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Abstract

In the present work we study, by means of numerical simulations, the structural and dynam-

ical behaviour of a suspension of active ring polymers in bulk and under lateral confinement.

At high activity, when changing the distance between the confining planes and the polymers’

density, we identify the emergence of a self-organised dynamical state, characterised by the

coexistence of slowly diffusing clusters of rotating disks and faster rings moving in between

them. We further assess that self-organisation is robust in a range of polymer sizes and we

identify a critical value of the activity, necessary to trigger cluster formation. This system

has distinctive features resembling at the same time polymers, liquid crystals and active sys-

tems, where the interplay between activity, topology and confinement leads to a spontaneous

segregation in an initially one-component solution.
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1 Introduction

In the last few years, the study of active filaments and active polymers has attracted significant in-

terest in the active matter community.1 Active filaments are ubiquitous in Nature, ranging from the

intra-cellular2–4 to the extra-cellular5–7 domains, encompassing unicellular8–10 as well as com-

plex multi-cellular11–14 organisms. Active filaments are out-of-equilibrium due to the action of

their fuel-consuming active units. Recently, artificial systems have been proposed,15,16 harbouring

promising technological applications.

It is well known that the structure of passive polymer fluids is influenced by many factors. Two

of them that are often of key importance, especially in biophysics, are topology and confine-

ment. Topology appears in multiple contexts ranging from DNA supercoiling,17 to entangle-

ments,18 cyclisation19 or supra-molecular linked materials.20 Confinement is pivotal for polymers

and biopolymers’ organization, as well as for the development of intra-cellular active structures.21

Notably, topology and confinement can give rise to unique structures, exemplified in the Kineto-

plast DNA (or KDNA).22,23

On the active side, topology has not been given the same attention when dealing with suspensions

of active filaments. While active ring models have been studied in very dilute24–27 and in very

dense28,29 conditions, not much is known in between. Further, entanglements between active fil-

aments may be relevant in the case of phase separation within a bulk suspension of worms12,14;

yet, a only few modelling and theoretical works have been done so far.30–32 Confinement has also

been shown to play a key role in suspension of active particles. Active matter systems under con-

finement, such as micro-swimmers in narrow/corrugated channels,33 bacteria moving through an

asymmetric ratchet34–37 or in soil38,39 and epithelial layers,40,41 have shown to exhibit a wealth

of non-trivial properties.42 In the case of active filaments, confinement has been employed to un-

ravel features of chromatin dynamics.3,4,43 However, with the exceptions of studies on very short

polymer chains,44,45 understanding the behaviour of active filaments under confinement is still far

from complete.

For the above mentioned reasons, our goal is to study, numerically, the interplay between ac-
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tivity, topology and confinement in a suspension of active ring polymers. In the last few years,

different models have been proposed to describe bulk suspensions of active rings;24–26,28 all mod-

els present an interesting and unique phenomenology. For our study, following Ref.,27,46 we design

activity as a polar (or tangential) force acting on each monomer (within the polymer). This active

polymer model arguably displays the richest configurational and dynamical scenario at the single

chain level.27 When dealing with polar active polymers, non-equilibrium phenomena arise due to

the interplay between activity and the local chain conformation. We foresee that the presence of

several rings in the suspension and of a steric confinement will introduce further interplay, enrich-

ing the dynamical scenario.

By means of numerical simulations, we find that, under given conditions, the system displays

a self-organised state, characterised by two populations of rings: clusters of slow active rings

surrounded by a suspension of fast active rings. We demonstrate that this organisation appears at

intermediate values of the monomer density and persist for several values of the separation between

confining walls as well as in bulk conditions. Further, we show that ring size is a limiting factor:

rings cannot be too long, otherwise collapse is inevitable, yet self-organisation is surprisingly lost

if rings are too small. Finally, we show that self-organised clustering triggers rather abruptly at

some value of activity.

The paper is structured as follows: in Section 2, we report the numerical model, the simulation

details and the analysis tools. The results of the analysis are reported in Section 3. First, for

rings of fixed size and high activity, we show in Section 3.1 how metric properties, such as the

gyration radius and the prolateness of individual rings, i.e. their size and shape, averaged over the

whole system, detect an heterogeneity at finite density. Next, we characterise the rings’ clusters

in Section 3.2, both in confinement and in bulk. Further, in Section 3.3, we use this information

to demonstrate that, in the self-organised states, we distinguish two "populations" with different

structural and dynamical properties: rings in clusters being larger and less mobile then outsiders.

