulations [59,60]. The model for the
implicit helical confinement implemented an algorithm for calculation of the distance of a
point from the helix [61]. Despite the algorithm involving an iterative step, we experienced
that the simulations are very fast and stable for a wide range of settings tested in the
current and the previous work [36]. Within the simulations, we simulated DNA chains in
the channels with the radii of the channel corresponding to three confinement strengths
given in terms of the ratio of the channel diameter to the polymer’s persistence, D/P = 2i,
where i = −1, 0, and 1. The corresponding diameters of the channels in physical units
correspond to 10, 20, and 40 nm. These sizes of nanochannels are relevant to genomic
experiments [62] and are also achievable in the preparation of chiral membranes [50]. As
for the particular parameter settings, the radius of the helix was set to RH = 1/3 Rch, based
on our previous work, where the effects of the chiral confinement were the strongest in the
range of RH = 1/3 − 1

2 Rch [63]. In the case of the simulations of cylindrical channels, the
setting of RH was 0. The pitch was set to k = D/2π to allow for comparisons and discussion
of differences between simulations of chains pushed into open infinite channels and those
compressed in the blinded nanochannels of knot factories investigated recently [36]. Both
of the possible chiral scenarios were simulated with the handedness of the channels being
ω = −1 and 1. The polymer was inserted into the channel as a stretched chain with beads
placed along the major axis of symmetry of the channel corresponding to the x-axis, with
initial coordinates ri,x = I, where i = 1. . .N, and ri,y = ri,z = 0.

2.3. Push by External Force and MD Simulation

The push of the DNA chains was intermediated by a piston modeled by an addi-
tional bead with a very large radius, i.e., a radius of the piston RP >> Rch. The “piston
bead” moved along the main axis of symmetry of the channel corresponding to the x-
axis, while the movement in the y and z directions was constrained. The piston bead
also interacted with the chain only by the excluded volume interaction in the form, as
provided above, and with the setting of σP = 100 σ. We applied external force on the
piston bead with the range of values Fσ/ε0 = 0.1, 0.5, 1, 2, and 5. The region of interest for
these forces was chosen based on previous studies [24,25,36] while omitting the special
regime of very small forces in narrow channels. The pushing forces were transformed
to velocities of pushing after performing the simulations and computing the piston ve-
locity as the overall distance traveled by the piston over the period of simulation time,
v = dT/τsim. The pushing of the DNA inside the channel was carried out as in the recent
molecular simulation work by using Langevin dynamics [34]. We carried out Langevin
molecular dynamics simulations by solving Langevin equations of motion for each bead
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m
..
r = −∇U(r)− γm

.
r + R(t)

√
2ε0mγ + Fext, where each term in the equation represents

the force acting on the bead, ∇U(r) is given by the molecular potential, −γm
.
r represents

the friction, and R(t)
√

2ε0mγ is the random kicking force, where R(t) is a delta-correlated
stationary Gaussian process. The last term in the equation is the added external force and
applies only to the piston bead with Fextσ/ε0 = Fσ/ε0 = 0.1, 0.5, 1, 2, and 5. The Langevin
equation does not consider hydrodynamic interactions between monomers. For simula-
tions involving out-of-equilibrium systems, especially when intense interpenetrations and
interactions among polymer segments are present, a more suitable thermostat, such as
dissipative particle dynamics (DPD), is required. This is notably encountered in bulk poly-
mer brushes [64]. However, results from the Langevin dynamics and DPD converge when
simulating systems with a low extent of monomer interactions, typically at concentrations
below the collective regime [65]. For instance, recent work employed Langevin dynamics
to simulate the pushing of DNA inside nanochannels [34]. This choice was justified by
the fact that the chain conformations reside in the transition region between the Odijk and
deGennes regimes where the hydrodynamic interactions are effectively screened and the
collective regime does not apply [66].

The equations of motion were integrated with the step size ∆τ = 0.010. The optimal
size of the integration step ∆τ was determined through previous simulations [36,63]. It is
small enough to maintain the stability of the equations of motion during integration, while
also maximizing the performance of computer simulations and the usage of computer
time. The coarse-grained time is transformed to τ = 6πησ3/ε physical units [56], where
η is the viscosity of media. After the chains were inserted into the channel with the
initial coordinates ri,x = i, where i = 1. . .N, and ri,y = ri,z = 0, we performed an initial pre-
equilibration run with 107 iterative steps. Afterwards, the main simulation started with
10 repeated runs for each parameter setting performing 109 integrations, while we were
also collecting data for analyses of polymer metrics, monomer distributions in the channels,
and topological analyses of polymer knottedness.

