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ABSTRACT:  We present results of simulations of flexible polymers in a sphere that show a 

steady reduction of the chain dimension with concentration.  The 3D confinement leads to a 40 % 

shrinking of the chain size at the overlap concentration φ*. The chain squeezing is intensified by 

the polymer depletion inside a sphere evaluated by a novel formula. The depletion induces the 

accumulation of polymers in the cavity center. Because this effect is ignored in the scaling 

theory, its predictions are not fully consistent with the simulation results. We provide the 

validation arguments that the shrinking of coils packed at the threshold φ* in bulk solution is 

comparable to the squeezing of polymers in a cavity. The size contraction by about 10 % at φ* in 

ring polymers in bulk lies midway between those for the linear polymers in bulk and confined 

polymers, in harmony with the free-energy penalty for penetration of surrounding restraints.  
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INTRODUCTION

Polymers are often found in spaces much smaller than their natural size. An entrapment of 

polymers inside closed cavities of the spherical or comparable native shapes gives rise to quite 

strong confinement effects. The polymers in nano/microscale compartments are widely 

encountered in the biological milieu, for example, in sub-cellular structures or protein capsids. 

The confinement effects are common in biomimetic cavities produced by encapsulation of 

polymers such as enzymes, or polymer-drug conjugates into a shell.1 Soft artificial vesicles 

mimicking cell membranes, on the base of lipids (liposomes) or block copolymers, represent 

alternative variants of polymer nanoparticles for transport and targeted drug delivery.2-3 A droplet 

of polymer solution is an elementary realization of a cavity entrapment. Such droplets in aerosols 

are used in mass spectroscopy to analyze complex macromolecules.4 In reverse micelles, the 

nanoscopic droplets of water solution of polymers can be uniformly distributed within a nonpolar 

solvent.5 The polymers in biological or biomimetic systems are often grown in cavities.6  Hence, 

apart from polymers and solvents,  the cavities may contain monomers and other small crowding 

molecules.7  

Since the conformational space available to polymers is severely restricted on confinement, 

their structure, and properties in cavities may differ from those in bulk. The understanding of 

chain organization in the cavity interior underlies a proper design of artificial polymer cavity 

structures.  In this respect, the influence of concentration on the behavior of polymers inside a 

cavity is of primary interest. In bulk solution, this influence is described by the scaling theory that 

presumes for flexible polymers three concentration regimes: dilute, semidilute, and 

concentrated.8-9 The first two regimes are divided by the critical overlap volume fraction of 

2



polymer φ*, a key quantity in the theory of polymer solutions. In the dilute regime, the polymer 

coils are separated from each other, whereas they overlap and interpenetrate in the semidilute 

regime. 

The scaling theory of linear flexible polymers assumes that in the dilute regime, the radius of 

gyration Rg is independent of concentration and is given by its value at infinite dilution Rg0 until 

the overlap concentration is reached. The size of a swollen coil in semidilute solution is 

characterized by a correlation length ξ rather than by Rg. The length scale ξ represents the average 

distance between two entanglement points. Alternatively, in the blob theory8-9, ξ gives the mean 

size of a blob within which the polymer behaves as an independent coil. In the semidilute regime, 

the theory predicts the dependence ξ ~ φ-3/4 for the correlation length, from which the decrease of 

polymer dimensions with increasing concentration Rg ~ φ-1/8 ensues.8-9

The confined polymer solutions have been modeled using both theory and simulation.8-15 In 

slit and channel geometries, the chain conformations and the concentration regimes are mainly 

affected by the anisotropy of the confining surface. For example, the regimes of pancake-like or 

cigar-like conformations of pronounced longitudinal dimensions were predicted to emerge at 

strong confinement in the slit and channel geometries, respectively.8-13 However, the scaling 

description of a polymer inside an isotropic spherical cavity11, 16-20 differs from that for slits and 

channels as the polymer concentration in a closed cavity increases with the cavity compression. 