Finally, we discuss the effect of both ring length and activity: as mentioned, we demonstrate that

self-organisation is robust in a window of values of the ring length and that it appears at a critical
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value of the activity.

2 Model and Methods

Numerical model

Active polymer rings are modelled in a coarse-grained fashion, employing the well known bead-

spring Kremer-Grest model.47 Each polymer consists of N bonded active monomers. Monomers

interact with each others via a repulsice WCA potential48

UWCA =


4ε

[
(σ/r)12 − (σ/r)6 + 1

4

]
, r < 21/6σ

0, else
(1)

where σ is the momoners’ diameter, ε the unit energy. We set ε = 50kBT , kB being the Boltzmann

factor and T the absolute temperature.

Moreover, neighbouring monomers along the ring are held together by a FENE potential

UFENE =


−0.5KR2

0 ln
[
1− (r/R0)

2
]
, r ≤ R0

∞, else
(2)

where we set K =30ε/σ2=1500kBT/σ2 and R0 = 1.5σ , being the latter each monomer diame-

ter. This choice of parameters allows to avoid strand crossings, which would modify the unknot

topology; particular care has to be taken in this respect.27

We introduce the polymer’s activity in the form of a tangential self-propulsion force along the

ring backbone. The active force Fa
i with constant magnitude Fa acts on each monomer i: the force

is directed along the vector ri+i − ri−i, parallel to the polymer backbone tangent.46,49 Activity is

quantified via the adimensional Péclet number, which measures the activity’s strength in relation

4



to the thermal noise, defined as

Pe = Faσ/kBT (3)

where Fa is the modulus of the active force.

Simulation details

We study suspensions of unlinked and unknotted active ring polymers in bulk and confined be-

tween two parallel planes. A suspension consists of M = 500− 2000 rings, each formed by a

number of monomers N ranging from 32 up to 88; unless specified otherwise, we will focus on a

specific ring size N =76. The rings obey to a Langevin Dynamics, simulated by means of the open

source package LAMMPS,50 with in-house modifications to implement the tangential activity. We

integrate the equations of motion using the Velocity Verlet algorithm. Throughout the work, we

consider a unitary mass; we further set σ and the thermal energy kBT as the units of length and

energy, respectively, so that the characteristic simulation time τ is unitary. The friction coefficient

γ is set to 1τ−1. We choose time step ∆t = 10−4τ to prevent strand crossings.

We simulate suspensions of rings in bulk or under lateral confinement. In the former case, we

employ periodic boundary conditions along the three directions. In the latter case, confinement is

provided by two perfectly smooth, infinite planes, placed at a distance h and orthogonal to the z

direction: the interaction between the flat walls and the monomers is purely repulsive, i.e. WCA-

like, with σw = σ and εw = kBT . We consider suspensions characterised by different monomer

densities ρ = M ·N/V , where V is the volume of the simulation box. In particular we consider

ρ =0.05, 0.1, 0.2, 0.3, 0.4, 0.5, spanning from the dilute to the semi-dilute regime. In the confined

case, we consider several values of the separation between confining plates, ranging from a tight

confinement to the bulk case (h/σ = ∞): h/σ =3, 6, 9, 15, 21, 30.

The initial configurations are taken from well equilibrated suspension of unknotted, unlinked

passive rings. Turning on the activity, we first perform equilibration runs 1) making sure (using

Kymoknot51) that chain crossing does not occur at any time of the simulation and 2) computing
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the linking number between any pair of neighbouring rings. After reaching the steady state, we

perform production runs of (on average) 3−5 ·105τ , corresponding to 3−5 ·109 time steps. For

analysis purposes, snapshots of the systems are taken every τs = 103τ or 107 time steps. For any

given set of parameters, a single independent realisation of the system has been considered.

In order to choose the amount of activity the rings should experience, we take into account the

fact that isolated short active rings in bulk are expected to undergo a swelling transition at suffi-

ciently large Pe. This transition, in dilute conditions, is relatively sharp and the ring conformation

is not affected by activity at low Pe. Thus, a suspension of active ring polymers significantly de-

viates from its passive counterpart only at high values of activity.27 Thus, based on the previous

study in dilute conditions, we set the limit of large activity at Pe=10. Moving to even larger values

of the activity would require to set an even smaller time step, which would make the simulations

extremely demanding. However, as mentioned, we explore the role of activity on self-organisation

for two ring sizes.

