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We present an in-depth multi-scale analysis of the conformations and dynamics of polar active
polymers, comparing very dilute and very dense conditions. We unveil characteristic length and
time scales, common to both dilute and dense systems, that recapitulate the conformational and
dynamical properties of these active polymers upon varying both the polymer size and the strength
of the activity. Specifically, we find that a correlation (or looping) length characterises the poly-
mer conformations and the monomer dynamics. Instead, the dynamics of the center of mass can
be fully characterised by the end-to-end mean-square distance and by the associated relaxation
time. As such, we show that the dynamics in melts of polar active polymers are not controlled by
entanglements but only by the strength of the self-propulsion.

Active matter consists of systems whose fundamental
units are able to transduce energy into persistent move-
ment leading to features very different from the passive
counterparts [1, 2]. Examples of such systems abound in
nature, from the macroscopic scale, such as bird flocks or
fish shoals [3], down to the sub-cellular level, the main ex-
ample being the cytoskeleton [4]. Of late, significant at-
tention has focused on a specific subset of active matter –
active polymers [5]. This interest arises from their biolog-
ical relevance, as many biological systems feature molecu-
lar motors, which serve as prototypical examples of active
matter by converting energy from chemical reactions into
motion along biological filaments, such as DNA or RNA.
For instance, DNA polymerase traverses DNA strands
during replication, while ribosomes actively synthesize
proteins by sliding along RNA filaments [6]. Experimen-
tally, anomalous diffusion of chromatin loci has been ob-
served [7] and showed to be caused by non-equilibrium
processes related to enzymatic activity. A further ex-
ample at the micrometric scale is given by cilia and flag-
ella, used in mono- as well as multi-cellular organisms for
transport and locomotion [8]. Furthermore, active poly-
mer models have been used to rationalise the individual
and collective properties of filamentous bacteria and par-
asites [9–11]. On the other hand, active filamentous sys-
tems have also attracted attention at the macro-scale, as
worms [12] seem to provide an interesting experimental
system with anomalous emerging properties [13–16]. In
all cases, what makes active filaments interesting is that
the energy input at the monomer level changes the typi-
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cal conformation of the whole filament and influences its
dynamics in a multi-scale fashion. This is true for a sin-
gle filament; however, at finite density, it reverberates on
the organisation of the entire system [9, 17–19]. Conse-
quently, understanding the multi-scale organisation of ac-
tive polymer systems represents an important challenge.
In this paper, we focus on polar (or tangential) active

polymers, where a self-propulsion force is applied to each
monomer parallely to the local backbone tangent. In
this case, significant progress has been achieved in char-
acterizing dilute active linear and ring polymers [20–26].
Quite surprisingly, less work has been devoted to dense,
entangled polymer systems (melts), feature that is rele-
vant in many contexts, as for instance in chromatin or-
ganization [27]. In particular, the efforts were restricted
to the limit of small activity [28–30], with the recent ex-
ception of Ref. [31] exploring the consequences of large
activity for linear viscoelasticity. Here, we investigate
how activity impacts on the size, shape and dynamics
of entangled polymer chains in melt and compare them
vis-à-vis with their counterparts in dilute conditions, to
highlight the main differences and the interplay between
entanglements and activity.
Specifically, we employ Langevin molecular dynamics

computer simulations (for details, see Section S1 in Sup-
porting Information (SI)) of a well established model for
polar active polymers [21] in the presence of both, Brow-
nian thermal forces, mimicking the effect of the solvent,
and active local tangential forces [21] of constant norm
fa imparted on every monomer, except the first and the
last one, of each chain in the system. In order to express
the relative strength of the activity against the thermal
fluctuations, we introduce the usual adimensional Péclet
number Pe ≡ faσ/(κBT ) where T is the temperature of
the environment and κB is the Boltzmann constant. Here
we choose Pe = 1, 5, 10, 20, i.e. from low to high activity
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regime and, for reference, we compare these situations to
the purely passive case Pe = 0. We consider systems of
hundreds (250, at least) polymer chains of, respectively,
N = 100, 200, 400, 800 monomers per chain at the overall
monomer density ρ = 0.85σ−3 (σ is the monomer diam-
eter) corresponding to typical melt conditions [32]. For
comparison, we simulate the same chains at very dilute
conditions. A more detailed account of the polymer sys-
tems considered in this work (including their preparation
and proper equilibration) is provided in Sec. S1 in SI.