3. Results and Discussion
3.1. General Polymer Metrics

First of all, we characterized the simulated systems by evaluating basic polymer met-
rics. Polymer metrics provide first and important information about polymer conformation,
its size, and polymer behavior in the presence of confinement and compressive forces,
realized here by a pushing force mediated by a piston or gasket. Polymer metrics also allow
the bridging of gaps in standing theoretical understanding and gaining of insights into
how the confinement and presence of external forces alter the behavior of the polymer.

Based on our previous experience from our previous study [36] and also in con-
text of existing works relevant to studying polymers under compression in nanochan-
nels [24,25,30], we chose to evaluate the polymer metrics in terms of polymer chain span,
although the polymer metrics in terms of end-to-end distance and gyration radius are
provided in Figure S1. Given a certain configuration, the span is calculated as the distance
separating the two farthest beads of the chain.

The span is calculated as the maximum distance between two monomers, represented
by coarse-grained beads, that can be found on the chain. The distances are calculated by
using position vectors of the beads. When computing the span, one can use all Cartesian
coordinates or compute the span only using the coordinate along the major axis of inertia of
the channel. We decided on the latter case, since it diminishes chain size effects. The span is
defined as S(x) = max|ri,x, rj,x|, where i 6= j and i ε 1. . .N. The computed span is shown in
Figure 1. In Figure 1, we not only show and compare span as obtained on polymerspushed
inside the open infinite channels with helical and cylindrical geometry, but we took also
advantage of having studied the case of polymers compressed by a gasket in blinded
channels with an impenetrable wall at their bottom, corresponding to the experimental
setting of knot factories [36].
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to its final position at the end of the simulation over the simulation time τ, v = 
|rP(0),rP(τ)|/τ. The values of the velocities, the polymer spans, and other data evaluated 
later in the work were averaged over ten simulated trajectories. The obtained velocities 
are shown in the inset graph as a function of applied external force. The velocities v range 
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Figure 1. Polymer metrics in terms of the molecule’s span during pushing of DNA molecule inside
channels as a function of pushing speed and confinement strength expressed as D/P. (a) The panel
compares the polymer span in units of σ/` pushed with different velocities of the piston v in units of
1000 σ/τ. The black lines indicate the span of a polymer pushed in helical channels, and red lines
correspond to the simulations in a cylindrical channel. The areas in shades of purple show differences
with the respective cases and a given confinement strength. The inset shows the velocities of the piston
obtained for the external force employed on the piston. (b) The panel shows the span of polymer
pushed in open infinite helical channels and compares the data with a previously investigated case of
a polymer compressed in a blinded channel [36]. (c) The panel shows a comparison of the polymer’s
span in open infinite channels versus blinded channels with cylindrical geometry and as a function
of force in the units of Fσ/ε0 and confinement strength expressed in terms of D/P. The insets show
rendered snapshots obtained for D/P = 0.5 and F = 5ε0/σ, where the polymer is shown in a rainbow
color scheme, with one end of the polymer shown in blue and the other in red.

Figure 1a shows the dependence of the polymer’s span, as obtained in channels in
helical and cylindrical geometries, for three confinement strengths expressed in terms
of the ratio of the diameter of the channel to polymer persistence length, D/P = 0.5, 1,
and 2. The values of the span are shown as black lines for helical channels and red lines for
cylindrical channels, as also illustrated by inset snapshots from the simulations. The filled
area indicates differences of span obtained for a given setting confinement strength D/P
and between the two investigated geometries of the channels.

The span is shown as a function of velocity of the piston pushing the polymer along
the infinite channels. The push by the piston is realized by applying an external force to the
piston. Hence, the velocity of the piston was obtained from the simulated trajectories as a
total distance traveled by the center of the piston from the beginning of the simulation to its
final position at the end of the simulation over the simulation time τ, v = |rP(0),rP(τ)|/τ.
The values of the velocities, the polymer spans, and other data evaluated later in the
work were averaged over ten simulated trajectories. The obtained velocities are shown
in the inset graph as a function of applied external force. The velocities v range from
1.2 × 10−4–6.6 × 10−3 σ/τ, while the physical dimensions of the units are [σ] = 2.5 nm and
[τ] = 74 ns × (η/η0) ns [56], where η0 is the viscosity of pure water, η0 = 1 cP, and η is the
viscosity of the actual buffer used in the nanofluidic experiment. The buffers in nanofluidic
applications often consist of a solution containing polymers, saccharose, agarose, etc., to
increase the hydrodynamic drag of the media on the molecule [41,42], while viscosity can
be increased to 10–80 cP [67]. The correction for the viscosity gives some space for variation
to transformed value of the physical time units; nonetheless, the values of experimental
velocities of pushing, in the order of µm/s, are accessible.