 Besides, the presence of the repulsive confining surface gives rise to an inhomogeneous 

distribution of polymer segments in solutions. Since polymers have less conformational entropy 

close to the surface,  a layer of polymer depletion (negative adsorption) of the thickness δ arises 

near a surface.21 The non-uniform polymer distribution is mostly neglected in the current theories 

of confined polymer solutions.  Nonetheless, the scaling expressions for the free energy due to 

the surface depletion of a linear chain confined inside a sphere have been presented.22

3



To shed light on the conformation of polymers and their distribution in solution in the 

interior of artificial and biological cavities, vesicles, and droplets, we simulated in the present 

paper the linear and ring flexible polymers entrapped in good solvent in a sphere. We focus on 

exploring how the radius of gyration Rg and the monomer distribution profile ρ(r) change with 

polymer concentration in the vicinity of the overlap concentration φ*. A considerable reduction 

of the chain dimensions with concentration observed even below the threshold φ* is associated 

with a wide depletion layer arising near the cavity surface.  We demonstrate that shrinking of the 

close-packed coils at the overlap threshold φ* in bulk solution is qualitatively like chain 

squeezing in a cavity.  

SIMULATION MODEL

The Monte Carlo (MC) simulation method used in earlier reports15, 20, 23-24 is employed to compute 

the properties of single flexible polymers in a good solvent entrapped in an impenetrable 

spherical cavity of the effective radius R. The polymer is modeled by the bead-spring model of 

partially fused spherical beads of N = 300 and the radius σ connected by bonds of the effective 

mean length l (Figure 1). The potential energy U of the system is given by contributions from the 

bond deformation UFENE, nonbonded interactions between beads Unb, and the bead-cavity wall 

interaction Uw. Only steric repulsion is accounted for in the two latter potentials. The potential Uw 

operates between chain segments and the wall in a sphere of radius R*. Due to a hard wall 

potential used in simulation, the wall-bead excluded volume interactions diminish the volume of 

the cavity accessible to a polymer.  Following the approach used for a channel25, we use the bead 

radius, equivalent to the half-width of the polymer backbone, to define the effective cavity radius 

R = R* - σ.   
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Figure 1. Scheme of the simulation system. The sphere is compressed by the fixed applied 

pressure p and its volume fluctuates by a small random change dV.

The simulation was performed by the MC protocol employed earlier20 to evaluate the 

pressure of polymers inside a sphere. The protocol20 was designed in analogy with the piston 

technique for a tube channel.23,24  In the constant pressure ensemble (NpT) employed, the applied 

pressure p is fixed in the simulation, and the average value of the radius R is computed. The 

choice of an NpT ensemble differentiates our approach from the previous simulation studies of 

polymers inside a sphere based on the NVT ensemble.16-17, 26 The applied pressure expressed in the 

dimensionless form pl3/kT determines the pressure of the polymer exerted on the inner surface of 

the cavity. The equilibrium conformations of a confined polymer are sampled by using the 

Metropolis algorithm at constant temperature kT/  = 1, where   is the interaction energy 

parameter in the nonbonded potential Unb.
20, 27 The Boltzmann factor in the Metropolis scheme 

includes an extra volume fluctuation term -pdV/kT = ( pl
3

kT )dV /l3, where dV = 4 π R
2
dR  

represents a small random change in the spherical volume (Figure 1). The chain moves in ring 

polymers include the small random displacement of beads and consequential evaluation of 
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change in interactions with all beads and walls. In linear chains, also the reptation was applied, as 

a more effective conformation change attempt.

The effect of concentration on the behavior of a polymer of the constant chain length N is 

realized in simulation by a weak compression of the cavity radius R.  The resulting volume 

fraction φ = Nv1/V,   where v1 is the volume of a single bead, is controlled by the cavity radius R. 

Due to bead interpenetration, the mean bond length l = 0.71 is slightly shorter than the polymer 

width 2σ =0.78. The fusion of beads is also accounted for in the calculation of the reduced 

volume of a single bead v1/l
3 = 0.64. The identical parameters are used for both linear and ring 

chain topologies. The size of polymers is monitored by the radius of gyration Rg = <Rg
2>1/2. The 

length quantities are mostly presented in the reduced form, such as R/l. 

 RESULTS AND DISCUSSION

Rg(φ) in a cavity. We examine in simulation the dilute regime (R > Rg), and the portion of 

the semidilute regime (R < Rg) up to the volume fraction φ ≈ 0.10, for polymers of the constant 

length N trapped in a sphere. The simulated range involves the critical overlap concentration φ* 

at a crossover between the dilute and semidilute regimes. The overlap concentration φ* is defined 

as the point where the concentration within a given dilute conformation's pervaded volume is 

equal to the solution concentration. In bulk solution, the overlap concentration is expressed as the 

local concentration inside a single coil using the radius of gyration Rg0 in the dilute solution limit.  