We characterize the folding of polymer chains across
all scales employing the mean-square internal distance
for monomer pairs with contour length separation n,

⟨R2(n)⟩ ≡ 1

N − n

N−n∑
n′=1

⟨(r⃗n′+n − r⃗n′)
2⟩ , (1)

where r⃗n (n = 1, ..., N) is the spatial position of monomer
n and the brackets ⟨·⟩ denote the ensemble average; we
further consider the corresponding (local) scaling expo-
nent,

ν(n) ≡ 1

2

log(⟨R2(n+ 1)⟩)− log(⟨R2(n− 1)⟩)
log(n+ 1)− log(n− 1)

. (2)

For passive systems (i.e., Pe = 0), ⟨R2(n)⟩ dis-
play monotonous behavior (see corresponding panels in
Fig. S1 in SI) and the scaling exponent, although within
the limits of finite-size effects, agree with the estab-
lished [33] asymptotic values νdilute ≃ 0.6 and νmelt =
0.5. Conversely, the behavior of ⟨R2(n)⟩ for active sys-
tems appears more complex (see corresponding panels
in Fig. S1 in SI). At fixed Pe and N , we report three
regimes for small, intermediate and large n, with asymp-
totic ν (see insets) smaller than the passive chains (we
will expand on this point later). However, and most re-
markably, for the same Pe, ⟨R2(n)⟩ depends, at interme-
diate contour separations, also on the total chain length
N , a feature completely absent in passive systems.

In order to rationalize this peculiar behavior, we look
at the bond-vector correlation function as a function of
the contour length separation n [22, 23, 34],

c(n) ≡ 1

⟨⃗t 2⟩

∑N−1−n
n′=1 ⟨⃗tn′+n · t⃗n′⟩

N − 1− n
, (3)

where t⃗n ≡ r⃗n+1 − r⃗n (n = 1, ..., N − 1) is the oriented

bond-vector and ⟨⃗t 2⟩ =
∑N−1

n′=1 ⟨⃗t 2n′⟩/(N−1) is the mean-
square bond length, i.e. c(0) = 1 by construction. Since
c(n) and ⟨R2(n)⟩ are related to each other via the re-

lation c(n) = 1
2

d2

dn2 ⟨R2(n)⟩, features of ⟨c(n)⟩ may help
understanding the observed phenomenon. Indeed, in pas-
sive systems (see top row in Fig. S2 in SI), c(n) displays
a power-law decay for both dilute and melt conditions,
with characteristic exponents (c(n) ∼ n−0.824 for dilute
systems and c(n) ∼ n−3/2 for melts) in good agreement
with previous results [35]. On the contrary, the distinct
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FIG. 1. Contour distance nmin (symbols), corresponding to
the contour length position of the minimum value of the bond-
correlation function c(n) (Eq. (3)) for Péclet number Pe > 0,
as a function of the polymer total length N . Each dashed line
corresponds to the best fit of the relative data to the power-
law (4), whose values for the exponent α are reported in the
legend (and in Table S1 in SI).
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FIG. 2. (Top, main) Normalized mean-square internal dis-
tance, ⟨R2(n)⟩/⟨R2(nmin)⟩, as a function of normalized con-
tour length separation, n/nmin. (Top, insets) Local scaling
exponent ν(n) (Eq. (2)) as a function of n/nmin. The dashed
lines set the reference values ν = 0.4 and ν = 0.5. (Bottom)
Bond-vector correlation function ⟨c(n)⟩ as a function of nor-
malized contour length separation n/nmin. The asymptotic
∼ n−3-decay is a guide to the eye and purely indicative. For
all panels, Pe = 20 is fixed; symbols refer to dilute (△) and
melt (◦) conditions, respectively.

scaling regimes displayed by ⟨R2(n)⟩ for Pe > 0 are mir-
rored by the non-monotonous behavior of c(n) (second
to last row in Fig. S2 in SI). Indeed, for Pe > 0, c(n) ex-
hibits a distinct negative minimum, i.e. bond-vectors be-
come anti-correlated, at some characteristic length scale
n ≡ nmin. Afterwards, correlations decay back to zero,
yet with a much steeper behavior (c(n) ∼ n−3, roughly)
than in passive conditions.

