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Inspired by recent advances in the chromosome capture techniques, a method is

proposed to study the structural organization of systems of polymers rings with topo-

logical constraints. To this purpose, the system is divided into compartments and a

simple condition is provided in order to determine if two compartments are in con-

tact or not. Next, a set of contact matrices T̄ab is defined that count how many times

during a simulation a compartment a was found in contact with a non-contiguous

compartment b in conformations with a given energy or temperature. Similar strate-

gies based on correlation maps have been applied to the study of knotted polymers

in the recent past. The advantage of the present approach is that is coupled with the

Wang-Landau algorithm. Once the density of states is computed, it is possible to

generate the contact matrices at any temperature. This gives an immediate overview

over the changes of phases that polymer systems undergo. The information on the

structure of knotted polymers and links stored in the contact matrices is the result of

averaging hundred of billions of conformations and visualized by means of colormaps.

The obtained color patterns allow to identify the main properties of the structure of

the system under investigation at any temperature. The method is applied to detect

the structural rearrangements following the phase transitions of a knotted polymer

ring and a circular polycatenane composed by four rings in a solution. It is shown

that the colormaps have a finite number of patterns that can be clearly associated
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with the different phases of these systems. The results agree with the available data

coming from the plots of the observables and the close inspection of snapshots of the

system taken at different steps of the simulations. They also bring new knowledge,

for instance predicting the average number of tails appearing in the conformations

of the considered polymers at a given temperature.

∗ neda.abbasi taklimi@phd.usz.edu.pl
† franco@feynman.fiz.univ.szczecin.pl
‡ marcin.piatek@usz.edu.pl
§ luca.tubiana@unitn.it

mailto:neda.abbasi_taklimi@phd.usz.edu.pl
mailto:franco@feynman.fiz.univ.szczecin.pl
mailto:marcin.piatek@usz.edu.pl
mailto:luca.tubiana@unitn.it


3

I. INTRODUCTION

In this work a method is presented to measure the frequency of the interactions between

the segments of a system consisting of one or more polymers. The method is inspired by the

recent advances in the techniques that capture the conformations of the chromosomes like

the Hi-C technique [1]. Each polymer of the system is divided into compartments containing

a number nc of monomers. A simple criterion to decide if two compartments a and b are

getting close is provided: Namely, the distance between their centers of mass should be

smaller than the sum of their radii of gyration. A set of contact matrices M(E) is defined,

whose elements Mab(E) count the total number of times in which any pair of compartments

a, b of a conformation of energy E has satisfied this criterion during a simulation of the

analyzed polymer system. In our setup, the polymers are coarse grained and defined on

a simple cubic lattice. The random sampling of their conformations is performed in the

microcanonical ensemble using the Wang-Landau Monte Carlo algorithm [2] that allows to

compute the density of states GE(E) for any value of the energy E. It turns out that the

contact matrices are an useful tool in order to understand the structural organization of a

polymer system at the given energy E. By passing from the microcanonical ensemble to

the canonical ensemble, it is also possible to study the structural rearrangements following

a phase transition. The method presented in this work is able to capture the main features

of states of given energy or temperature after averaging over hundred of billions of sampled

conformations. To analyze such a wealth of data using more traditional tools could slow

down considerably the simulations. Here it is just sufficient to look at the darker or brighter

tones of the colormaps generated from the contact matrices. Brighter or darker tones occur

depending on the frequency with which two compartments were found to be close during a

given simulation.

The validity of our approach has been checked by applying it to knotted polymers [3, 4]

and circular polycatenanes [5, 6] in a solution. We present here two study-cases: a knotted

polymer with the topology of a 41 knot and a circular [4]catenane. The phase transitions

of these systems are detected by looking at the plots of their specific heat capacity with

respect to the temperature. The main changes of the structures characterizing the different

phases of the considered polymers are determined using the colormaps obtained from the

contact matrices computed at temperatures that are lower or higher than the temperature
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at which a given phase transition is occurring. Conformations stored randomly during the

simulations are inspected in order to verify that the properties predicted from the colormap

are frequently occurring as it is expected.

Concluding, we would like to mention some of the previous studies that use other ap-

proaches but are relevant for this work. The statistical mechanics of open or circular copoly-

mers has been extensively investigated in the past, see e. g. [7–13]. Systems similar to those

treated here have been considered in [14, 15] and, more recently, in [16, 17]. There has been

also some interest on circular diblock copolymers with non-trivial topologies [16, 18–24].

Some more general systems have been considered in relation to specific aspects, like for in-

stance the knotted Hydrophilic-Polar (HP) models in proteins [25–27], knotted proteins on

the lattice [28, 29] and the self-assembly of nanomaterials of specific topologies controlled

by tuning the properties of patchy heteropolymers [30]. Previous studies of the statistical

mechanics of knotted homopolymers and copolymers with the help of the Wang-Landau al-

gorithm [2] can be found for example in [31, 32] (homopolymers) and [33, 34] (copolymers).