Structural and dynamical analysis

In what follows, we are going to describe the tools we have used to characterise both structural and

dynamical features of the suspension of active ring polymers in confinement and in bulk.

Structural properties of individual rings

To characterise the structural features of each polymer ring, we compute properties such as their

gyration tensor, gyration radius and prolateness. The gyration tensor is defined as

Gαβ =
1
N

N

∑
i=1

(ri,α − rcm,α)
(
ri,β − rcm,β

)
(4)

where the indices α and β run over the three Cartesian coordinates (x,y,z) of the N monomers

of each ring, whose center of mass is rcm = 1
N ∑

N
i=1 ri. The gyration radius of the rings can be
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computed as

Rg =
√

λ1 +λ2 +λ3 (5)

where λ1,λ2,λ3 are the three eigenvalues of the gyration tensor. The shape of the rings is charac-

terised computing the prolateness S, defined as

S =

〈
(3λ1 − I)(3λ2 − I)(3λ3 − I)

I3

〉
(6)

where I = λ1 +λ2 +λ3. Depending on the values of S, the polymers’ shape can be oblate (disk-

like) or prolate (cigar-like): the shape is oblate if S < 0, isotropic (spherical) if S ≈ 0 or prolate for

S > 0.

Characterising active rings aggregation: clustering algorithm

In order to identify and highlight the self-organised structures that emerge in the polymer suspen-

sion, we perform a cluster analysis. First we compute the centre of mass (CM) of each polymer

ring. We then perform a cluster analysis using the DBSCAN algorithm,52 implemented in the

Python library scikit-learn,53 pre-computing the matrix of the mutual distances in order to cor-

rectly account for the periodic boundary conditions. This method allows us to detect clusters of

different size, shape and polymer rings not belonging to any cluster (that we will name "outsiders").

Arbitrarily neglecting small clusters, we set the minimal number of elements in a cluster to be 5,

and the cut-off distance dcut , after performing several tests on all systems, to dcut = 4σ Since we

are considering only the centre of mass of the polymer, we double check the results of the cluster

analysis, assessing the identification of the clusters by visual inspection. Indeed, when cut-off val-

ues dcut > 4 are employed, visibly distinguishable clusters started to merge while outsiders were

classified as part of a cluster. Overall this classification resulted less precise. (see Supporting

Information Sec.1 for more details on the parameter choice for the cluster analysis).

From the cluster analysis, we compute the average number of cluster Nc and the mean cluster

fraction X , defined by the number of rings that form clusters divided by total number of rings. Both
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quantities are averaged over time, when the system reached steady state.

Dynamical properties

The behaviour of the self-organised clusters has been highlighted analysing the clusters’ dynamics.

We focus on the clusters’ "short" time behaviour, computing the absolute value of the displacement

of the centre of mass of individual polymers in an interval τs = 1000τ

∆r = |rcm(t + τs)− rcm(t)| (7)

which corresponds to the sampling interval, reported in Section 2. Next, we evaluate the distribu-

tion of the displacements, distinguishing between rings that were, in both frames, part of a cluster

from rings identified as outsiders. We choose this observable for two reasons. First, while clusters

appear to be very long-lived, the individual rings can leave their cluster in the interval τs and, pos-

sibly, join other clusters. Further, clusters can merge in between frames. While it is possible, in

principle, to keep track of the clusters in time, most rings join or leave a cluster. Thus, the statistics

of long time displacements is rather poor. Second, this quantity is already sufficient to highlight

the qualitative difference between rings belonging to clusters and outsiders.

3 Results and Discussion

3.1 Structural features of active ring polymers in bulk and confinement

We first evaluate structural properties such as the gyration radius and the prolateness, averaged

over all rings and over time (in steady state). In Figure 1 we report both quantities for different

values of confinement h/σ (y axis) and for suspensions at different densities (x axis). Each value

of (h/σ ,ρ) corresponds to a simulation of a suspension of active ring polymers, each with N=76

monomers.

As shown in Figure 1, we observe the emergence of different behaviours. In panel a, upon
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Figure 1: Colour plots of a) Mean gyration radius and b) mean prolateness for systems of active
rings as a function of density ρ and lateral confinement h/σ . Each square corresponds to a sim-
ulation of a system of M =500 active ring polymers, each composed of N =76 monomers. The
striped squares highlight results obtained simulating systems of M =2000 rings.

increasing the density and, similarly, upon increasing the separation between the confining planes,

rings appear to shrink, i.e. the average gyration radius diminishes. In panel b, upon increasing

ρ rings vary their shape from roughly spherical to prolate. However, upon increasing h/σ , S

diminishes i.e. the rings’ shape becomes more spherical. We underline that for two values of

(h/σ ,ρ) ( ρ =0.1, 0.2, h/σ =30) finite size effects were detected (striped squares in Figure 1).