We would like to note that we opted for realizing the push intermediated by an
applied external force instead of directly moving the piston by a constant distance at a
time, as simulated in some existing works [34]. This allowed us to directly compare the
metrics of the polymer pushed in open infinite channels to the previously obtained results
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on polymers compressed by the external forces inside channels that were blinded by an
impenetrable wall [36].

The comparison of polymer metrics pushed in helical and cylindrical geometries on
Figure 1a shows that there is a significant difference between the chain span observed
in very narrow channels, with D/P = 0.5. The difference seems to be higher than in the
compression in channels with an impenetrable wall. The difference in polymer span also
seems to disappear at weak confinement strengths in terms of D/P, especially if strong
compressive forces are applied.

In Figure 1b,c, we show the computed polymer spans as obtained in channels with
helical and cylindrical geometry. Figure 1b compares the case of polymers pushed inside
infinite open channels to the case of polymers compressed in channels with an impenetrable
wall and helical geometry. Figure 1c, on the other hand, compares the pushing versus
compression in channels with cylindrical geometry. The data for the current simulations
are shown as black lines, and they are compared to the simulations in blinded channels
shown as red lines. The insets show the simulation settings by snapshots taken from the
simulations augmented by hatching schematics.

The comparison of the computed span shows, in general, smaller compaction of the
polymer when compressed by pushing inside the open channels than in the case when the
polymer is compressed against the impenetrable wall in the nanochannels. We understand
the obtained results as follows. Given the form of the equations of motions in the Langevin
dynamics, provided in the Methodology section (Section 2.3), the hydrodynamic drag
force, represented by −γm

.
r in the Langevin equation, opposes the motion of the particle,

leading to a damping effect. The strength of this damping is determined by the value
of γ. As the external force acting on the particle increases, the hydrodynamic drag force
remains proportional to the velocity of the particle (−γm

.
r). The linear relationship between

hydrodynamic drag and external force is confirmed by the computed velocities as a function
of external forces, shown as inset in Figure 1a. When applying compressive force to a
polymer confined in an open channel, some of the compressive energy is dissipated by the
movement of the chain through the media. As the force-to-displacement ratio still follows
the established relationship—F·D ∝ S−9/4 (with F corresponding to force, D is the diameter
of the channels, and S is the span) [30], this means that opening the channels acts like
compressing the polymer with smaller force.

We also showed in the previous work that the helical confinement in narrow channels
acted to a certain extent like cylindrical channels with a smaller diameter, i.e., channels with
higher confinement strength. The conformation of the DNA molecule is determined by a
balance of several ongoing forces: the confinement force, elastic force, and hydrodynamic
force intermediated by the pushing force [38]. This is a complex relation, where we
cannot directly compare the obtained data to a predictive model, but we may bridge the
theoretical understanding with our computer experiments. In Figure 1b,c, the computed
polymer metrics in terms of polymer span show not only that there are differences between
compression in open infinite channels and compression in the nanochannels against an
impenetrable wall, but the extent of the differences in DNA compaction is significantly
influenced by the geometry of the channels.

As investigated in the existing studies, the compaction of the polymer under external
forces is relevant and related to conformational changes [24,25,36], and it is important for
devising a control mechanism for the topological state of the polymer for nanotechnological
applications [28,34,36,43]. The data also indicate that compression by pushing the poly-
mer into open channels, as compared to the case of compressing the polymer against an
impenetrable wall inside finite nanochannels, is much less effective, especially in the case
of the helical nanochannels, which will lead to lower degree of knotting, at least at the
current setting of the helical geometry in terms of the pitch of the channels. In addition to
the data in Figure 1b,c, it is noteworthy that at strong confinement forces in terms of D/P
and small compressive forces, the existence of a special regime was discovered, forming
a shoulder on the dependencies of the span versus compressive forces [24,25], that was
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not properly captured, as we did not probe the region in detail by applying a range of
sufficiently small compressive forces. The reason is that there are only minor topological
differences throughout this region, with the polymer being mostly unknotted; hence, the
region is not in the focus of this work.

3.2. The Monomer Distributions upon Pushing

The polymer metrics provide one-dimensional information on the polymer behavior
and the effects of confinement and compressive force. Another convenient property that
is directly accessible from computer molecular simulations to represent the situation of a
dynamically moving polymer molecule is distributions of monomers. Here, we analyze
the radial and axial distributions of monomers across the major axes of inertia of the
confining channels.