There exist also sophysticated alternative methods to investigate the structure of knots. For

example, Kymoknot [35]is a C code to identify and localize knots based on the Alexander

polynomial and Topoly is a Python package to characterize the topology of proteins [36].

The HOMFLYPT, Kauffman, and Jones polynomials are implemented in Knotplot [37],

Topoly, in the Mathematica KnotData package, and in Python Sage [38]. An approach sim-

ilar in spirit to that discussed here has been recently applied to the study of the dynamics

of prime knots [39]. The algorithm that has been used in that work to generate the contact

matrices is based on the correlations between the root-mean-squared fluctuations of indi-

vidual particles of a knot. In our approach not individual particles, but compartments are

considered. The size of the compartments allows to change the resolution under which the

knotted polymers or links are investigated. Another difference is that the present method

has been combined with the Wang-Landau algorithm and is specialized to the study of the

phase transitions. More in general, it is able to detect the properties of polymer systems in

presence of topological constraints at any temperature.

The material presented in this work has been divided as follows. Section II is an intro-

duction to the used methodology. In particular, in Subsection II A the main features of the

Wang-Landau Monte Carlo algorithm are explained, while Subsection II B is dedicated to

the construction of the contact matrix and to the visualization of the data stored in it using
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colormaps. The proposed method is then applied in Section III in order to understand the

structural rearrangements following the phase transitions of a single knotted polymer (Sub-

section III A) and a polycatenane composed by four concatenated rings (Subsection III B).

II. METHODOLOGY

A. The Wang-Landau method used

The method presented in this work has been tested using as a model polymer rings in a

solution. The monomers are located on the sites of a simple cubic lattice and each lattice

site can be occupied by at most one monomer. Two consecutive monomers on the loop are

linked by one lattice bond, so that the total length of the knot in lattice units is equal to

N . The polymers considered here are diblock copolymers with NA monomers of type A and

NB monomers of type B. Of course, NA + NB = N . The short-range interactions between

the monomers are described by following Hamiltonian:

H(X) = ε(tAAmAA + tBBmBB + tABmAB) (1)

In Eq. (1) X is an arbitrary conformation of the system. For a given conformation X ,

the quantities mMM ′ ’s, where M,M ′ = A,B, count the number of couples composed by a

monomer i of type M and a monomer j of type M ′ satisfying the following relations:

i 6= j ± 1 and |Ri −Rj | = 1 (2)

Here R1, . . . ,RN denote the locations of the N monomers and the indices i and j take all

values from 1 to N . The first condition of Eq. (2) is due to the fact that two contiguous

monomers along the backbone of the polymer are not interacting. ε is an energy scale

measuring the cost for two non-contiguous monomers i and j to be found at the minimal

allowed distance: |Ri − Rj | = 1. ε can be positive or negative. Finally, the tMM ′ are

coefficients that can take only three values: 0 and ±1. Two monomers i and j of types M

and M ′ respectively are said to form a bond whenever tMM ′ = −1 and the two conditions

(2) are satisfied. They t′MM ′s are used together with ε to determine the setup. For instance,

by putting tAA = tBB = −tAB = 1, we obtain a system of charged monomers, with the

monomers of type A having opposite charge with respect to monomers of type B. In this case,

the Hamiltonian (1) describes the case discussed in [34]. of Coulomb interactions screened
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setup ε tAA tBB tAB NA NB

homopolymers > 0 1 0 0 NA = N NB = 0

in good solvent

homopolymers < 0 1 0 0 NA = N NB = 0

in a bad solvent

diblock > 0 1 1 −1 NA > 0 NB = N −NA

copolymers I

diblock > 0 1 −1 0 NA > 0 NB = N −NA

copolymers II

TABLE I. Parameters describing the setups discussed in this work.

by the presence of ions in the solution. Alternatively, choosing tAA = 1, tBB = tAB = 0 and

NA = N,NB = 0, the knotted polymer becomes an homopolymer in a good solvent for ε > 0

and in a bad solvent for ε < 0. The used setups are summarized in Table I. In that table,

the case diblock copolymers I refers to the charged monomers mentioned before. In diblock

copolymers II the solvent is good for the monomers of type A and bad for those of type B.

For convenience, thermodynamic units will be chosen in which the Boltzmann constant is

equal to one. In these units the temperature θ is related to the usual temperature T by the

relation: kBT = θ. We will also introduce the rescaled temperature T̄ = θ
ε
. Clearly, the

ratio H(X)
kBT

= H̄(X)

T̄
, where H̄(X) = H(X)/ε:

H̄(X) = tAAmAA + tBBmBB + tABmAB (3)

More details are given in Ref. [34].