The presence of the negative minimum, entailing a
length scale nmin, is particularly suggestive as it im-
plies [36, 37] that, both in dilute and melt conditions,
active polymers tend to (double)fold into looped confor-
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FIG. 3. Monomer mean-square displacement, g1, nor-
malized by ⟨R2(nmin)⟩ as a function of rescaled time t/τmin

(lines) in comparison to normalized mean-square internal dis-
tance, ⟨R2(n)⟩/⟨R2(nmin)⟩, as a function of normalized con-
tour length separation, n/nmin (symbols). Symbols are as in
Fig. 2 and Pe = 20.

mations of loop mean contour length approximately equal
to nmin. We thus report such emerging length scale in
Fig. 1. We notice that, in both dilute and melt condi-
tions, nmin decreases upon increasing Pe at fixed N . Con-
versely, at fixed Pe, nmin grows with N as a power-law.
We quantify this behavior by fitting our data (see dashed
lines in Fig. 1) to the phenomenological power-law

nmin = n0

(
N

n0

)α

, (4)

where n0 is a microscopic contour length scale that de-
pends on Pe and where 0.259 ≤ α ≤ 0.36 for dilute chains
and 0.32 ≤ α ≤ 0.37 for melts (see Table S1 in SI for
the values of the fit parameters). More importantly, we
claim that nmin is the fundamental length scale of ac-
tive systems. In fact, by normalizing the mean-square
internal distances ⟨R2(n)⟩ in terms of ⟨R2(n = nmin)⟩
and after rescaling n by nmin, the distinct sets of data
for each Pe collapse onto one single master curve; the
same happens with the bond-correlation functions c(n)
(see Fig. 2 and Fig. S3 in SI). After rescaling, ⟨R2(n)⟩
and the associated exponent ν(n) (Eq. (2)) reveal the
following noteworthy features: (i) for n/nmin ≲ 1 both
dilute and melt polymers are stiffened by the activity,
i.e. ν(n) > 0.5 (see insets in the panels for rescaled
⟨R2(n)⟩ in Fig. 2 and Fig. S3 in SI). Interestingly, by
fitting ⟨R2(nmin)⟩ with a power-law R2

0(N/n0)
β and us-

ing the results of Eq. (4), one can derive the power-law
exponent β/α for ⟨R2(nmin)⟩ as a function of nmin, re-
sulting in β/α > 1 systematically (Table S1 in SI); (ii) for
n/nmin ≃ 1, the activity-induced looping of the polymer
results in an unusually low value for ν as the polymer
tends to become locally more compact; (iii) finally, in
the long-chain limit (n/nmin ≫ 1) dilute and melt poly-
mers exhibit the asymptotic values for ν(n), respectively
ν(∞) ≃ 0.5 and ν(∞) ≃ 0.4. Quite interestingly, these
asymptotic values appear to be independent of the activ-
ity level already for relatively moderate activities Pe ≥ 5.

We further show that nmin plays an important role in
the characterization of the chain dynamics. We consider
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FIG. 4. (Top) Mean-square displacement of the chain centre
of mass per unit time, g3(τ)/τ , normalized by ⟨R2

ee⟩/τee as a
function of normalized time τ/τee at fixed Pe = 20. (Bottom,
left) Chain mean-square end-to-end distance ⟨R2

ee⟩ normal-
ized by N as a function of Pe (symbols) and corresponding
power-law best fits (lines). (Bottom, right) Chain relaxation
time τee normalized by N as a function of Pe (symbols) and
corresponding power-law best fits (lines). Symbols are as in
Fig. 2.

the monomer mean-square displacement [32],

g1(τ) ≡
1

N

N∑
n=1

⟨(r⃗n(t+ τ)− r⃗n(t))
2⟩ , (5)

as a function of time τ ; we define the time scale τmin as
g1(τmin) = ⟨R2(nmin)⟩. By expressing g1 and the time τ
in terms of, respectively, ⟨R2(nmin)⟩ and τmin, the differ-
ent data superimpose perfectly on the normalized data
for ⟨R2(n)⟩ (Fig. 3 for Pe = 20 and Fig. S4 in SI), namely
monomers, on average, move along the contour length
of their chain. Overall, activity triggers a kind of mo-
tion where each monomer is, on average, pulled along
the polymer local shape before the chain reorganizes into
a new conformation.
Finally, the material properties of the system, such