Figure 2 is a composite figure that shows the situation of the polymer’s monomers
within the channel, providing complementary information to the polymer metrics evaluated
in the previous Section 3.1. We believe the figure, as presented, provides advantageous
insight for readers when convening to a concise explanation of the figure. Figure 2 is divided
into six panels. Each panel shows the heatmaps of the monomer distributions inside the
nanochannel at the very left side of the panel. The heatmaps present valuable pictures
of the overall distribution of monomers. Since the monomers travel through the channel,
sometimes to very long distances, during pushing, we modified the method of calculating
the heatmaps employed in earlier works [36]. The heatmaps show concentrations of
monomers through the periodized distance of one helical turn, dH = 2πkσ, where k = D/2π
in helical channels, and dH simply equals D. There are five heatmaps corresponding to
five settings of the external force, from the bottom up following the increasing velocity of
pushing, as shown in the inset of Figure 1a.

The heatmaps indicate expulsion of monomers into the lateral sides of the channel
with an increasing velocity of pushing. This effect is numerically captured in the graphs
showing radial distribution functions that are displayed adjacent to the heatmaps in each
of the panels. The radial distributions show a similar shape to those already obtained
for cylindrical [36,68] and square channels [69], with a maximum of the number density
of monomers in the middle of the channels. As the velocity of pushing increases, the
radial distribution functions flatten, and the distributions show a drop in the monomer
concentration in the center of the channel. The direction of the concentration drop with
increasing velocity of pushing is indicated by a downwards arrow in the part of the
distribution corresponding to the center of the channel. At the same time, the monomers
are pushed and redistributed towards the lateral sides with increasing velocity of pushing.
The increasing number concentration, expressed as a normalized frequency of occurrence,
at the lateral sides of the channel in the direction of increasing velocity of pushing is
indicated by an upwards arrow.

To the right of the radial distributions on each panel, we also show the axial distribution
of monomers along the main axis of inertia of the channels. These distributions show the
number density or concentration of monomers from the position of the piston. In the
axial distributions, the position of the piston is always at the origin. The values on the
x-axis also reflect the direction of push in the simulations, which went from right to left in
Cartesian coordinates. The shape of the concentration profiles is very similar to what is
observed experimentally in the dynamic nonequilibrium segmental concentration profile of
a single nanochannel-confined DNA molecule [42,43]. In our case, the profiles correspond
to equilibrium profiles obtained for different velocities of pushing. The axial distribution
shows an evolution with an emerging peak in the number density of monomers near the
surface of the piston. The maximum of the distribution increases with increasing velocity
of pushing. At the same time, the distribution or occupancy of the channel along the
major axis of inertia in the direction of pushing becomes narrower. This narrow region
can be associated with a conformational transition with increased spooling [34,35,70],
identified earlier to occur under large compressive forces. The insets in the graphs with
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axial distribution of monomers also show positioning of monomers along the channel in
terms of their bead index as a function of their coordinates along the main axis of inertia
(x-coordinate). This kind of projection was used in some existing works studying polymers
in nanochannels by other authors [34,35]. The insets show the positionings for two limiting
cases of the velocity settings used in the current simulations, i.e., Fσ/ε0 = 0.1 and 5. Each
panel also shows a representative snapshot from the simulation showing polymer in the
channel with a particular geometry obtained at the end of the simulation for the setting of
Fσ/ε0 = 1.
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Figure 2. Monomer distributions of DNA polymer pushed inside channels with cylindrical and helical
geometry. The panels show the distributions obtained in cylindrical (a–c) and helical channels (d–f).
The distributions are also shown for different confinement strengths in terms of the D/P ratio, equal
to 0.5 (a,d); D/P = 1 (b,e); and D/P = 2 in panels (c,f). The very left of each panel shows heatmaps of
the monomer distributions with a color gradient ranging from blue to red, where the distribution’s
peak is indicated by red and zero occurrences are denoted by blue. The left graph in every panel
shows monomer distribution along the channel from the position (in units of σ/`) of the piston as
a function of piston velocity, taking into regard also direction of pushing in the simulations. The
insets of this graph also show index-to-bead projections of axial monomer distributions obtained for
F = 0.1ε0/σ and F = 5ε0/σ. The graphs to the right in the pair in every panel show radial distribution
functions of monomers from the geometric center of the channel in units of σ/`, in simulations
represented by the x = 0 axis. The arrows indicate the direction of increasing or decreasing velocity.
Each panel also shows a snapshot obtained for the particular geometry of the channel, confinement
strength D/P, and force = 1 ε0/σ. The polymer is depicted in rainbow coloring, with the first bead in
blue and the last bead in the chain in red.
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Figure 2a–c show the distribution of monomers for cylindrical channels, and
Figure 2d–f show the information as obtained in the channels with helical geometry. The
rows show computed distributions for different settings of confinement strength, indicated
on the graphs as D/P = 0.5, 1, and 2. We can see that in the absolute numbers, a larger
maximum on the axial distribution near the position of the piston surface is achieved in
the case of cylindrical channels. Also, the observed flattening of the radial distributions is
more extensive in the case of cylindrical channels. This indicates that when pushing the
polymers inside open channels, the force is less effective in compressing the polymers, and
the monomers do not fully explore the helical grooves of the helical channels.

