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Fluidification of entangled polymers by loop extrusion
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Loop extrusion is one of the main processes shaping chromosome organization across the cell cycle, yet its role
in regulating deoxyribonucleic acid (DNA) entanglement and nucleoplasm viscoelasticity remains overlooked.
We simulate entangled solutions of linear polymers under the action of generic loop extruding factors (LEFs)
with a model that fully accounts for topological constraints and LEF-DNA uncrossability. We discover that
extrusion drives the formation of bottlebrushlike structures which significantly lower the entanglement and
effective viscosity of the system through an active fluidification mechanism. Interestingly, this fluidification
displays an optimum at one LEF every 300–3000 base pairs. In marked contrast with entangled linear chains,
the viscosity of extruded chains scales linearly with polymer length, yielding up to 1000-fold fluidification
in our system. Our results illuminate how intrachain loop extrusion contributes to actively modulate genome
entanglement and viscoelasticity in vivo.
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I. INTRODUCTION

How chromosomes are packaged within the cell while
remaining accessible to transcription, replication, and segre-
gation remains one of the most fascinating unsolved problems
in physics and biology. Chromosome conformation capture
and related techniques [1,2] have revealed that chromo-
somes are folded into so-called territories, compartments,
and topologically associated domains [3–6]. Among the most
important processes dictating chromosome folding in both in-
terphase and mitosis is loop extrusion, performed by so-called
loop extruding factors (LEFs), such as cohesin, condensin,
and SMC5/6 [7–13,13–17]. Most of the current experimen-
tal techniques study either static snapshots of LEF-mediated
chromosome conformation in vivo [16] or dynamic LEF-
mediated looping process on tethered single deoxyribonucleic
acid (DNA) molecules in vitro [12]; and only very recently
was it possible to track the behavior of individual chromosome
loci under the effect of loop extrusion [18]. Due to this, we
still lack a quantitative understanding of how LEFs modu-
late chromosome dynamics and entanglements in the dense,
crowded, and entangled environment of the cell nucleus. To
tackle this question, we perform large-scale molecular dynam-
ics simulations of entangled fluids of linear polymers under
the action of LEFs. Specifically, we study how loop extrusion
affects polymer conformation, dynamics, and viscoelasticity
during mitosislike and interphaselike stages of loop extrusion,
by modulating their number, processivity, and turnover.
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First, we find that (exclusively intrachain) loop extrusion
induces a transition from linear polymers to bottlebrushlike
structures, characterized by large grafting density and side-
chain length controlled by the number and processivity of the
LEFs, in line with previous works in dilute conditions [9,19–
21]. The formation of such structures reduces the entangle-
ment between chains due to steric interactions between the
loops and entropy maximization—an effect dubbed entropic
repulsion [22,23], in turn leading to the fluidification of the
system. Second, we discover that, while as few as ∼2–100
LEFs per 30 kbp of chromatin are enough to induce a signif-
icant reduction in entanglement, a larger number of LEFs is
not as effective due to the reduced repulsion of side chains
and stiffening of the chain backbone. We find that extrusion
enables an active fluidification process that can reduce the
viscosity of long extruded polymers by three orders of magni-
tude with respect their nonextruded (NE) equivalent. Finally,
we show that even LEFs with binding/unbinding kinetics
can drive active fluidification in entangled fluids. Our work
is different from other simulations on LEF-mediated disen-
tanglement of polymers [19,21,24–27], as we focus on the
bulk viscoelastic behavior of dense polymer solutions rather
than structure of loop-extruded polymers in dilute conditions.
We not only numerically confirm recent theoretical arguments
suggesting that loop extrusion yields an entanglement dilution
[21,26], but we also quantify the degree of disentanglement
in dense solutions through primitive path analysis (PPA) and,
more importantly, its impact on the rheology of the system.
More specifically, our results suggest that, by varying the
number and processivity of LEFs, the cell may be able to
finely regulate entanglements between chromosomes and, in
turn, the nucleoplasm effective viscoelasticity, which could
be tested in large-scale imaging and spectroscopy experiments
[28–30].
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II. METHODS

A. Simulation details

We model entangled DNA as semiflexible Kremer-Grest
linear polymers [31] with N = 250, 500, 1000, and 1500
(unless otherwise stated) beads of size σ . The beads interact
with each other via a truncated and shifted Lennard-Jones
potential:

ULJ(r) =
⎧⎨
⎩4ε

[(σ

r

)12
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r
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4

]
, r � rc,
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where r denotes the separation between the beads, and the
cutoff rc = 21/6σ is chosen so that only the repulsive part
of the potential is used. Nearest-neighbor monomers along
the contour of the chains are connected by finitely extensible
nonlinear elastic (FENE) springs as
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where k = 30ε/σ 2 is the spring constant and R0 = 1.5σ is the
maximum extension of the elastic FENE bond. This choice
of potentials and parameters is essential to preclude ther-
mally driven strand crossings and therefore ensures that the
global topology is preserved at all times [31,32]. Finally, we
add bending rigidity via a Kratky-Porod potential Ubend(θ ) =
kθ (1 − cos θ ), where θ is the angle formed between consec-
utive bonds, and kθ = 5kBT is the bending constant, thus
yielding a persistence length lp = 5σ , corresponding to 50 nm
in our grained model. We chose these parameters to facilitate
the comparison with in vitro experiments, i.e., to model the
behavior of naked DNA at physiological salt condition result-
ing in a screening length of 10 nm and a persistence length
of 50 nm. The motion of each bead is then evolved via the
Langevin equation:

m
dvi

dt
= −γ vi − ∇U +

√
2kBT γiη, (3)

along each Cartesian component. Here, γ is the friction coef-
ficient, m the mass of the bead, U the sum of the potentials
acting on bead i, and

√
2kBT γ η a noise term that obeys the

fluctuation-dissipation theorem, thus respecting the formula:〈
ηα

i (t )ηβ
j (s)

〉 = δ(t − s)δi jδαβ, (4)

along each Cartesian component (Greek letters). The nu-
merical evolution of the Langevin equation is done with a
velocity-Verlet scheme with dt = 0.01τLJ, with τLJ = τBr =
σ
√

m/ε in LAMMPS [33].
Four different systems are considered in this paper: the first

one consists of a solution of 50 linear polymers having size
1000 in a cubic box of side length 80.6 [Fig. 1(g)], achieving
a monomer density of ∼10%, equivalent to a volume fraction
of φ = 0.05. We maintained the same monomer density on
systems containing polymers 250σ , 500σ , and 1500σ long
by reshaping the box size, respectively, to 51σ , 64σ , and 92σ .

FIG. 1. (a) and (b) Sketch of our loop extruding factor (LEF)
algorithm on a coarse-grained polymer. Each LEF stops when it
meets another LEF along the chain. (c)–(f) Snapshots of fully ex-
truded polymers with (e) nLEF = 2, (f) nLEF = 10, (g) nLEF = 100,
and (h) nLEF = 200. Cyan beads represent LEFs. (g) Snapshot of the
system consisting of M = 50 linear polymers of length N = 1000
in a box of size L = 80.6σ and periodic boundary conditions. (h)
Snapshot of the system after intrachain extrusion with an average of
100 LEFs per polymer. In (a)–(f), the color gradient represents the
bead index, while in (g)–(h), the colors represent different polymers.
See Supplemental Video for more information [34].

B. Modeling loop extrusion

Our loop extrusion model was inspired by previous works
[9,19]. In these models, loops are formed by temporary bonds
joining two beads, thus generating closed rings emerging from
the polymer backbone. Loop extrusion is then achieved by
shifting each bond to the adjacent beads on both sides of the
bond, as shown in Fig. 1(a). Bond shifting introduces energy
into the system, mirroring the adenosine triphosphate (ATP)
hydrolysis cycle in structural maintenance of chromosomes
(SMC) proteins, and it breaks detailed balance. However,
most models in the literature allow nonphysical extrusion, as
the bond shift is performed irrespectively of the distance be-
tween the newly selected beads. This is often possible thanks
to the use of unbounded harmonic bonds, allowing large
distances between the loop ends and possibly leading third
segments to pass through the bonded segments. We argue that
this nonphysical feature should be avoided, as we expect SMC
complexes to block possible strand passages between their
ends, and that extrusion should consider the geometry and
topology of the DNA molecule [25]. Therefore, we developed
a customized version of a LAMMPS fix module publicly avail-
able online [35], and used version v30_06_23 for this paper.
Specifically, we attempt extrusion steps with a fixed frequency
fatt, chosen at the beginning of the simulation. On top of that,
we define a success probability fprob for the extrusion step that
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adds up to the geometry check. Then the distance between
the ends of new LEFs is computed, and the step is accepted
only if its value is smaller than a fixed cutoff r < 1.2σ . Each
LEF attempts an effective step with frequency feff = fatt fprob,
in turn slowing down the actual extrusion speed along the
polymer because of conformational entropy. All the simula-
tions in this paper are performed with feff = 1 × 10−3 τ−1