Thus, we had to perform additional runs with M =2000 rings.

The behaviours described in Figure 1 are qualitatively different from what is expected in sus-

pensions of passive rings, and reflect the out-of-equilibrium nature of active polymer rings. In

particular, passive rings would be expected to become more oblate, rather than prolate, when sub-

ject to very tight confinement, at least at sufficiently small density.54 However, investigating the

distributions of Rg and S across the range of densities, reported in Figure 2, we found that their

average values, in most cases, were not representative of the ring population.

As shown in the top panels of Fig. 2), the peak of the Rg distribution is displaced, upon increas-

ing the density, to lower values. This explains the average decrease observed in Fig.1. However,

the distribution always spans the same, broad, interval of values. Remarkably, the distributions for
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Figure 2: Distribution of Rg (top) and S (bottom) for density ρ = 0.05 (panels a,d), ρ =0.3 (panels
b,e), ρ =0.5 (panels c,f) and several values of h/σ (as shown in the legend). The h values in the
legend are in units of σ . The bulk system is reported as h/σ = ∞.

ρ =0.3 (panel b) are almost flat: a feature that is, in part, preserved at ρ =0.5 for the most confined

cases (panel c). This implies that extreme conformations, compact or extended, are always present.

Thus, the decrease of Rg observed in this work differs from the isolated case of either active linear

or ring chains.27,46

As shown in the bottom panels of Fig. 2), the fact that rings appear spherical at low density

emerges as the average of a very asymmetric distribution, presenting a peak at negative values of

S and a fat tail extending to extreme prolateness values (panel d). Upon increasing the density

(panel e), the peak of the distribution of S shifts towards S =0, i.e. the most probable conforma-

tion becomes quite spherical. However, the distribution maintains a long tail, which leads to an

average positive prolateness (panels e,f). Finally, notice that the distribution becomes sensitive

to the confinement at sufficiently large density: at h/σ=3 (dark blue line in panels e and f), its

peak shifts to high positive values, signalling the preference of the rings to assume very elongated

conformations.

All in all, the distributions of the gyration radius and of the prolateness suggest the presence of
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an heterogeneous population of rings with different sizes and shapes.

3.2 The formation of active ring polymer ring clusters

To characterise the population heterogeneity emerging from the gyration radius and prolateness

distributions of the rings’ shape and size, we characterise the spontaneous formation of clusters.

Interestingly, when systems are confined, the distinction between two different classes of rings

(clustered and not clustered) emerges already by visual inspection. This is not the case for bulk

systems, whose organisation is visually much less clear. For this reason, we will only show snap-

shots of confined systems.

Figure 3: Snapshots of the top view of active rings suspensions (omitting the walls) for different
values of ρ and h/σ . a) ρ = 0.05, h/σ = 15 represents a dilute case under tight confinement; b)
ρ = 0.3, h/σ = 21 and c) ρ = 0.4, h/σ = 9 confined cases at intermediate density, where stacked
rings are clearly visible; d) ρ = 0.5, h/σ = 3 the most dense and confined case. The colour code
follows an arbitrary labeling of the rings and is only used to facilitate the visual distinction of
individual chains.

Figure 3 reports the top view snapshots of active ring suspensions at different values of ρ and

h/σ . Depending on the density and the confinement, rings undergo a process of self-organisation.

Indeed, rings appear to arrange in peculiar conformations, not common in equilibrium suspensions

of a passive polymer rings. In steady state, a fraction of the rings is arranged in nest-like structures

or clusters. Within these clusters, the rings are rather flat and oblate(panels b,c) and, as dictated by

the activity pattern, maintain a fairly steady rotation velocity (see videos in the Supporting Infor-

mation). Notice that, given that they are visible from the top view, clusters are preferably located

close to the confining walls. The remaining rings moves between clusters and take a more prolate
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conformation. Notably, in order to form clusters, rings need a sufficiently high density (panels b,c)

and space between confining planes to pile up. When the separation is large enough, clusters also

form across the confining planes (panel a). One could assume that clustering is favoured at small

separations, where it is easier to fill the space between planes with stacked rings, provided there

is enough space. However, the most confined case considered here, h/σ =3 (panel d), is the one

where the least amount of clustering and stacking is detected. Instead, in such a case, peculiar

conformations of squeezed and elongated rings are favoured. While discussing the dynamics, we

will highlight the sweet spot in the (ρ , Pe) plane, where confinement favours self-organisation (see

Sec. 3.3).