We use the same approach to estimate the threshold φ* for the overlap of a polymer with a sphere 

by the formula φ* = 3Nv1/(4πRg0
3). 
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The computed reduced radius of gyration Rg0/l, 15.38 and 12.32, for the linear and ring 

chains respectively, confirms that an unconfined ring polymer is more compact than a linear 

one.28 From the above formula, the values 0.0124 and 0.0241 follow for the respective overlap 

concentrations φ*. The cavity compression results in coil contraction and the decrease of Rg.  

Simultaneously, the polymer concentration (Figure 2) as well as the intra-sphere pressure 

increase.

Figure 2. The dependence of the reduced radius of gyration on the reduced radius of a cavity for 

linear (red squares) and ring (blue triangles) polymers. The respective values Rg0/l in the dilute 

solution limit are indicated by stars. The right ordinate refers to the function φ = 45.86/(R/l)3 

(dotted line) linking the cavity size and concentration in our model. 

In the scaling theory, properties of confined polymers are commonly elucidated by the 

diagram of regimes showing in the x-y space the regimes of different chain conformations. For a 

polymer inside a cavity, such a diagram was proposed by using the confinement strength R and 

chain length N as independent variables.19  On the other hand, the diagrams of regimes reported 

for the slit, channel, and box-like confinements10, 12-13, 29 used the confinement strength Rg0/R and 
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the volume fraction, expressed through the correlation length Rg0/ξ as variables.  By employing 

the latter choice, we have constructed the diagram of regimes for a long polymer inside a sphere 

in a good solvent (Figure 3).  Since the variables Rg0/R and Rg0/ξ in a cavity are not independent, 

the diagram in Figure 3 involves just lines and the remaining x-y space is irrelevant.     

                                                             

Figure 3. The diagram of regimes for long flexible polymer chains of the constant length N in a 

sphere where the x-axis expresses the confinement strength, and the y-axis gives a measure of 

concentration.  

The diagram in Figure 3 can be explained by envisioning the blob picture for a chain in a 

cavity.  In the dilute regime, the horizontal line in the diagram corresponds to the constant chain 

size Rg0  lN
3/5

 assumed by the theory for a close cavity.29 In a semidilute solution, the polymer 

chain consists of independent blobs of diameter ξ filling the cavity. Above φ*, the compression of 

chain size Rg in a cavity is controlled by R, hence Rg  R  φ
-1/3

. Considering the decrease of the 

size of blobs in a good solvent with concentration   φ
-3/4

, one obtains Rg0/   (Rg0/R)9/4 for the 

line in the semidilute regime.  Since R  lN1/3 applies for the dense globule limit φ = 1 on the x-

axis, the function Rg0/R = N4/5 is obtained. From the alternative standpoint, the diagram in Figure 
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3 is equivalent to the simple scaling prediction of the dependence of the correlation length   as a 

function of polymer concentration φ, where    = Rg0 for R > Rg0, and    φ
-3/4 for R < Rg0.

The simple diagram in Figure 3 quite differs from the complex diagrams of regimes for a 

polymer confined in a slit or a channel12-13, mainly because the radius R and the concentration φ in 

the cavity cannot be changed independently.  This distinction is also maintained in the plots of 

the concentration dependence of the chain size qualitatively sketched for various confinement 

geometries in Figure S1 in SI.  The dependence Rg(φ) in a cavity resembles the related function in 

bulk solution, and both qualitatively differ from the functions in a slit and a channel where the 

anisotropic conformations prevail at strong confinement.  The large difference between the 

overlap concentrations in solutions in bulk, slit, and channel following the order ϕb
*< ϕsl

*< ϕch
* 

has been explained by the alignment of anisotropic chains.12 Because of the alignment, the 

confined polymers in slits and channels feel the presence of other chains at higher concentrations 

than those in bulk. The anisotropic conformations may also emerge at 3D confinement in chains 

inside the box-like or ellipsoid cavities29-30,  however, at the isotropic confinement in a sphere, the 

relation ϕsph
*  ≅ ϕb

* should apply.
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Figure 4. The logarithmic plot of the dependence of the chain size on concentration from 

simulations of the linear (red squares) and ring (blue triangles) polymers in a cavity plotted using 

the reduced variables Rg/Rg0 and φ/φ*. In addition, the related data from simulations of polymers 

in bulk solution31-32 are included (see text and Figure S2).  In the scale used, the data of Refs31-32 

for linear and ring polymers, respectively, practically coincide.  