Consistently with the polymer metrics shown in Figure 1, the data indicate that the
extent of compaction is lower than that previously observed for finite channels with an
impenetrable wall [36]. The previous studies showed that the level of compaction with
higher compressive forces applied is directly related to the extent of knotting [28,34,43]. In
our previous simulations, we also saw that helical geometry by itself enhances knotting
as compared to simple cylindrical geometry. In the current simulations, the lower level of
compaction and lower effectiveness of compression with given forces in open channels
suggest that smaller levels of knotting will be expected, especially for very narrow channels
and strong confinement.

3.3. Knotting Probabilities and Topology

In this section, we evaluate the topological state of DNA polymers under compression
induced by pushing through open infinite channels. The knotting probability is evaluated
as the frequency of finding knots in ten runs along the trajectories that contain 5000 struc-
tures each for topological analyses. The occurrence of knots was evaluated by Knoto-ID
software [53] (v1.3.0), which uses Jones’s polynomial, allowing us to obtain information
on the handedness of the knots. The knotting probability analyses focused on obtaining
information on the complexity of knots in terms of the crossing numbers, knot groups eval-
uating presence of amphichiral knots, twist knots, torus knots, unknots, and unidentified
knots with a crossing number larger than 11. Finally, the analyses also investigated the
chirality of knots in terms of the occurrence of right-handed and left-handed knots.

Figure 3 presents and summarizes the findings about the topology of the polymers. The
first two columns compare the knotting probability as a function of the velocity of pushing
or compressive force. The arrows above the columns indicate the direction of the increasing
velocity of pushing. The frequencies of occurrence of knots with a given complexity
characterized by their crossing numbers are shown as stacked areas distinguished by colors
in a thermometer scale. The crossing numbers corresponding to particular colors at the
employed scale are indicated at the bottom. The thermometer scale goes through a spectrum
of colors from plain blue to plain red, where the plain blue corresponds to unknots and
the plain red areas show presence of very complex knots with a crossing number larger
than 11. The rows correspond to the particular setting of confinement strength, indicated in
terms of the D/P ratio.

The analysis shows that, in general, the probability of knotting increases with the
velocity of pushing. Also, it is shifted towards the occurrence of more complex knots with
increasing velocity of pushing. This observation is consistent with previous investigations
of knotting in DNA pushed through square channels [34] and also in studies of polymers
under compressive force in cylindrical [28,36] and helical channels [36]. The knotting
probability also depends on the diameter of the nanochannels. Here, the dependence
is similar to the situation of knots compressed in finite channels, where the knotting
probability is the largest in the channels with D/P = 1.

On the other hand, the distinctive feature of the pushing inside the infinite channels
seems to be apparent lower knotting probability in nanochannels with helical geometry as
compared to the cylindrical channels. As discussed in Section 3.1, when pushing inside
the infinite channels, the resulting compaction is determined by establishing a balance
between several forces, i.e., the confinement force, elastic force, and hydrodynamic force
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intermediated by the pushing force. The resulting difference in compaction observed by
means of molecular simulations between finite and infinite channels indicates that opening
the channels affects the compaction in channels with helical channels more than in the case
of cylindrical channels. For this reason, unlike the previous simulations in finite channels,
the helical channels do not enhance the knotting probability.

Polymers 2023, 15, x FOR PEER REVIEW 11 of 18 
 

 

by colors in a thermometer scale. The crossing numbers corresponding to particular colors 
at the employed scale are indicated at the bottom. The thermometer scale goes through a 
spectrum of colors from plain blue to plain red, where the plain blue corresponds to un-
knots and the plain red areas show presence of very complex knots with a crossing num-
ber larger than 11. The rows correspond to the particular setting of confinement strength, 
indicated in terms of the D/P ratio.  

  
Figure 3. Knotting probabilities. (a) The first two columns compare knotting probabilities in terms 
of crossing numbers, distinguished by a thermometer scale, obtained for DNA polymer pushed in-
side infinite open channels with cylindrical and helical geometries. The rows correspond to different 
confinement strength in terms of D/P. In the case of helical channels, the knot types are evaluated 
in terms of the frequencies of amphichiral (Am.), torus (Tor.), twist knots (Tw.), unknots (Un.), and 
undefined knots (“?”). The last column shows a comparison of equichiral and antichiral knots, i.e., 
the knots with the same handedness as or the opposite handedness to that of the chiral helical chan-
nel. (b) Average writhe of the DNA chains in helical channels as a function of increasing pushing 
velocities and strength of confinement in terms of the D/P ratio. The ω+ and ω− indicate handedness 
of the channels (see Section 2.2). The computed pushing velocities are shown in the inset of Figure 
1a. (c) A proposed mechanism for how the helical channels control handedness of compression–
confinement-induced knotting. 