The simulations are performed using the Wang-Landau Monte Carlo algorithm [2]. The

initial knot conformations are obtained by elongating the existing conformations of minimal

length knots [40, 41] until the desired final length is attained. The details on the sampling

and the treatment of the topological constraints can be found in Refs. [42] and [43]. The

random transformations that are necessary for sampling the different knot conformations

are the pivot moves of Ref. [44]. In order to preserve the topological state of the system,

the pivot algorithm and excluded area (PAEA) method of Ref. [42] is applied.
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The partition function of the polymer knot is given by:

Z(T̄ ) =
∑

E

e−E/T̄g(E) (4)

where g(E) denotes the density of states:

g(E) =
∑

X

δ(H(X) − E) (5)

g(E) is the quantity to be evaluated via Monte Carlo methods. The expectation values of

any observable O may be computed using the formula:

〈O〉(T̄ ) =
1

Z(T̄ )

∑

E

e−E/T̄g(E)OE (6)

Here OE denotes the average of O over all sampled states with rescaled energy E.

B. The contact matrix

To construct the contact matrix, the polymer under investigation is divided into ”com-

partments” with nc monomers each. Supposing that the polymer has a total of N monomers,

the number of compartments is N/nc.

Let’s label these compartments with the first letters of the Latin alphabet a, b, c, . . . =

1, . . . , N/nc. During the sampling, every time a compartment a gets ”in contact” with

another compartment b, the element Mab of the contact matrix is updated as follows:

Mab = Mab + µ (7)

where µ is some small real number, for instance µ = 0.00000001. Of course:

Mab = Mba (8)

The condition for which two compartments are considered in contact will be provided in the

following. First, the gyration radii R
(a)
G and R

(b)
G of the two compartments is computed. The

two compartments a and b are said to be in contact if the distance dab between their centers

of mass satisfies the relation:

dab ≤ R
(a)
G + R

(b)
G (9)

The meaning of Eq. (9) is illustrated by Fig. 1. The above procedure produces the contact
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FIG. 1. In this picture one conformation is shown of a system obtained by joining together the

ends of two open knots using two chains. The resulting topology is that of a composite knot of

total length N = 192 consisting of a knot 31 (in the left upper part of the picture) with N31 = 24

and a knot 61 (in the right lower part of the picture) of length N61 = 80. The ends of both knots

are crosslinked in such a way that, if we take nc = 6, the knots 61 and 31 are strictly confined

within the compartments 1−14 and 20−25 respectively. The knot 31 is of minimal length and, for

this reason, it cannot fluctuate. In the picture two compartments a and b, respectively in red and

green colors, have been singled out. According to Eq. (9), two compartments a and b are in contact

provided that the distance dab between their centers of mass is less than the sum of their gyration

radii R
(a)
G + R

(b)
G . Essentially, this means that the volumes occupied by the two compartments are

overlapping.

matrix Mab that counts how many times during a simulation a conformation is found such

that two compartments a and b are in contact for a, b = 1, . . . , N/nc. The data stored in

Mab may be visualized using a colormap. For instance, in the colormap darker colors can

be assigned to pairs of compartments that have resulted to be more frequently distant from

each other and lighter colors to pairs that were closer. This convention will be used in all
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the colormaps presented here.

At least in principle, these data deliver an information about the shape of knotted poly-

mers. However, in a typical simulation hundred of billions of random conformations are

generated. These conformations have very different shapes, from extremely compact to ex-

tremely expanded and any case inbetween. It is difficult to capture the average features

of such a wealth of conformations. To obtain meaningful results, a further refinement is

necessary consisting in the introduction of a new contact matrix Mab(E). Mab(E) is defined

exactly like the full matrix Mab, but with the restriction that only conformations with a fixed

energy E are considered. Even with this restriction, the variety of shapes is still enormous.

Yet, the performed simulations show that the matrix Mab(E) is able to capture the common

features characterizing the conformations of given energy despite the fact that the shapes of

these conformations strongly differ from each other. Indeed, we have observed that after a

sufficient number of samples K has been generated, the colormap stabilizes and there are no

more significant changes of the patterns formed by the darker and lighter areas of the map.

Of course, during the sampling the elements Mab(E) are steadily growing because of the ad-

dition of the small quantity µ in Eq. (7), However, denoting by M
(K)
ab (E) and MλK

ab (E) the

contact matrices computed after taking into account K and λK conformations respectively,

we have that:

lim
K→∞

M
(λK)
ab (E) = λM

(K)
ab (E) (10)

where K >> 1 and λ > 1 is a scaling factor independent of a and b. In other words, when

large amounts of conformations have been explored, the ratio

M̄ab(E) = M
(λK)
ab (E)/M

(λK)
11 (E) (11)

converges to a given value which does not change if further samples are considered. While

convergence require K >> 1, this is not a problem because, during a simulation, a very high

number of conformations is explored, usually of the order 1011 or higher. The conditions

(10) and (11) have been verified in all performed simulations.