Br .
If during the extrusion process two LEFs meet on one end,
extrusion proceeds only on one side, as displayed in Fig. 1(b).
Consequently, extrusion runs for each LEF until one of its
ends neighbors the end of another LEF or reaches the polymer
ends.

In practice, we implement loop extrusion by initializing
a given number of LEFs by choosing random triplets of
beads belonging to the polymers in solution. This provides
each polymer with a total number of bound LEFs on av-
erage equal to nLEF. However, to neglect the presence of
unextruded polymers, we deploy at least one LEF on ev-
ery polymer. To prevent integration errors related to the
bond length, we initially model LEFs with a harmonic bond,
with potential:

Uharm(r) = A(r − R0)2, (5)

where A = 100 and R0 = 1.1σ . After the first step, such a
bond is replaced by a FENE bond with k = 10 and R0 = 1.7σ

[see Eq. (2)]. We choose a larger maximum extension for the
elastic FENE bond and a softer spring constant to avoid bond
breaking caused by sudden movement of the bonds during
extrusion. In contrast with recent works [36,37], here, we
consider purely intrachain loop extrusion with no bridging
interaction between LEFs [Figs. 1(a) and 1(b)].

C. Mean squared displacement and radius of gyration

The mean squared displacement (MSD) at time τ measures
the motion of a polymer segment with respect to the initial
position over a time τ . It is computed as

MSD(τ ) = 1

N

1

T − τ

T −τ∑
t=0

N∑
i=1

[xi(t + τ ) − xi(t )]2. (6)

For entangled linear polymers, we expect the MSD of the
center of mass (COM) of the polymer to be MSD(τ ) ∼ τ 1/2

for short time scales and MSD(τ ) ∼ τ on long time scales
[38]. The squared radius of gyration of a polymer is computed
as

R2
g = 1

N

N∑
k=1

[rk − rmean]2, (7)

where rmean defines the COM of the polymer.

D. PPA

PPA is a method to compute the entanglement length in a
solution of polymers [39]. We apply PPA to 10 different restart
configurations for each simulated system, sampled at times
separated by 2 × 105 τBr to obtain uncorrelated states. The
protocol used for PPA involves disabling intrachain interac-
tions while preserving interchain interactions and keeping the
ends of polymers fixed in space. To measure the entanglement

between the backbones, we remove the beads belonging to
the loops, whereas in regular PPA, the bonds forming loops
are deleted. The temperature of the Langevin thermostat is set
at T = 0.001ε/kB, and the simulation is run for 5 × 105 time
steps. We perform five of these simulations for each sampled
configuration. The systems thus obtained display a collapse of
the polymers over the key entanglement points, from which
the entanglement length can be computed as

Le = D2
e2e

NbeadsDbond
2 , (8)

where De2e represents the end-to-end distance of the polymer
and Dbond the average bond length in the polymer.

E. Green-Kubo calculation

The stress-relaxation modulus G(t) is calculated as

G(t ) = V

3kbT

∑
α �=β

P̄αβ (0)P̄αβ (t ), (9)

where P̄αβ = P̄xy and P̄xz and P̄yz represents the off-diagonal
components of the stress tensor. Specifically, we get those
components as

P̄αβ (t ) = 1

tavg

tavg∑
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2 +1

Pαβ (t + �t ), (10)
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)
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where N is the number of beads per polymer, M the number
of polymers, V the box volume, mk the mass of the kth bead,
vk the speed of the kth bead, Fkl the force between the kth and
lth beads, and rkl their distance. Here, Pαβ is then averaged
over a time tavg [40]. The autocorrelation was computed using
the multiple-τ correlator method described in Ref. [41] and
implemented in LAMMPS with the fix ave/correlate/long com-
mand. This method makes sure that the systematic error of the
multiple-τ correlator is always below the level of the statisti-
cal error of a typical simulation (see LAMMPS documentation).
The viscosity η of the system is then obtained by integrating
G(t ) as