Next, the scaling theory depiction of the behavior of polymers near φ* is compared with the 

results of the simulation. The change in the polymer dimension with concentration using the 

reduced variables Rg/Rg0 and φ/φ* is shown in Figure S2 and Figure 4 in the linear and 

logarithmic representations. It is seen that the chain size Rg continuously decreases with 

concentration even in the large spheres, where φ < φ*.   The polymers in the dilute regime are 

“aware” of a confining wall, in conflict with the scaling theory assumption of the constant chain 

size Rg0 in this regime shown in the diagram in Figure 3.   The drop in Rg for a given φ is slightly 

more marked in Figure 4 in linear chains as compared to rings, apparently because the latter is 

already more compact in an unconfined state. 

Moreover, a smooth transition between dilute and semidilute regimes is observed in 

simulations in Figure 4 and Figure S2, in opposition to a discontinuous crossover expected on 

theoretical grounds.29 The ratio Rg/Rg0 at the overlap transition amounts to only 0.58 and 0.62 for 

the linear and ring chains, respectively (Figure 4). Thus, the sphere compression induces a 

substantial concentration effect, bringing about a 40 % shrinking of chain size near φ/φ* = 1. The 

slope about x = -0.26 in the semidilute regime in Figure 4 deviates from the exponent x = -0.33 

considered in the diagram of regimes, presumably because of the emergence of the depletion 

layer (see below) neglected in the scaling theory. These single-chain results should be relevant to 

confined polymer solutions, since in the semidilute regime, a long chain in a cavity can be 
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viewed as a system of multiple shorter chains,17 as long as the polymer concentration remains 

unchanged.  

Density profiles. We will show that the chain squeezing near φ/φ* = 1 is amplified by the 

depletion (negative adsorption) of the polymer segments near an impenetrable surface. To 

evaluate the depletion effect, we compute the profiles of the number density ρ = N/V inside a 

sphere.  The profiles have been normalized to give the value N by their integration over the whole 

range of volume of the layers at distance r. The radial density profile ρ(r) in Figure 5 gives the 

relative segment concentration in individual layers situated at the distance r from the sphere 

surface for ring polymers at concentrations around the threshold φ*. The values of the unreduced 

variable r in profiles in Figure 5 are based on the default bond length l = 0.71 used in the 

simulation. The profiles for a confined linear polymer (Figure S3a) are about equivalent to those 

for the ring analog in Figure 5. 

Figure 5.  The radial density profiles ρ(r) of a flexible ring polymer in a sphere at the reduced 

concentrations φ/φ* given in the legend by taking in simulation l = 0.71 for the effective bond 

length. The snapshot in the inset depicts the chain accumulation due to the depletion effect into 

the cavity center near φ/φ* = 1.
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Figures 5 and S3a reveal that the sub-surface region, avoided by segments because of the 

depletion effect, is quite wide. The segments are pushed to the center of a sphere for more 

available volume and the plateau signaling the uniform filling of segments is formed. In the dilute 

regime, the constant plateau of the profile ρp(r) is restricted to a narrow zone in the cavity center. 

By increasing concentration, the depletion layer diminishes, and the plateau broadens. These 

trends in profiles near φ/φ* in Figures 5 and S3a concur with the single and multiple chain 

profiles inside a sphere reported for the entire concentration range.14, 17   

From the profile ρ(r), the thickness of the depletion layer δ may be obtained. Conventionally, 

the thickness δ is defined through the step profile that would give the same depletion as the 

continuous profile21. This established practice is illustrated in Figure S3b at the estimation of 

thickness δ in the profile of linear polymer at φ/φ* = 1.29. The expressions for the calculation of 

δ are available for the numerous confining geometries of a non-adsorbing polymer such as near a 

flat wall, in a slit, near a sphere, or between two spheres.21, 33 In analogy, the depletion thickness δ 

for a polymer inside a sphere is calculated from the volume Vex excluded by the wall inside a 

sphere

  V ex=
4 π

3
(R3

– (R−δ )3 )=4 π∫
0

R

z
2(1−

ρ ( z )
ρp

)dz                                                        (1)