We would also like to stress that the information stored in the matrices M̄ab(E) is robust

with respect to changes in the choice of nc, i. e. the parameter that determines the resolution

under which a knotted polymer is observed. More precisely, supposing that n′
c > nc, a

colormap generated from a matrix M̄ab(E) computed using the lower resolution n′
c, but

interpolated over a larger number of points, presents the same patterns of bright and dark
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areas as the colormap obtained with the higher resolution nc, see Fig. 2. Of course, in

the limiting case nc = N , in which the compartment coincides with the whole system, the

resolution will be too low to get some useful information about the polymer conformations

from the matrix M̄ab(E). On the other hand, too small compartments, let’s say with nc < 5,

have a too small radius, so that Eq. (9) can hardly be applied.

As an example to illustrate the above settings, in Fig. 2 a few colormaps are shown

corresponding to the knotted homopolymer of Fig. 1. The topology of the system is that

of a composite knot 31#61. The total number of monomers is N = 192. The resolution has

been set by putting nc = 6, so that there are 32 compartments. To take into account the fact

that the polymer forms a closed curve in space, a fictitious 33−compartment has been added

whose entries in the contact matrix T̄ab(E) coincide with those of the first compartment.

Accordingly, the colormaps are divided into 33 × 33 = 1089 small sectors corresponding

to the 1089 elements of T̄ab(E). Moreover, the small sectors on the opposite edges of the

colormaps are identified as in the rectangle representing a torus on a two dimensional plane.

Finally, in the reduced Hamiltonian H̄(X) of Eq. (3) describing the energy of the system the

parameters tMM ′ have been chosen according to the setup homopolymer in a good solvent,

see Table I. More information can be found in the captions of Fig. 1. We would like to

stress the presence of cross-links constraining the knots 31 and 61 to be confined within the

compartments 20 − 25 and 1 − 14 respectively.

The data used in panels (a) and (b) come from the matrices M̄
(K)
ab (E), M̄

(K ′)
ab (E) taken

after considering K = 1.95 ·1011 and K ′ = 3.75 ·1011 conformations respectively. The energy

E = 100 is the average energy of the system at the temperature T̄ ∼ 1.19 . In panel (c) the

resolution has been reduced to nc = 12, but a higher interpolation level has been applied.

As it is possible to see, the color patterns in panel (a) and (b) are practically the same and

they are in a good agreement with that of panel (c). Let us notice that the range of values

corresponding to the colors in panel (a) (from 0.4 to 1) is different from that of panel (b),

which goes from 0.55 up to 1. However, the elements of the matrix M̄K
ab (E) in panel (a)

that are within the interval 0.4 − 0.55 consist of less than 7% of the total of 322 = 1024

elements. This is why their presence does not introduce substantial changes in the colormap

of panel a) with respect to that of panel (b). Small discrepancies like this may occur even

at very high values of K because, while the system is ergodic, certain conformations need a

considerable amount of time before being generated started from a given seed.
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In the next Section we will use the following notation to identify an arbitrary sector on

a colormap: x(l : m), y(n : p). For instance, the sector x(21 : 25), y(1 : 16) coincides with

the strip in panel (a) of Fig. 2 in which the purple color is dominant. This means that the

compartments 21 − 25 have a low chance to get in contact with the compartments 1 − 16.
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(a) 1.95x1011 conformations explored
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(b) 3.75x1011 conformations explored
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(c) 2.10x1012 conformations explored

FIG. 2. This picture shows two colormaps of the system in Fig. 1 taken at different instants of

the simulation, see panels (a) and (b). In panel (c) the third colormap has been generated using a

lower resolution (nc = 12 instead of nc = 6) but increasing the number of interpolated points. The

fixed energy of the system is E = 100.

III. APPLICATION OF THE TECHNIQUE: CAPTURING THE STRUCTURE

OF KNOTTED POLYMERS

The contact matrix method presented in the previous Section is a helpful tool in un-

derstanding the structure of knotted polymers and the structural reorganizations that they

undergo during phase transitions. It is particularly useful within the Wang-Landau method,

because in that case the sampling is performed in the microcanonical ensemble, where the

temperature T is not known. This makes it difficult to take snapshots of the conformations

that could show the structure of knotted polymers below and above the transition tempera-

ture. Once the matrices M̄ab(E) defined in the previous Section are computed for all values

of the energy E, the matrices M̄ab(T̄ ) in the temperature domain can be recovered using

Eq. (6):

Mab(T̄ ) =
1

Z(T̄ )

∑

E

e−E/T̄g(E)Mab(E) (12)
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M̄ab(T̄ ) counts how frequently two compartments a and b have been found in contact at a

given temperature T̄ during a simulation.