η =
∫ t→∞

0
G(t )dt .

Given that our simulations are run for a finite time, the
computed viscosity represents a lower bound for the true
value. Such a value is then obtained in simulation units kBT τBr

σ 3

where τBr = 3πηsσ
3

kBT = 2.6 µs.
To account for the noisy values appearing on large time-

step values, we model the behavior of G(t) as a stretched
exponential at large times. Specifically, we define G(t ) ≈
a exp[(− t

τ
)b], and we fit a, τ , and b to approximate the

exponential decay, starting at an arbitrarily found point,
denoted as te. The viscosity is then obtained by numer-
ical integration up to te, while the stretched exponential
contribution is obtained by computing

∫ ∞
te

a exp[(− t
τ

)b] =
aτ
b �[ 1

b , ( te
τ

)b], where �(a, z) is the upper generalized gamma
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function. The sum between these two terms returns the
viscosity estimate.

The Green-Kubo (GK) measurements are done in equi-
librium in the fully extruded (FE) cases. On the other hand,
during transient extrusion, polymers are out of equilibrium
because LEFs are imposing nonthermal forces on them. De-
spite this, GK relations work in nonequilibrium steady-state
systems in specific conditions [42]. To demonstrate that the
loop extrusion per se does not affect our GK calculation, we
selected four different time steps separated by 2 × 106τBr (sig-
nificantly larger than the autocorrelation time of the squared
radius of gyration in steady state, estimated to be ∼5 ×
105τBr) of a system with 10 LEFs per polymer and κoff =
10−8τBr. We then blocked the extrusion process for each of
these initial conditions, waited for 5 × 106τBr, sufficient to
allow polymer equilibration, and measured G(t ). We find that
the GK stress-relaxation curve is independent of the specific
state of the system once steady state is reached and is identical
to the one computed during the extrusion process (i.e., when
it is not stopped). This means that the loop extrusion does
not affect the viscoelasticity of the sample per se and that
the most important contribution to the rheology is the change
in polymer conformation. We argue that this is due to the
extrusion regime we work in, as the extruded loops relax on
time scales shorter than the time between LEF steps [26]. In
turn, this leads to a virtually relaxed state in which polymer
conformations are the main contribution to the viscoelastic
properties. In other regimes, a correction to G(t ) would be
needed to account for the energy-consuming nonequilibrium
processes.

F. Processivity

We define a transient extrusion regime in which LEFs
load/unload dynamically at rates κon and κoff, respectively. In
this regime, we define processivity as λ = vLEF

koff
, but in many of

our simulations, the true speed of LEFs is hardly measurable.
In FE systems, since koff is zero, this value is assumed to be
on average equal to the polymer length divided by the average
number of LEFs per polymer. Instead, when koff > 0, we
decided to compute the single LEF processivity and consider
the average its distribution. Such a distribution is found to be
corresponding to a Poissonian process, in agreement with our
probability-dependent LEF removal.

G. Modeling SMCs

SMC extrusion speed is of the order of 1 kbp s−1 [12]. In
our simulation, the effective maximum speed is obtained by
accepting all the moves with frequency feff, which for sym-
metric steps gives vmax = 2σ feff = 2 × 10−3στ−1

Br for feff =
10−3τ−1

Br . Since each bead coarse grains ∼30 bp of naked
DNA, we have vmax ∼ 26 kbp s−1. However, this maximum
speed is hardly reached during simulations because of the
cutoff value. In a system that allows transient binding of LEFs,
we can get an estimate of the effective extrusion speed by
multiplying the average processivity by the unbinding rate
koff. For values of λ

〈d〉 ∼ 1, this speed is found to be on the

order of 10−5στ−1
Br .