We now focus on quantitatively characterising these self-organised states. In order to identify

the self-organised clusters, we use the DBSCAN algorithm on the rings’ centres of mass. The

chosen cut-off distance, below which two rings are classified as neighbours, is dc = 4σ , as reported

in Section 2.

Figure 4: Colour plots of a) Fraction of rings belonging to a cluster X and b) mean number of
clusters Nc for all simulated systems.

Figure 4 presents the cluster fraction X (panel a) and the mean cluster number Nc (panel b)

as a function of the monomer density ρ and of the lateral confinement h/σ . Clearly, the clus-

tering properties strongly depend on both density and confinement. At very high confinement,

the algorithm detects clusters only at high density (see Supporting Information Sec.1). Indeed at
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ρ =0.5, h/σ =3 we observe a significant amount of rings classified in clusters. These clusters are,

naturally, numerous, as stacks cannot be populated by more than a few rings (see Fig. 5c).

At separations larger than h/σ =3, the simplest phenomenology appears at very low densities.

Here, few clusters are detected, independently of h/σ . Accordingly, the cluster fraction is low.

The interactions between rings are rare and, since there is no attraction, only transient and small

clusters can be formed: these are mostly not detected by the algorithm due to our choice of a

minimum cluster size of 5 rings. In the rest of the discussion, we will thus not further consider the

case ρ = 0.05, as no self-organisation is possible.

Figure 5: Snapshots of the active rings suspension, highlighting the ring self-organised clusters,
for different values of ρ and h/σ . a) ρ = 0.3, h/σ = 30. b) ρ = 0.4, h/σ = 6. c) ρ = 0.5, h/σ = 3.
d) ρ = 0.2 in the bulk. The systems under confinement are seen from the top, as in Fig. 3. The
polymers labelled as outsiders are shown as transparent in order to highlight the clusters; different
colours mark different clusters.

Upon increasing density, for h/σ >3, we notice a sharp growth in the cluster fraction, as well

as in the number of clusters. These quantities reach a maximum value around ρ = 0.2−0.3 and,

intriguingly, at large values of h/σ (see Fig. 5a). Figure 5d shows that such stacks are present

also in the bulk, where there is no wall to "nucleate" the clusters: thus, their orientation is random.

This makes them hard to detect, without a suitable algorithm. Upon further increasing the density,

the cluster fraction and the number of clusters diminish. One would actually expect the opposite,

as the system becomes denser. However, rings tend to assume more compact configurations, as

noticed in Fig 2 and thus they cannot stack any more. The self-organisation is thus lost.

In order to provide an alternative way to measure the local organisation of the system, we compute

the 2D radial distribution function g(r) of the centre of mass, projecting their positions on the plane
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orthogonal to the confinement (see Supporting Information Sec.2-4). Such a choice is dictated

by the anisotropy of the system. The analysis confirms the results of the clustering algorithm

at high activity and fixed N as well as, notably, upon varying N or Pe (Sec. 3.4, 3.5). Finally, an

examination of the cluster fraction and the number of clusters as a function of the DBSCAN cut-off

distance dcut (see Supporting Information Sec. 1) further reveals that self-organising systems show

strongly distinct features with respect to non self-organising or passive systems, for all values of

dcut . Thus clustering captures the features of the observed self-organisation. However, one needs

to complement the cluster analysis with other observables to better unravel the consequences of

said self-organisation.

3.3 Structure and dynamics of rings inside and outside of the clusters

From the snapshots reported in Fig. 5, it intuitively emerges that a straightforward way to charac-

terise rings belonging to clusters with respect to outsiders consists of considering the difference in

shape and size between the two groups. For this reason, we compute the distributions of Rg and S

distinguishing between rings belonging to clusters and the outsiders.

When clusters are present, the distributions reported in Fig. 6 are markedly different. This can

be observed in Fig. 6 a,c), reporting data for ρ =0.4, h/σ =6 (full lines) and ρ = 0.3, h/σ = 30

(dashed lines). On the one side, rings belonging to clusters tend to be expanded and oblate, with a

distribution that usually has a peak at high values of Rg (panel a). On the contrary, outsiders rings

tend to be prolate and present a more heterogeneous distribution of sizes, peaked at smaller values

of Rg (panel b). When clusters are not present, the distributions are very similar, as in Fig. 6 b,d),

reporting data for ρ =0.5, h/σ =21. This analysis highlights the fact that clusters, detected at

large values of ρ , are due to local density fluctuations and not to self-organization.