A. Case of a knotted polymer with topology 41 and N = 200

To show how an information about the structural organization of knotted polymers can

be retrieved, we consider as a first example a ring with N = 200 monomers and the topology

of a 41 knot. Let the setup be that of diblock copolymers I of Table I with NA = 160 and

NB = 40. The number of monomers in a compartment is nc = 5, so that each conformation

is divided into 40 compartments. The first 32 compartments contain monomers of type A,

while the last eight contain monomers of type B. This system, characterized by an excess

of A monomers, is known to exhibit three distinct phases as explained in [34]: a mixed

phase (M̄−phase) at the lowest temperatures, an intermediated phase (Ī−phase) and an

unmixed phase (Ū−phase) at high temperatures. The mixing is between the A and B

monomers. The plot of the specific heat capacity C/N of this system shows two peaks,

see Fig. 3. They correspond to the transitions M̄ −→ Ī and Ī −→ Ū . In the figure the

points A,B and C correspond to the temperatures T̄A = 0.05, T̄B = 0.56 and T̄C = 5.00

respectively. At T̄A the M̄−phase dominates, while at T̄B and T̄C the systems is in the Ī−

and Ū−phases respectively. In Fig. 4 the colormaps A,B,C obtained from the matrices

M̄ab(T̄A), . . . , M̄ab(T̄C) are shown. As it is possible to see, in all of them the central diagonal

is yellow, which is the color corresponding to the highest possible value in all colorbars.

This is expected, because it is very likely that two contiguous compartments are getting

in contact. Another common feature is that the values in the colorbars are ranging within

small intervals, the largest of them being [0.955,1.000] in the right panel of Fig.4. This is

explained by the fact that the colormaps are the result of the averaging over hundred of

billions of conformations. As a consequence, no matter how two compartments a and b are

located along the polymer backbone, it is well possible that there is a statistically relevant

set of conformations in which a and b are close. For this reason, the differences between the

elements M̄ab(E) can be small. However, as we will see these differences produce colormaps

that are able to distinguish the various phases of knotted polymers . The range of the

colorbar is of course sensitive to the presence of constraints. For instance, the interval of

values in the colorbars of Fig. 2 is large because of the crosslinks that limit the movements of
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❇
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FIG. 3. In this figure the plot of the specific heat capacity C/N of a diblock copolymer ring

with the topology of a figure-eight knot 41 is presented. C/N exhibits two peaks, corresponding

to the two transitions from a AB−mixed phase M̄ to an intermediate phase Ī and from Ī to an

unmixed phase Ū . In the figure the points A,B and C correspond to the respective temperatures

TA = 0.05, TB = 0.56 and TC = 5.00 in which the phases M̄, Ī and Ū dominate.

the compartments of the composite knot 31#61 discussed in Section II. An extended range is

likely to occur also when the set of conformations belonging to a given phase is small. In this

case, the limited number of available conformations could be characterized by a restricted

number of shapes preventing some of the compartments to get close to each other.

Coming back to Fig. 4, we note that the colormaps A, . . . , C exhibit three quite distinct

patterns. These patterns correspond to the structural organizations of the system in the

three available phases. In fact, they remain stable if the temperature is increased or decreased

and change only when one of the two peaks of the specific heat capacity is crossed. Similar

colormaps as that in the left panel of Fig. 4 are observed at the lowest temperatures in

which 0 < T̄ ≤ 0.30. The figure shows the colormap in the particular case T̄A = 0.05.

The distribution of darker and brighter colros is compatible with the conformations of the
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M̄−phase described in Ref. [34]. An example of such conformations, corresponding to the

lowest possible energy E = −135, is provided in Fig. 5, left panel. In this phase there is a

high level of mixing between the A and B monomers. The reason is that, in the chosen setup

of diblock copolymers I, the A and B monomers are subjected to attractive forces. As a

consequence, approximately in the range of temperatures T̄ ≤ 0.7, the monomers belonging

to different types form bonds in order to minimize the energy of the knotted polymer. The

result is that the conformations are very compact and the monomers are closely packed

together. This is visible in the colormap A of Fig. 4, left panel, where yellow is everywhere

the dominant color. Of course, due to the excess of A monomers, which repel themselves,

not all the A monomers are able to bind with the limited number of B monomers available.

As a result, small tails of A monomers departing from the bulk are appearing, see Fig. 5, left

panel. We associate these tails with the darker spots appearing in the colormap of Fig. 4,

left panel. From the colormap it turns out that the comparments 2 − 3 and 17 − 20 are

responsible for the largest tail, as they are the most likely to be distant from each other.

Indeed, the sector x(2 : 6), y(17 : 20) is the darkest one.
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FIG. 4. The colormaps in this figure correspond to the three distinct structural organizations that

the conformations of a diblock knotted ring with N = 200 monomers and the topology of the figure-

eight knot 41 take at different temperatures. The monomer composition of the system is NA = 160

and NB = 40, the setup is that of diblock copolymers I, see Table I and the caption of Fig. 5. The

shown colormaps A,B and C have been computed at the temperatures T̄A = 0.05, T̄B = 0.56 and

T̄C = 5.00 respectively.