III. RESULTS

A. Loop extrusion drives compaction
and dilution of entanglements

As explained in the Methods, we perform loop extrusion
on dense and entangled polymer solutions. First, we qual-
itatively observe that the extrusion induces a geometrical
deformation of the polymers into bottlebrushlike structures, as
previously noticed [19–21,26] [Figs. 1(c)–1(f)]. Interestingly,
this is accompanied by the onset of compartmentalization
and territories, with the polymers becoming less intermin-
gled [24] [see Figs. 1(g) and 1(h)]. The radius of gyration
R2

g displays a sharp reduction during the extrusion process
[Fig. 2(a)]. We then proceed to characterize the solution in
equilibrium, when the squared radius of gyration plateaus and
loop extrusion has stopped as LEFs are adjacent along the
polymers. To make sure that our system is in equilibrium,
we perform measurements once the MSD has reached 〈R2

g〉
at steady state. At a large value of time, the steady-state value
〈R2

g〉 displays nonmonotonic behavior, which we understand
as a direct consequence of the bottlebrush structure [e.g., see
snapshots in Figs. 1(c)–1(f)]: A larger number of LEFs effec-
tively induces a larger grafting density and longer backbones,
which contribute to an increase of R2

g. The observed stiffening
is in agreement with both theory [22] and experiments [43]
of synthetic bottlebrush polymers, as backbone stiffening is
expected at larger grafting density due to increased entropic
and stering interactions between the side chains. Additionally,
from the snapshots of single chains in Fig. 1, one can appre-
ciate the change in polymer conformation as a function of the
number of bound LEFs: from that of a dense comb polymer
(a small number of long side chains) to dense bottlebrush (a
large number of short side chains) [23,43].

To understand how the conformational transition affects
entanglements, we perform PPA to the extruded solutions
[39,44] [Figs. 2(b) and 2(c)]. According to Ref. [44], we can
estimate the entanglement length Ne as

Ne = lK
[(

cξ ρK l3
K

)−2/5 + (
cξ ρK l3

K

)−2]
, (12)

where cξ = 0.06, lK = 2lp is the Kuhn length, and ρK =
NM/(lK L3) is the number density of Kuhn segments. We find
that NE solutions have an average entanglement length Ne =
96 ± 65σ , somewhat larger than the theoretically expected
value Ne = 43σ yet within error.

Like what was done in Ref. [45] for solutions of bot-
tlebrush polymers, we first performed PPA on the polymer
backbones by removing the side loops [Fig. 2(d)]. All the
extruded solutions display significant disentanglement com-
pared with the NE control system (nLEF = 0). However, we
expect side loops not to be entangled when the polymers
display many short loops, so that they cannot thread each other
[46,47]. To quantify the entanglement between side loops,
we performed PPA on the whole polymers. We note that,
in this case, the overall chains are non-Gaussian. Still, the
entanglement length displays an interesting behavior: At small
nLEF = 2, the system appears more entangled than the NE
control case [Fig. 2(e)], and that Ne grows larger only when
more LEFs are bound to the polymers. By visually inspecting
the simulations, we found that the reason behind this behav-
ior is the presence of deadlocks [see inset Fig. 2(e)]. It is
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FIG. 2. Equilibrium viscoelastic properties of monodisperse solutions with N = 1000 for different values of nLEF. (a) Average radius of
gyration of polymers during extrusion and after equilibration. The faded area represents the width of the area covered by the distribution
within the standard deviation. Inset shows the equilibrium value against nLEF. Snapshots of simulated systems after temperature quenching for
(b) a nonextruded solution and (c) an extruded solution. (d) Box plot representing the distribution of backbones entanglement lengths over
the polymer length (number of extruders per polymer) obtained through primitive path analysis (PPA) [39] on a set of 5 uncorrelated replicas
over 10 different time steps. The inset shows the final primite paths for nLEF = 2. (e) Box plot representing the distribution of entanglement
lengths over polymer length obtained through PPA [39] on a set of 5 uncorrelated replicas over 10 different time steps. Inset displays examples
of deadlocks found at nLEF = 2. (f) Average mean squared displacement (MSD) of the center of mass (COM) of polymers with its relative
standard deviation. Inset displays the diffusion coefficient of the COM of polymers normalized to the unextruded system as a function of nLEF.

intriguing that deadlocks had been found previously in sys-
tems of ring polymers out of equilibrium [48,49]; it would
thus be intriguing to understand if these deadlocks are also
caused by the activity of the loop extruders. Moreover, in
both Figs. 2(d) and 2(e), solutions with nLEF = 200 appear
to undergo mild re-entanglement, arguably due to the back-
bone stiffening we previously observed. These findings are
in line with experiments on synthetic bottlebrush polymers
[43,50,51] which display greatly weakened entanglements
with respect to their linear counterpart.