as its viscosity, are of crucial interest for polymer melts
and can be connected to the dynamics of the center of
mass of the chains [33]. We thus investigate g3(τ), the
mean-square displacement of the chain centre of mass

r⃗CM(t) ≡ 1
N

∑N
n=1 r⃗n(t), defined as

g3(τ) ≡ ⟨(r⃗CM(t+ τ)− r⃗CM(t))
2⟩ , (6)

as a function of time τ . Previous works [21, 24, 34, 38] on
dilute polar active polymers has shown that, with respect
to passive systems, g3(τ) displays a ballistic regime up to
the chain relaxation time τee, defined as g3(τee) = ⟨R2

ee⟩,
⟨R2

ee⟩ being the mean-square end-to-end distance (i.e.,
Eq. (1) with n = N−1); as such, τee is proportional to the
end-to-end correlation time, usually employed to charac-
terize g3(τ) in polar active polymer models. At larger
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melt conditions as a function of Pe.

times an active diffusive regime ensues g3(τ) = 6Dτ ,
where the active diffusion coefficient D increases with
Pe and is independent of the chain contour length N ,
in contrast with the passive, hydrodynamic-free, predic-
tions [33]. We observe that such features are present also
in melt conditions. Additionally, upon normalizing g3(τ)
by the corresponding ⟨R2

ee⟩ and τ by τee, data from sys-
tems at different values of N and Pe strikingly collapse
onto the same universal curve that is valid for both di-
lute and melt systems in the ballistic and active diffusive
regime (Fig. 4 (top panel) and Fig. S5 in SI). This re-
sult is quite remarkable for polymer melts as, according
to the classical tube model [33], for τ < τee single-chain
dynamics is expected to be sub-diffusive, g3 ∼ t1/2, since
motion is confined in a tube-like region, resulting from
the topological barriers (entanglements) exerted by the
surrounding chains. The absence of this regime suggests
that polymer dynamics is entirely controlled by activity,
that govers τee and ⟨R2

ee⟩, and entanglements become al-
most irrelevant for polymers’ dynamics in melts of tan-
gentially active polymers. In support of this point, we
highlight the scaling of ⟨R2

ee⟩ and τee in melt conditions:
⟨R2

ee⟩ ∝ N/Pe0.1 and τee ∝ N/Pe1.3 (Fig. 4, bottom pan-
els). Notice, in particular, a difference with the infinite
dilution case, where ⟨R2

ee⟩ ∼ N/Pe0.3 and τee ∝ N/Pe,
as well as with passive melts where τee ∼ N3 [33]. As
D ∝ ⟨R2

ee⟩/τee, we indeed recover the scaling of D as
function of N and Pe, D ∝ N0 ·Pe1.2 (see dashed line in
Fig. 5). While results for dilute chains are in agreement
with the analytical predictions [21] (solid line in Fig. 5,
see also the brief recapitulation in Sec. S2A in SI), notice
that D has a steeper increase in melt; as such although
dilute chains diffuse systematically faster than in melt,
the gap between the two appears to be narrowing for

growing Pe (see inset in Fig. 5) until the two set-up’s be-
come substantially equivalent at sufficiently high values
of Pe. These findings align with the reported observa-
tions that the relaxation times τee for the two set-up’s
become increasingly close to each other as Pe increases
(Fig. 4, bottom right panel).

To summarize, in this work we have investigated the
impact of activity on the conformational and dynamical
properties of linear chains in melt conditions, as com-
pared to dilute active and passive melt counterparts. The
multi-scale analysis of the conformations highlighted a
fundamental length scale, nmin, which governs both the
conformation of the active chains as well the dynamics
of the individual monomers. The latter property high-
lights the “railway motion”, typical of tangential propul-
sion, where monomers move along the contour path of the
backbone. Notably, we observe deviations from random
walk statistics, particularly for the formation of loops
(see Figs. S1 and S2 in SI) within the chains. Moreover,
the asymptotic exponent ν extracted from ⟨R2(n)⟩ devi-
ates from the random walk value of ν = 1/2. While the
deviation is small for single chains and both predictions
are, overall, compatible with the results reported in [21],
chains in the melt deviate significantly reaching a value
of ν ≃ 0.4. In this respect, some warning needs to be
given on attempting to measure ν from the scaling of the
mean-square end-to-end distance ⟨R2