Finally, it is intriguing that clusters remains even if confinement is relatively small, i.e. at large

values of h/σ . Indeed, as already mentioned, stacks are present in the bulk. Figure 7 reports the

distributions of Rg and S for rings classified as belonging to a cluster or as outsiders for systems in

the bulk at different values of ρ .
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Figure 6: Probability distribution functions of Rg (panels a, b) and S (panels c, d) for rings detected
as part of clusters (blue) or outsiders (green). Panels a, c report ρ = 0.4, h/σ = 6 (full lines)
ρ = 0.3, h/σ = 30 (dashed lines); panels b, d report ρ =0.5, h/σ =21.

The same phenomenology observed under confinement emerges also here, confirming that

clusters of disk-like rings form in the bulk within the density interval 0.05< ρ < 0.5.

We employ a similar strategy to investigate the dynamics. We consider the dynamical prop-

erties of rings belonging to a clusters versus the dynamics of outsiders, separately, and compute,

for both populations of rings, the distribution of displacements of individual rings (as detailed in

Section 2). Figure 8 shows examples of such dynamical analysis.

We observe the same phenomenon found upon looking at the distributions of the rings’ size

and shape: the distribution of the rings’ displacements inside the clusters and of the outsiders is

markedly different (Fig. 8a) when self-organisation is present. Instead, when no self-organisation

emerges, all rings have the same displacement distribution (Fig. 8b).
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Figure 7: Probability distribution functions of Rg (panels a,b) and S (panels c,d) for active rings in
the bulk at different values of ρ , detected as part of clusters (full lines) or outsiders (dashed lines).

In order to establish a more quantitative comparison between all systems, we extract, from the

distributions in Fig.8, the most probable value of the displacement for rings belonging to clusters

and outsiders, ∆rC and ∆rO, respectively. We report the results in Fig. 9, that can be understood

when taking into account Fig. 4 and considering that it is not meaningful to consider systems where

no clusters are present.

Thus, we leave blank spaces and focus on the rest of the phase diagram. By looking at the

range of values reported in the two colorbars in Fig. 9a) and b), rings in clusters are less mobile

than the outsiders. Counter intuitively, the mobility for rings in clusters increases upon increasing

the density. The presence of the polar activity introduces a strong interplay between the polymer

conformation and dynamics;46 rings are more compact at high density and this enhances their mo-

bility with respect to the swollen case. However, clusters at high density (ρ =0.5) are qualitatively
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Figure 8: Probability distribution of the displacements P(∆r) for rings belonging to clusters (blue
line) and outsiders (green line). a) ρ = 0.4, h/σ = 6 (full line, snapshot in inset) ρ = 0.3, h/σ = 30
(dashed line) b) ρ = 0.5, h/σ = 21 (snapshot in inset). In the snapshots, outsiders are shown in
grey, and the other colours highlight different clusters.

Figure 9: Colour plots of the most probable values of the displacements for (a) rings identified as
part of aggregates, (b) ring identified as outsiders. The blank spaces highlight the system where
the number of the identified clusters was negligible.

different from the ones at low density, as shown in the previous sections; thus, one should expect

a change in their dynamical behaviour, due to the intimate connection between conformation and

dynamics, typical of tangentially active polymers.
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Figure 10: Color plots of the ratio between the most probable values of a) the displacements b)
Rg, for rings in clusters and outsiders particles a function of the density ρ and the separation
between the confining planes h/σ . The white colour highlights the system where the number of
the identified clusters is negligible.

Finally, as a way to quantify the degree of heterogeneity within the two ring populations,

we report in Fig. 10 the ratio between the most probable values of the observables computed

so far, Rg and ∆r, for rings inside C and outside O clusters: Rg,C/Rg,O and ∆rC/∆rO , indicated

with subscripts C and O, respectively. When studying the displacements (panel a), it appears

clear that systems with rings of different mobility are characterised by ∆rC/∆rO ≪ 1; otherwise

∆rC/∆rO ≈ 1. Instead, for the gyration radius (panel b), clusters are characterised by Rg,C/Rg,O > 1,

or Rg,C/Rg,O ≈ 1 otherwise. We underline, qualitatively, a correspondence between the two panels

of Fig. 10: systems where clusters appear are also the systems where the size difference is more

prominent. Finally, we highlight the two systems ρ = 0.5, h/σ =3 and ρ = 0.5, h/σ =6: these

are the sweet spots, where confinement favours self-organisation when the system becomes denser

(see also Fig 5c).
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3.4 The effect of the active polymer ring size on the self-organisation mech-

anism

We now focus on the systems in which self-organisation is more evident, such as ρ =0.3 and

h/σ =15; we compare it to a low density system ρ = 0.05, h/σ =15, to highlight the differences.