B. Loop extrusion speeds up polymer dynamics

Having quantified the dramatic change in the static proper-
ties of the solution, we expect to observe a similar large impact
of loop extrusion on polymer dynamics. In Fig. 2(f), we show
that the MSD of the COM of polymers displays a significant
speed up compared with the NE case. More specifically, the
diffusion coefficient of the COM of polymers, computed as
D = limt→∞ MSD/6t in the system with N/nLEF = 20, is
roughly 5 times larger than the control. Thus, while our results
confirm the hypothesis that purely intrachain loop extrusion

leads to an effective fluidification (or entanglement dilution)
due to the transition from linear to bottlebrushlike structures
[21,26], they also suggest that too many LEFs would drive re-
entanglement in dense solutions due to backbone stiffening.
However, this re-entanglement does not affect the increase
in diffusivity, a result that could be due to a lower degree of
interpenetration between side chains and thus reduced friction
[52].

C. Loop-extrusion-mediated fluidification is length dependent

We argue that this speed up in dynamics, or fluidification,
ought to be even more dramatic in more entangled systems,
for instance, in denser systems or for longer chains. To test
this, we performed simulations with shorter (N = 250 and
500) and longer (N = 1500) chains at fixed volume frac-
tion (φ = 0.05) and fixed LEF densities (N/nLEF = 10), as
reported in Fig. 3. First, we discover that loop extrusion
compacts all polymer lengths down to similar sizes and
that the steady state 〈R2

g〉 scales roughly linearly with nLEF

[Fig. 3(a)], which is consistent with the expected scaling [23]
R2

g ∼ LbbL1/2
sl , where Lbb is the length of the backbone
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FIG. 3. (a) Average radius of gyration of polymers during extrusion and after equilibration for three different values of N. The faded area
represents the width of the area covered by the distribution within the standard deviation. Inset shows the equilibrium value against nLEF.
(b) Average mean squared displacement (MSD) of the center of mass (COM) of polymers with its relative standard deviation for nonextruded
(NE) and fully extruded (FE) systems. Inset shows the diffusion coefficient of the COM of polymers against the polymer length. (c) Number
of entanglements for FE and NE configurations with different polymer length (from 250 to 1500 beads) and same loop extruding factor (LEF)
density (nLEF = 100). (d) Stress-relaxation function G(t ) of NE and FE solutions in equilibrium. (e) Viscosity of extruded and NE systems
obtained by integration of the stress-relaxation function. (f) Stress-correlation function of two 1000-bead-long polymer systems with different
volume fraction (0.05 and 0.1). Values in green represent FE systems with nLEF = 100, while brown values correspond to NE systems.

(determined by the number of extruders) and Lsl the length
of side loops (determined by N/nLEF).

By comparing the dynamics of the COM MSD, we observe
that, in all extruded solutions, there is a clear loss of the early-
time subdiffusive regime [Fig. 3(b)] as previously observed
in solutions of bottlebrush polymers [53]. For NE configu-
rations, the diffusion coefficient of the COM scales close to
the expected D ∼ N−2 [54]. On the other hand, for extruded
solutions, we find D ∼ N−1.2. Interestingly, at our optimal dis-
entanglement density (1 LEF every 10 beads), we achieve total
disentanglement for every tested configuration. This reflects
on average the number of entanglements per polymer, dis-
played in Fig. 3(c). In entangled conditions, this scales almost
linearly with N , i.e., with the length of the linear chain, while
after extrusion, it is constant and ∼5, displaying a similar level
of entanglement independent of the polymer length.

To quantify the change in viscoelasticity due to the extru-
sion, we use the GK relation and compute the autocorrelation
of the off-diagonal components of the stress tensor G(t )
[41]. From these measurements, we estimate a value of
entanglement plateau of (1.6 ± 0.1) × 10−3kBT/σ 3, from
which, combining Eqs. (5) and (6) in Ref. [44], we obtain an

effective entanglement length of 27 ± 3σ , closer to the theo-
retical estimate Ne = 43σ . The familiar entanglement plateau
observed for linear polymers [31] is completely lost in all ex-
truded solutions, which instead follow a decay G(t ) ∼ t−1/2,
as for unentangled chains [Fig. 3(d)]. We interpret this as a
strong signature that most of the entanglements are lost, even
for our longest polymers N = 1500 which display N/Ne 
 17
in equilibrium. Perhaps more remarkably, the viscosity η =∫ ∞

0 G(t )dt , typically scaling as η ∼ N3 for linear polymers,
scales only linearly (η ∼ N) in the FE cases [Fig. 3(e)]. The
weak scaling of viscosity as a function of the polymerization
index is in line with previous experimental results on densely
grafted bottlebrushes [51].