At higher temperatures, in the interval between the two peaks of the heat capacity of

Fig. 3 around T̄B = 0.56, knotted polymers with NA >> NB are in the Ī−phase [34].
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A monomers

B monomers

Knot 41, E=-135

A monomers

B monomers

Knot 41, E=-110

A monomers

B monomers

Knot 41, E=10

FIG. 5. Sample conformations with topology 41 that are typical of the M̄−phase (left panel),

Ī−phase (center panel) and the Ū−phase (right panel). All conformations have N = 200

monomers, of which NA = 160 are A monomers and NB = 40 are B monomers. The segment

with the A monomers is shown in blue color and the segment with the B monomers in red color.

The conformation in the left panel has energy E = −135. This is the average energy of the system

at the temperature T̄ = T̄A = 0.05. Analogously, the values E = −110 and E = 10 of the remain-

ing two conformations are the average energies of the knotted ring at T̄B = 0.56 and T̄C = 5.00

respectively.

The colormap B in Fig. 4, central panel, corresponds to the structural organization of the

conformations typical of this phase. The sector x(31 : 40), y(1 : 30) is predominantly yellow-

red as a consequence of the fact that the A monomers in compartments 1 − 30 are forming

bonds with the B monomers in compartments 31 − 40. The result is a compact bulk held

together by these bonds that is similar, but smaller than that of the M̄−phase. The level of

mixing between the A and B monomers is high. The substantial difference from the previous

phase is the large violet area showing that the A monomers in different compartments have

a lower chance to get close to each other. This is compatible with the presence in the

Ī−phase of longer tails departing from the compact bulk. These tails are the effect of the

increased thermal fluctuations that counteract the attractive interactions between the A

and B monomers. As a consequence, the latter are no longer able to sustain a large bulk

as in the M̄−phase and consistent portions of the segment containing the A monomers are

floating outside a smaller bulk. The polymer conformation in Fig. 5, central panel, of energy

E = −110 is indeed characterized by a compact bulk with long tails.

As the temperature increases further, the interactions between the monomers are over-
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whelmed by the strong thermal fluctuations. As it is possible to see in Fig. 4, right panel,

the lighter yellow area is concentrated in the diagonal of colormap C, implying that mainly

the contiguous compartments are able to get close to each other. The remaining area of the

colormap is predominantly black or violet. The fact that the violet color is concentrated

in the sector x(31 : 40), y(1 : 30) has a simple explanation: It means that at the very high

temperature T̄ = 5.00 there is still some residual effect of the attractive interactions between

the B monomers in compartments 31 − 40 and the A monomers in compartments 1 − 30.

B. Case of a circular [4]catenane

In this subsection, the contact matrices will be applied to study the structural organiza-

tions at different temperatures of the circular [4]catenane shown in Fig. 6. This system is

composed by four polymer rings concatenated together of length nr = 80 each. The setup

of each ring is that of diblock copolymers II, see Table I, with nr,A = 40 monomers of the A

type and nr,B = 40 monomers of the B type. The total number of monomers in the system

is N = 320. Each compartment contains nc = 8 monomers. Accordingly, there are 40 com-

partments in the circular [4]catenane and the Hi-C matrix has dimension 40 × 40 = 1600.

Since each ring composing the link contains 10 compartments, it is convenient to divide the

Hi-C colormap into 16 sectors sab, a, b = 1, . . . , 4, of dimension 10×10. For instance, s34 de-

notes the sector x(21:30),y(31:40). The sectors sab may be considered as smaller colormaps

providing information about the average locations of the compartments of the a−th ring

with respect to the compartments of the b−th ring. The diagonal sectors saa, a = 1, . . . , 4

capture the structural organization of the single rings. It will also be convenient to dis-

tinguish inside a sector sab the four subsectors sAA
ab , sAB

ab , sBA
ab and sBB

ab . For example, sBA
ab

represents the colormap of dimension 5 × 5 which tells how distant are in the average the

five compartments of ring a containing B monomers from the five compartments containing

A monomers of ring b.

The specific heat capacity of the circular [4]catenane is characterized by two peaks and

a shoulder at T̄ ∼ 1.08, see Fig. 7. Following [45–49], peaks and shoulders appear in

connections with phase transitions. This implies that the system admits four distinct phases

and three phase transitions. The most important features of the structural organization of

the circular [4]catenane in all these four phases can be determined with the help of the Hi-C
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ring 1
ring 2
ring 3
ring 4

Four linked rings, Nring=80, NA,ring=40, NB,ring=40

FIG. 6. This picture illustrates the topological structure of the circular [4]catenane discussed in this

Subsection. Each ring composing the system contains 80 monomers and is in the setup of diblock

copolymer-II defined in Table I. The diblock copolymer is composed by two segments containing

40 monomers of type A and 40 monomers of type B. The solvent is good for the A monomers and

bad for the B monomers.

colormaps. It turns our that there are two levels of organization: that of the single rings

and that of the circular [4]catenane as a whole.