ee⟩ (namely, Eq. (1)
with n = N − 1) vs. N . In fact, as shown in Sec. S2B
and the corresponding Fig. S6 in SI and in agreement
with [31], the exponent ν of active chains appears to
be ≃ 0.5 for both dilute and melt conditions suggesting
that active chains in melt do not remain completely self-
similar (as also pointed out by the mean-square internal
distance ⟨R2(n)⟩ in Fig. S1 in SI [39]). At the same time,
we have shown that the (apparent) scaling ⟨R2

ee⟩ ∼ N
plays a role in the characterization of chain dynamics.
We further find that both systems remarkably exhibit
the same centre of mass dynamics (see Fig. 4) governed
by the length scale ⟨R2

ee⟩ and by the time scale τee. At
long times, τ ≫ τee, both systems diffuse with a diffu-
sion coefficient, D, which increases with Pe (see Fig. 4)
and is independent on N . However, as mentioned, D has
a stronger dependence on Pe in melts, possibly hinting
at the emergence of multi-chain effects that go beyond
the railway motion. Taken together our results suggest
that both chain conformations and dynamics present uni-
versal features, that are independent of whether chains
are dilute or in melt conditions. In the latter situation,
in particular, the slowing effects due to the unavoidable
topological constraints (entanglements) between distinct
chains – a fundamental property of their passive counter-
parts – become negligible when chains are subjected to
tangential active forces. These results align with experi-
mental observations [14] on active worms, which showed
a decrease in system viscosity with activity, and a milder
dependence on concentration compared to passive entan-
gled systems. Moreover, as recently shown [31], for tan-
gentially propelled entangled chains the plateau modulus,
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G0, that encodes the elastic response of the system [33],
depends on the active forces in the systems and is not
anymore simply proportional [33] to the mean concen-
tration of entanglement lengths as in equilibrium condi-
tions.

SUPPORTING INFORMATION

Complementary details on: polymer model, molecu-
lar dynamics computer simulations and preparation and
equilibration of polymer configurations, single-chain dif-
fusion and mean-square end-to-end distance. Supporting

table for scaling parameters nmin and ⟨R2(nmin)⟩. Ad-
ditional figures on: polymer structure (internal distances
and bond-vector correlations), polymer dynamics (mean-
square displacements for monomers and chain centre of
mass).
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S1

In this Supporting Information file, we provide more specific details on the polymer model used (Sec. S1A), on the
compositions of the considered polymer systems and technical details on the molecular dynamics computer simulations
(Sec. S1B) and on the initial preparation and following equilibration of the systems (Sec. S1C). We conclude with a
brief overview on the scaling properties of the mean-square end-to-end distance for our polymers (Sec. S2B) and a
short recap (Sec. S2A) of the theory for active polymer model diffusion first discussed in Refs. [21, 34] and used in
the main text.

S1. POLYMER MODEL AND METHODS

A. Numerical model for active polymers

Chain connectivity and monomer-monomer interactions for dilute and melt linear chains are accounted for by a
suitably modified version of the classical polymer model by Kremer and Grest [32]. Specifically, excluded volume
interactions between beads (including consecutive ones along the contour length of the chains) are described in terms
of the shifted and truncated Lennard-Jones (LJ) potential:

ULJ(r) =

{
4ϵ

[(
σ
r

)12 − (
σ
r

)6
+ 1

4

]
r ≤ rc

0 r > rc
, (S1)

where r denotes the spatial separation between the bead centers. By denoting with κB the Boltzmann constant, the
energy scale is set to ϵ = 20κBT (against the standard ϵ = 1 κBT [32]) where T and σ are, respectively, the units
of temperature and length in our simulation. The unit of energy is thus taken as the thermal energy, i.e. κBT = 1.
Further, nearest-neighbour monomers along the contour of the chains are connected by the finitely extensible nonlinear
elastic (FENE) potential, given by:

UFENE(r) =

{
−0.5kR2

0 ln
(
1− (r/R0)

2
)

r ≤ R0

∞ r > R0
, (S2)

where k = 30ϵ/σ2 = 600κBT/σ
2 is the spring constant and R0 = 1.5σ is the maximum extension of the elastic FENE

bond [40]. Finally, polymer activity is taken into account by imposing that the i-th monomer of each chain of spatial
coordinates r⃗i (for i = 2, ..., N − 1, with N being the total number of monomers of the chain) is subject to the active

force F⃗i [21]:

F⃗i = fa
r⃗i+1 − r⃗i−1

|r⃗i+1 − r⃗i−1|
, (S3)

of constant magnitude fa and instantaneous orientation directed along the tangent to the polymer chain at r⃗i. Notice
that the first and the last monomers of each chain are (conventionally, see [21]) excluded by the active perturbation
because those monomers have only one, instead of two, neighbor along the chain. As described in the main paper,
the relative importance of the active forces vs. the thermal ones is quantified in term of the so called Péclet number
Pe, defined as

Pe ≡ faσ

κBT
, (S4)

We consider values Pe = 1, 5, 10, 20 and, for comparison, the purely passive case Pe = 0.

B. Simulation details

We consider monodisperse melts ofM linear polymer chains, each chain being made of N monomers. Specifically, we
consider systems with compositions (M,N) = (1000, 100), (500, 200) and (250, 400) (i.e., M×N = 100,000 monomers
in total) and (M,N) = (250, 800) (i.e., M ×N = 200,000 monomers in total). As in the original work by Kremer and
Grest [32], we maintain a fixed monomer density of ρ = 0.85σ−3 for all polymer compositions.

As mentioned in the main paper, we compare simulation results for active polymer melts to those for single self-
avoiding active polymers in dilute conditions. In the latter case we simulate the same systems as the ones of the
set-up’s described above, with deactivated inter-chain LJ (see Eq. (S1)) excluded volume interactions. This allows us
to effectively simulate replicas of linear chains in dilute conditions.
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The static and kinetic properties of chains are studied using fixed-volume and constant-temperature molecular
dynamics (MD) simulations with implicit solvent and periodic boundary conditions. MD simulations are performed

by using the LAMMPS package [41]. By introducing the MD time-unit τMD = σ
√

m/κBT , we integrate the equations
of motion by using the velocity-Verlet algorithm. We set ∆t, the integration time step of the algorithm, as the following:
(i) ∆t = 0.01 τMD for passive polymers (i.e., Pe = 0) and (ii) ∆t = 0.001 τMD for active systems with Pe > 0 (in order
to prevent accidental strand-crossings, especially in the regime of high active forces). Finally, in order to ensure the
overdamped regime [34], the friction coefficient γ is = 20 τ−1

MD.

C. Preparation of initial chain configurations and check for equilibration

Preparation of melts of linear chains poses no particular technical problem. Chains up to N = 400 were initially
arranged inside the simulation box and the system is passively (i.e., active forces at this stage are turned off) let
towards complete equilibration (defined as after the chains have drifted from their original positions for several times

their own root-mean-square end-to-end distance,
√
⟨R2

ee⟩ (where ⟨R2
ee⟩ is Eq. (1) in the main text with n = N − 1).

For the case with N = 800 this procedure becomes tediously long, so we have prepared first the system on the FCC
lattice and, then, let it partially equilibrate by means of the efficient kinetic Monte Carlo algorithm used in [42, 43].
After completing this step, we move the whole system back off-lattice again and let it evolve by standard MD: being
the system highly entangled for the polymer contour length considered, we performed one last equilibration check by
verifying that the main structural properties of the chains are effectively independent of the initial preparation [44].

Following this initial set-up, the polymer conformations become the starting point for the production runs of
systems in the presence of active force (i.e., for Pe > 0) and, also, for their passive counterparts (Pe = 0). The typical
production run consists of 106 τMD-units.

S2. MORE ON SINGLE-CHAIN PROPERTIES

A. Long-time diffusion coefficient

The long time diffusion coefficient of isolated tangentially active polymers can be computed analytically [21, 34].
We start from the diffusion coefficient for an Active Brownian Particle,

D = Dt +
τr v

2
a

2d
= Dt +

τr (Fa/γ)
2

2d
, (S5)

where va = fa/γ is the self-propulsion velocity and Dt = κBT/γ; d is the dimensionality of the system (here, d = 3).
For a tangentially active polymer: (i) γ = Nγ0, γ0 being the friction coefficient of a single monomer; (ii) Fa = faRee/σ,
with fa = κBT

σ Pe as in Eq. (S4), Ree being the (root mean-square) end-to-end distance and σ the mean bond length
(Sec. S1A); (iii) τr = τee corresponds to the chain relaxation time (defined in the main text). If fa is sufficiently
large, we can disregard the passive contribution and write

D =
τee
2d

(
Pe

N

κBT

γ0

Ree

σ

)2

=
1

2d

τeeD0

σ2

Pe2

N2

R2
ee

σ2
D0 . (S6)

We now consider what is reported in the top panel of Fig. 4 in the main text and Fig. S5 here, i.e. (g3(τ)/τ)/(R
2
ee/τee).