These findings strongly suggest that the fluidification
mechanism is more dramatic in solutions of longer poly-
mers as ηLEF/η0 ∼ N−2. For example, for our N = 1500
system, the viscosity of the extruded system is ∼1000 times
smaller than the NE one. Furthermore, we find even stronger
fluidification in denser systems. To infer how the system
density affects the extrusion-mediated viscosity reduction, we
proceeded to simulate a system of 50 polymers with N =
1000 and volume fraction 0.1. The stress-correlation functions
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FIG. 4. (a) Sketch of our transient extrusion algorithm. Loop extruding factor (LEF) performs extrusion until they are removed with
probability koff, while nonbinded LEFs can start extruding with probability kon. (b) Sketch of how the extruded length for a structural
maintenance of chromosomes (SMC; λi) is estimated. (c) Sketch of extruded systems depending on the average processivity. (d) Average
radius of gyration of polymers during extrusion and after equilibration for different values of λ/〈d〉. In this context, λ/〈d〉 = ∞ means that the
polymer is fully extruded (FE), and λ/〈d〉 = 0 means that the polymer is nonextruded (NE). (e) Radius of gyration squared against normalized
processivity. We multiply processivity by the number of LEFs per polymer and divide for the polymer length to get a collapse plot. (f) Average
mean squared displacement (MSD) for the center of mass of FE and partially extruded (PE) polymers with λ/〈d〉 
 1 and different numbers of
LEFs (2–100). (g) Two-point MSD taken as the average distance between two beads belonging to the same polymer with a contour distance of
600 beads with different values of λ/〈d〉. (f) Stress-relaxation modulus of NE and PE systems with λ/〈d〉 
 1 and different numbers of nLEF.
Inset shows the relative viscosity normalized to the viscosity of the NE system.

displayed in Fig. 3(f) display identical properties between
the two systems. However, the viscosity computed from such
function shows a ≈2000-fold reduction in viscosity between
the NE and extruded configuration, showing a consistent in-
crement from the ≈1000-fold decrease obtained for the less
dense system. By extrapolating these results to genomic-sized
DNA, we expect the difference between the dynamics of
chromosomes in the presence/absence of (purely intrachain
and nonbridging) LEFs will be several orders of magnitude.
This implies that the large-scale rearrangement and dynamics
of interphase and mitotic chromosomes are expected to be
sensitive to the presence of active loop extrusion and may
be tested in experiments via, e.g., displacement correlation
spectroscopy [18,28,55–57].

D. Out-of-equilibrium entangled solutions of transiently
loop extruding polymers

Having quantified the fluidification achieved in a FE steady
state, we now turn our attention to the behavior of our system

under an out-of-equilibrium, active-loop extrusion process
for N = 1000. The total number of LEFs in the simulation
is fixed, but the number bound at any one time fluctuates
around the mean fraction fbound = κon/(κon + κoff ). In the fol-
lowing, we focus on the so-called partially extruded (PE)
case, in which the total extruded length is smaller than N ,
i.e., the LEFs kinetically unbind from the polymer before
they can fully extrude the average distance between them
[see Fig. 4(a)]. We highlight that the regime of PE is the
one that appears to be most relevant in interphase [18,58]
and is characterized by the ratio between the average proces-
sivity and the average spacing between LEFs, i.e., λ/〈d〉 =
〈vLEF〉/κoff × N/nLEF [see Fig. 4(b)]. For instance, in PE solu-
tions, λ/〈d〉 < 1.

First, we find that the radius of gyration of the polymers
depends on λ/〈d〉: Small values yield NE polymers, while
larger values yield a compaction like the FE case (where
λ/〈d〉 → ∞ as koff = 0). Interestingly, we also observe stable,
intermediate compacted states in between a FE and NE state
where the polymer is kept out of equilibrium by the kinetic
binding of LEFs [Fig. 4(d)].
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In Fig. 4(e), we display the distribution of the squared
radius of gyration and connect its value to the average pro-
cessivity of extruders. When the normalized processivity is
very high (>1), we get systems with radius of gyration like
the FE ones. When the normalized processivity is small (<1),
we instead get systems with radius of gyration close to the
NE case. For intermediate values, we find steady states with
similar radii of gyration independently on the total number of
SMCs in the system.