The first phase p1 appears at the lowest temperatures. In the colormap taken at T̄A = 0.05

in Fig. 8, left panel, yellow is the dominant color. Since yellow corresponds in the colorbar to

the highest probability that two compartments are found close to each other, it is possible to

conclude that the rings composing the circular [4]catenane as well as the whole system are in

compact conformations. As already mentioned, the information about the a−th ring is stored

in the sector saa, a = 1, . . . , 4 which is mainly colored with bright yellow. This means that

the rings are in a collapsed phase. This could be expected in the case of the compartments

containing the B monomers because in the chosen setup diblock copolymer II they are
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FIG. 7. Shown in this picture is the plot of the specific heat capacity C/N of the circular [4]catenane

of Fig. 6 against the temperature T̄ . The first peak is centered at about T̄peak1 = 0.56. A shoulder

is visible in the interval [0.98, 1.25]. The last peak is at about T̄peak2 = 1.25. T̄A, . . . , T̄D are the

temperatures at which the Hi-C colormaps of Figs. 8 and 8 have been computed. In the inset the

plot of the specific heat capacity of a single rings has been reported. It has a single peak centered

at T̄∗ ∼ 0.85.

subjected to attractive interactions. More surprisingly is that also the compartments with

the A monomers, which repel themselves, can be found near to each other as it is easy to

realize by looking at the subsectors sAA
aa , i = 1, . . . , 4 of the colormap of Fig. 8, left panel.

All these subsectors are indeed colored with yellow. This is however not a contradiction,
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FIG. 8. This figure shows the colormaps of the circular [4]catenane at the temperatures T̄A = 0.05

(left panel) and T̄B = 0.72 (right panel).

because only the formation of bonds can change the energy according to the Hamiltonian

(1). The condition (9) for two compartments to become close does not necessarily imply that

the monomers of these compartments are forming bonds. Concerning the global structure

of the circular [4]catenane, we notice that yellow is the dominant color in the sectors outside

the diagonal, i. e. sab with a 6= b. The fact that the subsectors sBB
ab with a 6= b are yellow

suggest that the compartments with the B monomers are densely packed together due to the

attractive interactions and form a compact bulk within the circular [4]catenane. Instead, the

subsectors sAA
ab with a 6= b are much darker than all the other subsectors. To fix the ideas,

let’s consider in the colormap of Fig. 8, left panel, the three dark spots that are visible in

the sector x(1:5),y(1:40). The presence of the first spot in the subsector sAA
12 in purple color

reveals that, in the average, the lowest probability to find two non-contiguous compartments

close to each other occurs in the case of the compartments with the A monomers of the first

ring and the compartments with the A monomers of the second ring. The brighter red

spots in subsectors sAA
13 and sAA

14 are telling instead that this probability is higher for the

compartments of the A monomers of the first ring and those of the third and fourth rings.

Here the first ring has been singled out, but of course the situation is symmetric if select the

second ring starting from the sector x(11:15),y(1:40)) or the remaining rings 3 and 4, see

the sectors x(21:25),y(1:40)) and x(31:35),y(1:40) respectively. In summary, the colormap of
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Fig. 8, left panel, obtained by considering hundred of billions of conformations, suggests that

the structure of an overwhelming number of these conformations at the lowest temperatures

is of the kind shown in Fig. 10, left panel: The B monomers (in red) of all the rings are tightly

packed together while the A monomers (in blue), that are subjected to repulsive interactions,

are organized in four long tails that stay far from each other in order to minimize the energy

of the circular [4]catenane. The signature of these four tails are the twelve darker spots

visible in the colormap of Fig. 8, left panel. An example of conformations in the p1 phase

has been given in Fig. 10, left panel.

With raising temperatures, the circular [4]catenane has a first phase transition p1 −→ p2

at about T̄ ∼ 0.58, i. e. the temperature of the first peak of the specific heat capacity in

Fig. 7. In the phase p2 the conformations are very similar to those in p1, see the colormap

in Fig. 8, right panel computed at T̄B = 0.72. There are namely twelve darker spots

corresponding to the four tails mentioned before and the four rings are still held strongly

together by the bonds formed by the B monomers. However, the conformations of the single

rings as well as those of the whole system are not tight as in the phase p1. This can be

seen by looking for instance at the subsectors sAA
aa which are yellow mainly near the diagonal

line, while the upper and lower triangles are somewhat darker. Moreover, the compartments

with the A monomers are no longer sticking near the compartments with the B monomers

as it is in the phase p1. Indeed, all subsectors sAB
ab and sBA

ab in Fig. 8, right panel, that are

yellow in the colormap of the left panel corresponding to the p1 phase, are now reddish.

The fact that the conformations in p2 are more loosely packed than in p1 implies that the

monomers have an increased mobility. Indeed, the range between 0.65 and 1 in the colorbar

of Fig. 8, left panel, is bigger that the range in the right panel which goes from 0.88 to 1.

As previously mentioned, the range of values in the colorbars is dependent on the presence

of constraints or on the number of conformations that are accessible in a given phase. The

typical conformation in the p2 phase is shown in Fig. 10, right panel.