Based on the ring behaviour at infinite dilution, one would expect self-organisation even for very

short rings, characterised by small values of N. Interestingly, we will demonstrate that this is not

the case in dense suspensions. We simulate systems of M =1000 active rings (to avoid finite size

effects) of different length, ranging from N =32 to N =88, at the same activity value Pe = 10. The

cluster analysis (cluster fraction X and the number of clusters Nc) is reported in Fig. 11, computed

via DBSCAN with the same parameters as in Sec. 2. Further results for different values of dcut are

reported in the Supporting Information (Sec. 3).

Figure 11: a) Cluster fraction X and b) number of clusters Nc as a function of the degree of
polymerisation N for active rings at fixed value of the separation h/σ =15 and ρ =0.05 (blue
circles), ρ = 0.3 (green squares). Lines are guides to the eye. Insets: snapshots of a) N =32 and
N =48, b) N =88, as indicated by the grey arrows. outsiders are shown in grey, and the other
colours highlight different clusters.

We observe that, at low density (blue circles), clustering is barely detected for all values of

N, as expected. At ρ=0.3 (green circles), the cluster fraction X increases monotonically upon

increasing N (panel a). The number of clusters Nc (panel b) shows a non-monotonic behaviour,

with a peak around N =70 monomers per ring. From the dependency of X and Nc as function of
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dcut and from the distribution of the gyration radius inside and outside the clusters (Supporting

Information, Sec. 3), we conclude that the smallest rings (N =32) do not self-organise in stacks.

Upon increasing the ring size, the signatures of self-organisation becomes more and more evident

until N ≈ 100. For rings of that size, early signs of collapse, typical for large active rings,27 appear

and destroy the self-organisation (see Supporting Information Sec.3). We interpret these results in

terms of the active rings “elasticity”, i.e. their ability to recover the infinite dilution conformation

after being perturbed by the presence of the other rings. In these terms, activity causes shorter

rings to be less elastic than longer rings. On the one hand, this is counter-intuitive, since smaller

rings should be quite rigid at infinite dilution and, having less degrees of freedom, they should

be harder to perturb than longer rings. On the other hand, following Ref.,27 the infinite dilution

scaling Rg ∝ N implies that the activity-induced effective persistence length is increasing upon

increasing N, as also suggested by the analysis of the bond-bond correlation function, reported in

Ref.27 In the very dilute limit, oblate conformations are stable for longer rings (up to N ≃100) that

are thus characterised by a larger effective persistence length. The results at finite density reported

here are in agreement with such a scenario.

3.5 The effect of activity on the self-organisation mechanism

Finally, we discuss how increasing the activity of the single monomers from Pe = 0 to Pe = 10

affects self-organisation. The cluster analysis (cluster fraction X and the number of clusters Nc)

is computed for M =1000 rings of length N = 76 and N = 32 and 0 < Pe < 10, and reported in

Fig. 12. Clusters are computed via DBSCAN with the same parameters as in Sec. 2. Further results

for different values of dcut are reported in the Supporting Information (Sec. 4).

We focus again on systems in which the self-organisation is more evident, ρ =0.3, h/σ =15

and we compare to a low density system ρ = 0.05, h/σ =15. The low density case shows, for

both values of N, no signs of clustering and self-organisation. Instead, the case ρ = 0.3 shows a

remarkable behaviour. For N =76, the fraction of rings involved in clusters X increases abruptly

at Pe =5 and stabilises for larger values of Pe. The number of clusters Nc also increases upon
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Figure 12: a) Radius of gyration Rg, b) cluster fraction X and c) number of clusters Nc as a function
of the Péclet number Pe at fixed value of the separation h/σ =15 for N =32, ρ = 0.05 (blue
circles) N =32, ρ = 0.3 (green squares), N =76, ρ = 0.05 (orange triangles), N =76, ρ = 0.3 (red
diamonds). Lines are guides to the eye.

increasing Pe; however, it does not show such an abrupt increase, displaying, instead, a plateau,

before a final increase at Pe =10. One can depict the following scenario: increasing the activity

favours the emergence of larger clusters, containing more rings, until the activity is too high and

smaller, more numerous clusters are favoured. The corresponding curves for N =32 showcase the

radically different behaviour of a system where no self-organisation is present.