We focus on the long time diffusion: we have by definition that g3(τ) = 2dDτ , from which g3(τ)/τ = 2dD. As such,
the data reported in Fig. 4 in the main text and Fig. S5 here show that

(g3(τ)/τ)/(R
2
ee/τee) = (2dD)/(R2

ee/τee) ≃ 1.5 . (S7)

From Eq. (S6) we get

2dD

R2
ee/τee

=

(
τeeD0

σ2

)2
Pe2

N2
=

(
τ0

N

Pe

)2
Pe2

N2
= τ20 , (S8)

where D0 is the passive diffusion coefficient of a single monomer and we have used the relation τeeD0/σ
2 = τ0N/Pe,

shown to be valid in dilute conditions for the characteristic relaxation time τee in Fig. 4 of the main text. As D0 =
κBT/γ = 0.05 in this work, from Fig. 4 we get τ0 = 1.05. As such, the analytical prediction is (2dD)/(R2

ee/τe) = 1.1.
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B. Mean-square end-to-end distance

Results for ⟨R2
ee⟩ are reported in Fig. S6. The passive case (Pe = 0) behaves as expected, dilute linear chains exhibit

swelling compared to chains within the melt, with their sizes scaling differently. Specifically, the scaling exponent for
dilute chains is ν = 0.588 [33], while in the melt, linear chains follow random walk statistics [33] and their sizes scale
with ν = 0.5. Notably, in both systems, as Pe grows, the polymers crumple, a feature already seen for dilute active
linear chains [21]. Remarkably, at high Péclet number ≃ 10/20, across all considered polymer lengths N , ⟨R2

ee⟩ for
both dilute and melt cases converge to similar values. Moreover, always at high activity, the scaling of ⟨R2

ee⟩ appears
to align with ideal behavior, exhibiting a scaling exponent of ν = 0.5 for both cases.
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Dilute Melt
Pe n0 α R2

0 β β/α n0 α R2
0 β β/α

1 8.2± 1.7 0.36± 0.02 17.4± 4.1 0.45± 0.02 1.2± 0.1 5.2± 1.6 0.37± 0.03 4.7± 1.7 0.63± 0.02 1.7± 0.2
5 3.3± 0.2 0.330± 0.007 4.9± 0.4 0.435± 0.006 1.32± 0.05 3.3± 0.9 0.37± 0.03 2.8± 1.3 0.63± 0.04 1.7± 0.2
10 2.4± 0.2 0.311± 0.008 3.0± 0.3 0.433± 0.008 1.39± 0.06 3.1± 0.8 0.35± 0.02 2.7± 1.1 0.59± 0.04 1.7± 0.2
20 2.4± 0.1 0.259± 0.005 2.7± 0.1 0.396± 0.006 1.53± 0.05 2.9± 0.5 0.32± 0.02 2.6± 0.7 0.55± 0.03 1.7± 0.2

TABLE S1. Fit parameters for the empirical power-laws nmin = n0

(
N
n0

)α
and ⟨R2(nmin)⟩ = R2

0

(
N
n0

)β
(see main text

for details) for dilute and melt systems and at Péclet number Pe. By combining these two power-laws, one get the scaling

⟨R2(nmin)⟩ ∼ n
β/α
min : the exponent β/α has been calculated from the corresponding values for α and β.
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FIG. S3. Spatial structure of active polymer chains of contour length N (different colors are for different N ’s, see legend) and
for Péclet numbers Pe = 1, 5, 10. Notation, symbols and color code are as in Fig. 2 in the main paper.
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FIG. S5. Mean-square displacement of the chain centre of mass per unit time, g3(τ)/τ , normalized by ⟨R2
ee⟩/τee as a function

of normalized time τ/τee. Results for polymers in dilute (△) and melt (◦) conditions, for different contour lengths N (see
legend) and for Péclet numbers Pe = 1, 5, 10 (for Pe = 20, see top panel in Fig. 4 in the main paper).
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