Despite being only PE, the average MSD for the COM of
the polymers [Fig. 4(f)] shows the loss of elastic behavior at
early times while also displaying the LEF-dependent increase
in diffusivity. However, the value of PE-related MSDs is found
to always be smaller than the correspondent FE MSDs.

To make a comparison with experiments, we compute
the 2-point MSD [18,55], i.e., the autocorrelation of the
distance vector d between two given polymer segments
separated by the curvilinear distance l or 2pMSD(t, l ) =
〈[d(t0 + t, s + l ) − d(t0, s)]2〉t0,s. In line with recent experi-
ments [18,55,56] and Rouse theory, we observe a short-time
scaling 2pMSD(t ) ∼ t1/2 that is surprisingly unaffected by the
loop extrusion [Fig. 4(g)]. A quantitatively different behavior
of the 2pMSD(t ) is seen only at large times due to the different
polymer compaction, in agreement with experiments imple-
menting rapid cohesin knockouts [18,58]. At intermediate
time scales, both the NE and PE cases display 2pMSD(t ) ∼
t1/3, which is consistent with the one observed in experiments
with embryo cells [55].

Finally, we also compute the stress-relaxation function
G(t ) for this out-of-equilibrium PE scenario, and once again,
we observe a clear lack of entanglement plateaus in the
presence of LEFs [Fig. 4(h)]. In turn, this translates into a
significantly smaller effective viscosity of the PE solution,
which depends on the dimensionless ratio λ/〈d〉. For PE so-
lutions (λ/〈d〉 
 1), the viscosity is 100-fold smaller than the
control, and we expect the same scaling with polymer length
seen in Fig. 3. Importantly, we find that stopping the loop
extrusion process and performing GK calculation yields the
same G(t ) as the one obtained while loop extrusion is ongoing
(not shown). This confirms that the loop extrusion per se does
not affect the viscoelasticity of the solution, but rather it does
so indirectly through the change in polymer conformation.

IV. CONCLUSIONS

Motivated by the lack of understanding of how loop ex-
trusion affects polymer entanglement and dynamics in dense

solutions, we performed large-scale molecular dynamics
simulations of entangled polymers under the action of LEFs.
The first main discovery of our work is that loop extrusion,
when it is exclusively intrachain, dramatically decreases the
entanglement between chains in dense solutions. This result
supports previous works suggesting that loop extrusion drives
entanglement dilution [21,26]; we provide a solid numerical
quantification of this effect through the use of PPA in dense
solutions. FE chains display no sign of entanglement, and in
fact, they self-organize into territories (Figs. 1 and 2). We
then discovered that the mobility of the polymers is strongly
sped up by the extrusion process, in turn yielding an effective
fluidification of the solutions, leading to a much weaker scal-
ing of viscosity η ∼ L (in contrast with η ∼ L3 for entangled
systems) and a reduction up to 1000-fold for our longest
polymers (Fig. 3). These effects are in line with the fact that
synthetic bottlebrush polymers are more weakly entangled
than their linear counterparts [43]. Finally, we considered the
case of PE using a transient binding model and showed that,
even in the PE situation, with kinetic binding/unbinding of
LEFs, the viscosity of polymer solutions is greatly reduced
via the active extrusion process (Fig. 4).

Our findings suggest that loop extrusion may have a
marked effect on the large-scale organization and viscoelas-
ticity of the nucleoplasm, through the change in conformation
and dynamics of chromosomes. We note that our results are
strongly dependent on the fact that we assumed loop extru-
sion to be exclusively intrachain since we have neglected the
formation of Z loops for computational simplicity. We argue
that, despite being observed in bacteria [59] and in vitro [60],
there is no evidence of Z loops formed in eukaryotes. We
expect that considering interchain loop extrusion [36,61] and
bridging [37] may drastically influence our results, eventually
decreasing the mobility of the polymers and thus increasing
the viscoelasticity of the solution. It will be interesting to test
this scenario in the future.
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