The analysis shows that, in general, the probability of knotting increases with the 
velocity of pushing. Also, it is shifted towards the occurrence of more complex knots with 
increasing velocity of pushing. This observation is consistent with previous investigations 
of knotting in DNA pushed through square channels [34] and also in studies of polymers 
under compressive force in cylindrical [28,36] and helical channels [36]. The knotting 
probability also depends on the diameter of the nanochannels. Here, the dependence is 
similar to the situation of knots compressed in finite channels, where the knotting proba-
bility is the largest in the channels with D/P = 1.  

On the other hand, the distinctive feature of the pushing inside the infinite channels 
seems to be apparent lower knotting probability in nanochannels with helical geometry 

Figure 3. Knotting probabilities. (a) The first two columns compare knotting probabilities in terms of
crossing numbers, distinguished by a thermometer scale, obtained for DNA polymer pushed inside
infinite open channels with cylindrical and helical geometries. The rows correspond to different
confinement strength in terms of D/P. In the case of helical channels, the knot types are evaluated
in terms of the frequencies of amphichiral (Am.), torus (Tor.), twist knots (Tw.), unknots (Un.), and
undefined knots (“?”). The last column shows a comparison of equichiral and antichiral knots,
i.e., the knots with the same handedness as or the opposite handedness to that of the chiral helical
channel. (b) Average writhe of the DNA chains in helical channels as a function of increasing
pushing velocities and strength of confinement in terms of the D/P ratio. The ω+ and ω− indicate
handedness of the channels (see Section 2.2). The computed pushing velocities are shown in the
inset of Figure 1a. (c) A proposed mechanism for how the helical channels control handedness of
compression–confinement-induced knotting.

The decreased knotting probability in helical channels can, however, be due to the
specific geometric parameters of the helical channels determined by the pitch k = D/2π,
which determines the distance between helical loops or size of the helical turns, dH = 2πkσ.
It is important to note that the current setting of the pitch was chosen based on our previous
work where we investigated chiral effects in terms of mobility of localized knots with a
given chirality. It is probable that for the current experimental setting of the polymers
pushed inside the open channels, the pitch has to be fine-tuned, perhaps towards larger
values above the deflection length λ = (D2/P)1/3 [71], so that dH > 2πkσ for k fixed to
k = D/2π.

In order to gain insight into this behavior, we simulated DNA polymer pushed into a
helical channel with the size of helical loops well above persistence length, set to dH = 2 P,
and analyzed the knotting probability, as shown in Supplementary Information, Figure S2.
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Figure S2 surprisingly indicates significant compaction associated with high levels of
knotting even at strong confinement forces (D/P = 0.5) and very small compressive forces
(Fσ/ε0 = 0.1). Since detailed refinement and thorough exploration of the parameter settings
of the channels’ geometry are clearly beyond the scope and extent of a single work, we will
readdress it in future works, providing more information on polymer behavior for various
parameter settings of the helical channels, polymer chain length, and persistence lengths.

The midsection of Figure 3a for helical channels also shows knotting probabilities
for different knot groups, represented by amphichiral, torus, twist knots, unknots, and
complex knots above 11 crossings for which the notation is not included in the topological
software. It has to be noted that the populations are normalized again, but some of the
groups overlap, such as the trefoil knot, which is both the twist and torus knot, and the
4_1 knot, which is both the twist knot and the amphichiral knot. The population of the
amphichiral knots increases with the pushing velocity and the level of compaction under
the compressive force of pushing, which increases the complexity of entanglements.

Note that there are only 20 amphichiral knots out of 801 knots that can be constructed
from knotted lines up to 11 crossings [72]. The populations of twist knots seem to be
increasing in the case of strong and weak confinement forces, D/P = 0.5 and D/P = 2. This
might be related to the fact that for both of these settings, the knottedness is lower than in
the case of D/P = 1, and the amounts of existing twist and torus knot types as a function of
crossing number do not evolve equally; in other words, with increasing crossing number,
there are more twist knots than torus knots. For the cases outside intermediate confinement,
D/P = 0.5 and 2, we see an abundance of unknots. In the case of the strong confinement,
D/P = 0.5, the unknots can be related to lower degrees of compaction and prevailing effects
of confinement keeping the chain extended. In the case of weak confinement, D/P = 2,
chain length effects or timescale and velocity effects might be taking place. The polymer at
its given length is much more diluted; hence, on one hand, it leads to much more spooling,
but also it might have not enough time to explore the geometrical spaces of the larger
channels at the fixed rate of pushing. This may lead to the higher extent of writhing
indicated in Figure 3b, and perhaps much smaller forces/velocities of pushing should
be investigated in the case of weak confinement in the future to obtain a general picture
on polymer behavior in channels with geometric modulation. Such regimes of very slow
pushing in wide channel will require separate computer experiments, given the heavy
computational expenses inevitable for such a computer experiment.