The next phase is p3. The main properties of its conformations are encoded in the

colormap of Fig. 9, left panel. The temperature of the colormap is T̄C = 2.50 Also this

phase is characterized by four tails, whose signature are the twelve darker spots as explained

before. The yellow color is dominant only in along the diagonal line of the colormap, showing

that the contiguous compartments are the most likely to be found close to each other. The

sectors sBB
ab with a, b = 1, . . . , 4 and a 6= b are still colored with yellow like in the p1 and
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FIG. 9. This figure shows the colormaps of the circular [4]catenane at the temperatures T̄C = 2.50

(left panel) and T̄D = 8.00 (right panel).

p2 phases. Even if the tone of this yellow is darker, this means that also at the relatively

high temperature T̄C = 2.50 the circular [4]catenane is in a compact conformation in which

all the four rings are held together by the attractive interactions between the B monomers.

A difference from the previously discussed phases is that the single rings are now in an

expanded and unmixed state [? ]. The diagonal sectors saa are in fact yellow colored only in

the neighborhood of the diagonal line while the upper and lower triangles are darker. This

is the typical signature of an unmixed/expanded ring in which the interactions between the

monomers become negligible in comparison with the strong thermal fluctuations. A similar

behavior has already been found in the Ū−phase of the 41 knot, see Fig. 4, right panel and

related comments.

Finally, in the last phase p4, which is dominant at the highest temperatures, the interac-

tions become negligible due to the strong thermal fluctuations. In this situation, only the

contiguous compartments have the highest chance to get close. This is why the colormap

of Fig. 9, right panel, has dark tones apart from the diagonal. These tones are darker in

correspondence of the sectors sAA
ab and lighter in the case of the sectors sBB

ab . This can be

explained by the fact that the attractive interactions between the B monomers and the

repulsive ones between the A monomers are still playing a role. The stuctural organization

into a bulk held together by the B monomers and the four tails has however been lost. A
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FIG. 10. This Figure shows snapshots of conformations with energies E = −223 (left panel)

and E = −199. E = −223 and E = −199 are approximately the average energies of the circular

[4]catenane at the temperatures T̄A = 0.05 and T̄B = 0.72 respectively. The A monomers are

located in the blue segments and the B monomers in the red segments. For convenience, the rings

have not been distinguished.

conformation that well summarizes these characteristics is shown in Fig. 11, right panel.

IV. CONCLUSIONS

The plots of the heat capacity of knotted polymers and polycatenanes show that these

systems undergo several phase transition, but it is often not easy to identify the differences

in the structural organization of the conformations that characterize the various phases.

The Hi-C inspired method introduced in this work is very useful in this respect, because

the Hi-C matrices and the related colormaps are able to capture the relevant features that

distinguish a given phase from the others.

The method has been illustrated here in the particular cases of a knotted diblock copoly-

mer with the topology of the knot 41 and a circular polycatenane consisting of four rings

linked together, but several other topologies have been tested. There is an outstanding

agreement between the number of phases predicted by the plots of the specific heat capacity

and the number of patterns shown by the colormaps. The results concerning the knotted

diblock copolymer confirm the previous findings of Ref. [34], but also provide further in-

formation. For instance, they prove that the tails observed in the conformations analysed
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FIG. 11. This Figure shows snapshots of conformations with energies E = −79 (left panel) and

E = −17. E = −79 and E = −17 are approximately the average energies of the circular [4]catenane

at the temperatures T̄C = 2.50 and T̄D = 8.00 respectively. The A monomers are located in the

blue segments and the B monomers in the red segments. For convenience, the rings have not been

distinguished.

in [34] are a characteristics of the mixed M̄ and intermediate Ī phases. In particular, the

signature provided by the darker spots in the colormap of Fig. 4, left panel, suggests that the

conformations of the knotted copolymer like that of Fig. 5, left panel, with three small tails,

one of which somewhat bigger than the other two, are common at the lowest temperatures.

We have also seen that the range of the values in the colorbars is related to the mobility

of the monomers and can be bigger or smaller depending on the presence of constraints or

not. The analysis of the circular [4]catenane has revealed that the phase transitions are

related to rearrangements of the polymer at two scales: that of the single rings composing

the polycatenane and that of the whole system. The sectors along the diagonal of the main

colormap are colormaps themselves providing information about the conformations of the

ring. The sectors outside the diagonal describe how frequently the compartments belonging

to different rings may be found in close vicinity in randomly generated conformations of the

circular [4]catenane.
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The Hi-C inspired method relies on the condition of Eq. (9) that is simple to implement

in a simulation without significantly increasing the time necessary for the calculations. The

resolution of the polymer structure is determined by the parameter nc that fixes the number

of monomers in a compartment. The results are robust with respect to the change of this

resolution, see Fig. 2 and related comments. The set of Hamiltonians (1) used to model the

systems discussed in this paper implies short interactions. Work is in progress to extend the

results to other types of interactions.
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