4 Conclusions

In our work, we have explored the conformation and dynamics of short active polymer rings in bulk

and under confinement. We found quite a large ρ-h/σ parameter space where rings self-organised

in clusters. Cluster formation happened not only under confinement (close to the walls) but also

in the bulk (even though less prominently). We have further assessed lower and upper bounds

for the ring size N as well as a lower bound for the activity, within which the self-organisation

phenomenon is robust. It is possible to ascribe the origin of cluster formation to the combination

of self-propulsion and the molecular fingerprint of rings.

Isolated short active rings tend to assume a swollen, disk-like configuration; this was associated
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to an effective persistence length and to an effective "semi-flexibility".27 In passive systems, semi-

flexible rings have been reported to form clusters at high density.55,56 However, there is a more

delicate interplay here to consider. On the one hand, the presence of other active rings perturbs the

disk-like conformation observed at infinite dilution, that results from the interplay between active

forces, elasticity of the backbone and fixed topology. The activity is, in turn, connected to the

polymer conformation; when the latter is perturbed, the action of active forces give rise to complex

configurational rearrangements. Thus, the emergence of clusters in bulk is not trivial and rather

unexpected. Intuitively, the self-organisation scenario is bound to fail at sufficiently high density,

when the inter-chain contacts become dominant.

In addition to this, when considering the system under confinement, the molecular fingerprint of

the rings is even more subtle. Passive ring polymer solutions under confinement have been shown

to display an inhomogeneous density profile at relatively low density, with a marked tendency to

accumulate to walls. Even in the passive case, oblate configurations are enhanced close to a wall.54

Further, active agents interacting with walls display very distinct emergent patterns, which would

not be present in equilibrium;42 distinctively, they accumulate against walls.34,42 Thus, the emer-

gence of the stacks close to the walls becomes favourable from multiple perspectives: rings can

remain in their most favourable configuration, which is indeed enhanced by the presence of the

walls and wall accumulation is favoured, as rings can be packed more efficiently. Thus, when h/σ

is large, rings have two mechanisms to stack: the "bulk" one, i.e. they pile up among themselves

in a random orientation and the confined one, i.e. they pile up perpendicularly to the confining

wall. This rationalises the excess of clustering and self-organisation observed even at quite large

separation when, looking at the whole system, one sees little difference between bulk and confined

distributions. We mention here that Ref.10 reports on the self-organisation of Malaria sporozites in

the salivary glands of a mosquito; intriguingly, the organisation observed in Ref.10 resembles the

one observed in this work, although the two systems are quite different. The sporosites are slender

microswimmers, and were modeled as active linear polymer in “quasi” 2D, endowed with rigidity

and chirality; here we have flexible unknotted rings in 3D, with no chirality. It is thus intriguing
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to observe similar features, given the numerous differences. Further, a recent work57 shows that

clustering emerges also if different self-propulsion models at lower dimensionality are considered;

at variance with this paper, the activity-induced clustering is there hindered by the polymer con-

nectivity and topology.

Our computational study demonstrates the possibility of realising self-organising active fluids with

polymers, where the peculiar "two population" fluid emerges thanks to the deformability and elas-

ticity of the rings, that can switch between squeezed, elongated and swollen, disk-like configura-

tions reversibly, without changing their topology. This system indeed shows features, typical of

a liquid crystal, as the stacks may be seen as local regions of nematic order. Future work plans

to investigate these features in more details. Further, it will be interesting to understand how to

enhance or suppress self-organisation. The latter property may be relevant to biological systems

such as the aforementioned malaria sporozites10 and may be exploited as a mechanism to stop

cells’ development in a more focused and environmentally sustainable fashion.
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Supporting Information Available

The following Supporting Information is available free of charge at the ACS website Video S1.

Short video (top view) of a system of confined rings at ρ = 0.3 and h/σ = 30. Video S1. Short

video (perspective view) of the same system of confined rings at ρ = 0.3 and h/σ = 30. Support-

ing Information text: additional information on the DBSCAN algorithm, the radial distribution

function, the effect of the ring size and of the activity on the self-organisation.
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