3.4. Handedness of the Channels and Knots

We further investigate whether the effect of the handedness of the helical channels
on the knot chirality is preserved to some extent, and if channels with helical geometry
and given handedness can be used to control handedness of the knots that are created
during the pushing of the DNA through the channels. In the previous study [36], we
probed the chirality of the knots by computing writhe of the knotted part additionally to
the topological analyses by KymoKnot software (http://kymoknot.sissa.it/) [73].

In the current work, we directly use the information on the chirality of the knots
provided by Knoto-ID software [53]. However, the information had to be pretreated before
the data could be used to compute statistics of left-handed and right-handed knots. Knoto-
ID identifies the knot types by evaluating Jones’s polynomial and compares the identified
knots with the notation in Rolfsen’s table of knots [54]. If the knot has the opposite chiral
projection than shown in Rolfsen’s table, Knoto-ID identifies such knots as “mirror images”
and indicates the chirality by the letter “m” in the name of the knot type in the result.
Originally, Rolfsen’s table does not distinguish the knots based on their chirality, so knots
with positive and negative writhes are mixed. This situation motivated Vázquez et al.
to suggest the creation of a new biologically motivated knot table, where the aspect of
the knot’s handedness in terms of the prevailing knot’s writhe would be considered and
reflected [55]. In their work, the authors identified the knots with opposite chirality than
indicated in the Rolfsen’s table. We used this sorted information together with the knot

http://kymoknot.sissa.it/
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types detected by Knoto-ID software as Rolfsen’s analogues or their mirror images in order
to identify the left-handed and right-handed knots.

Moreover, mathematically, knots occur only on closed curves, and the algorithms
for finding knots often involve some kind of closure method that constructs a connection
between the free ends of the linear polymer chain. In order to eliminate the possible bias
coming from the closure method, we evaluated only the knots found in conformations
with an arbitrarily chosen very short end-to-end distance. It is noteworthy that although
we do not know how the end-to-end distance and the bias from the closure method are
related quantitatively, one intuitively expects that the number of entanglements introduced
by closing the arc grows with the distance spanned by the added closing segments [74]. If
we consider, for simplicity, a case where the end-to-end distance is equal to the size of the
bond length ` = 1 σ, there would be no need to construct a closure.

Furthermore, evaluating knots at short end-to-end distances can be of practical rele-
vance, as the knots could be chemically embedded in the polymer by closing the polymer
ring chemically. The distance was set to 10 σ based on the average variation of the end-to-
end distance found in consecutive frames in simulated trajectories, and we consider it a
ligation distance. After computing numbers of right-handed and left-handed knots, we
evaluated their statistics, which are summarized in the last column of Figure 3. Here, the
knots with the same handedness as the handedness of the helical channel are summed
up as the number of equichiral knots. In the opposite case, the knots with the opposite
handedness to that of the channels are summed up as antichiral ones. The graphs in the
last column of Figure 3 show the ratio of the populations of the equichiral and antichiral
knots. The graphs indicate that even in the regime of DNA compression by pushing inside
the nanochannels, the ability of helical channels to give rise to equichiral knots is preserved,
as we observed in the case of compression knot factories with finite nanochannels. It
should be noted that in the new rigorous table by Vázquez et al. [55], chirality of knots
was determined only up to nine crossings, which we used in our analyses and the plots in
Figure 3 (others were not included); hence, the resolution of the chiral channels can be even
higher but it is beyond current knowledge and is a subject for future investigation.

3.5. On the Mechanism of How Geometry of the Channels Induces Handedness of Knots

In addition to the information on knotting statistics, computer simulations can also
help understand the mechanisms by which knotting occurs [28,75]. In the following, we
propose a mechanism for how the chirality of the channels may control the chirality of
knots and entanglements created on a DNA chain exposed to compression by being pushed
inside the nanochannels.

An earlier work investigated this by inspecting positions of emerging knots along
the polymer chains [28], and found that the knots were created mainly by backfolding
and threading of polymer ends through the loops. Another work also suggested that the
knotting mechanism may involve maintaining contacts of the DNA polymer at specific
sites, as found on ribosomal surfaces [75,76]. We believe that the process of knotting in
chiral channels involves both compression-induced backfolding and threading, as well as
the direction of writhing induced in polymer chains that are in contact with the walls of the
chiral channels, aligning the polymer with the winding direction of the helical channels.

The occurrence of backfolding is evident from the evolution of the polymer metrics in
terms of the chain span, investigated in Section 3.1 and shown in Figure 1. It is also evident
in the index-position projections of the monomer distributions, which we investigated
in Section 3.2, and that show multiply folded conformations in Figure 2. A multiply
folded chain creates loops that preferably turn and twist in the direction controlled by
the handedness of the curvature of the chiral channels. This preference in twisting and
folding in the direction of the winding of the helical channels is demonstrated by the
average value of the writhe whose sign matches the writhe of the channel (Figure 3b). The
channel-induced writhe was investigated in the previous work and we show the average
writhe computed by evaluating Gauss integral [77] in Figure 3b. Twisting of the loops is
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also indispensable for creating knots by threading, as illustrated by the drawing in Figure 3c
and demonstrated using a physical analog model (Figure S3) for which we used rubber
tubes and 3D printed models.

Additionally, we show the evolution of the writhe throughout the simulations in
Figure S4. The graphs in Figure S4 indicate that the writhe evolution begins with an abrupt
change upon initiation of pushing, sometimes with a arbitrary direction of writhing as the
pushing forces come into play. The average value and sign of the writhe further evolve, so
that the sign aligns with the chirality of the channels. In the case of cylindrical channels,
the sign tends to approach zero after a sufficiently long pushing inside the channels. These
evolutions indicate that the handedness of knots is not inherited from a arbitrary initial
structure after a long equilibration run, and that the process of controlling handedness
benefits from a longer period of pushing inside the channels. Hence, the overall writhe of
the chiral spaces plays a pivotal role in determining the chirality of the knots and influences
their bias toward a particular chiral form.

4. Conclusions

By means of coarse-grained molecular dynamics simulations, we studied the behav-
ior of polymers in terms of polymer metrics, monomer distributions and topology of
the polymer chain pushed inside infinite nanochannels with both cylindrical and helical
geometries, using a DNA biopolymer model system. The simulations showed that the
polymer undergoes a compaction upon increasing pushing velocity that could be used for
controlling knottedness.

When compared to simulations of polymers compressed in finite channels, distinct
features emerge. Primarily, the geometry of the channels exerts varying effects on the
extent of polymer chain compaction. Consequently, when the polymer is pushed inside
open channels, it forms fewer knots compared to when it is compacted by compression
within finite channels against an impenetrable wall. The confined environment of the open
channels limits the polymer’s ability to explore helical loops of the chiral nanochannels,
but it still generates equichiral knots and equichiral writhe. The lower degree of knotting
observed in helical loops during the pushing inside helical channels may seem inconsistent
with Ralf Metzler’s argument regarding enhanced knotting resulting from irregularities in
nanochannels [78]. However, it is essential to note that the argument did not specify the
spacing between these irregularities, whereas in our case, the irregularities are represented
by the helical loops. Therefore, we posit that if the spacing between these irregularities is
smaller than the DNA’s persistence length, their effects become translated into the increased
confinement strength, which counteracts polymer folding.

Our findings also prompted additional simulations involving variations in the pitch
of the channels and the radius of the helix. Some of these simulations were included in the
discussion of the results and provided as Supplementary Information. They unveiled un-
precedented backfolding and facilitated control over chirality, setting the stage for further
investigation. The simulations demonstrate the feasibility of controlling polymer chirality
by pushing them inside helical nanochannels, a feat achievable in experimental settings.
This control over chirality can be fine-tuned by adjusting channel geometry, such as the
pitch, the pushing regime (velocity, duration), channel length, and chain length. The last as-
pect, exploring chain lengths, remains a significant focus, especially in the context of wider
channels. For a more comprehensive examination of knot spectra, simulation schemes em-
ploying Monte Carlo simulations, as developed in existing works, would be more suitable
than molecular dynamics simulations. This approach allows for efficient conformational
sampling at lower ligating distances, without generating correlated conformations, and
minimizing bias induced by the closure method. Investigating knots at the ligating distance
holds importance for potential applications such as chemical synthesis and embedding
knots onto the polymer chain through methods like photoinitiated polymerization or click
chemistry [79,80].
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Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/polym15204185/s1, Figure S1: Polymer metrics as a func-
tion of pushing force in confinements with different strengths; Figure S2: The monomer distributions
and knotting probabilities in helical channel with the pitch of the channel set to 2 P; Figure S3:
Physical analogue model is used as a demonstrator of how the helical channels induce handedness to
knots; Figure S4: Evolution of writhe with the simulation time.
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