The profile ρ(z) in the integral is counted from the sphere center, and z = R – r. The use of 

reduced quantities would make eq (1) unwieldy. Therefore, the calculation of Vex by eq (1) is 

based on profiles from Figure 5 associated with the bond length l = 0.71.  The number density ρ 

inside the sphere is normalized in eq (1) by the value of the profile at the plateau ρp,  instead of 

the bulk concentration used in common confining geometries.21 At a closed 3D confinement, the 

depletion of large spherical shells near the surface ought to increase the segment density in the 

cavity center. 
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By conducting the integration in eq (1), the volume Vex excluded by depletion is computed as 

a function of concentration (Figure 6). The depletion significantly reduces the space accessible to 

the polymer, whereas the solvent may be distributed in the whole sphere. The effect is 

pronounced especially in the dilute solution, where the volume Vex of limited accessibility to a 

polymer amounts to up to two-thirds of the sphere volume. The thickness of the depletion layer δ 

computed from eq (1) may become up to 30% of the sphere radius (Figure 6, the inset).

Figure 6. The plot of the reduced accessible volume of a polymer in a cavity as a function of 

concentration φ. The inset: the analogous function for the relative depletion thickness δ/R.   

The dependences of the depletion thickness δ on the sphere radius (Figure S4) or on the 

concentration (Figure S5) confirm that δ in the cavity is smaller than the size of the unconfined 

polymer, and the ratio δ/Rg0 rapidly decreases on sphere compression. Interestingly, in the dilute 

solution limit, δ/Rg0 for a linear polymer in a sphere amounts to about 0.75. Hence, the depletion 

layer under 3D confinement is narrower than in the cases of the less restricting geometries, where 

δ/Rg0 > 1 is commonly found.21, 33 
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Figure 7.  Variation of the reduced depletion thickness δ/l with the concentration φ for flexible 

linear and ring polymers. The inset: Comparison of the effect of reduced concentration /* on 

the thickness δ/l in the cavity and the correlation length /l.

Figure 7 shows that the depletion thickness diminishes by increasing concentration even 

below the threshold φ*, in an analogous way as observed for the function Rg(φ) in Figure 4. 

According to scaling theory, the depletion thickness δ in the semidilute regime should be equal to 

the concentration correlation length ξ 8, 33 and follow the power law δ ~ φ-3/4.  However, the 

logarithmic plot of the functions δ(φ) for both chain topologies (the inset of Figure 7) suggests 

steeper slopes, of about -1.1.   What is more, the concentration functions δ(φ) in the inset of 

Figure 7 quite depart from the analogous functions of the correlation length ξ(φ). The functions 

ξ(φ) were computed indirectly, using the customary scaling relation of ξ to chain size9,  ξ = 

Rg0(φ/φ*)-3/4. The observed inconsistency in the concentration dependences of the correlation 

length and the depletion thickness may cast doubt on the validity of the assumption of δ = ξ in 

semidilute solutions under 3D confinement. On the other hand, some arbitrariness in the definition 

of thickness δ, when the function δ(r) is replaced by a single value of δ as shown in Figure S3b, 

may contribute to the disparity encountered in Figure 7. 
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Figure 8. The comparison of the local concentration profiles φ(r) (symbols) and the average 

concentration φ (dotted horizontal lines) for a flexible linear polymer in a sphere at three reduced 

concentrations φ/φ*. 

A usual disregard of the inhomogeneous spatial distribution of polymer segments inside a 

cavity in the scaling theory may give rise to some inconsistencies between the theory and 

simulation. Our results in Figure 8 illustrate the massive discrepancy existing between the 

average polymer concentration considered in the theory and the actual local concentration in a 

sphere. A relative increase of the local plateau concentration over the average ones (Figure S6) is 

particularly conspicuous (about four-fold) in the dilute solution. The plateau and average 

concentrations for a given N converge at increased concentrations by narrowing the depletion 

layer.  Possibly, the effective segment density in the cavity sub-volume that is primarily filled by 

a polymer (at r > δ in Figure S3b) may serve as an alternative concentration descriptor in 

repulsive cavities.   

The simulation data prove that the depletion effect promotes an accumulation of polymers in 

the center of real cavities or capsules.  This phenomenon can be reduced by an increased 
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concentration, the higher chain stiffness, or by a weakly attractive surface.21, 34 The quality of the 

solvent may also be important. The atomistic simulation of a single polyetyleneoxide (PEO) 

chain in a droplet revealed4 that the PEO chain in acetonitrile settled in the interior of the droplet, 

in harmony with the above data. Conversely, in aqueous droplets, the PEO chain consistently 

resided near the droplet interior surface.   

Chain contraction in bulk solution. Next, we examine an analogy between chains in a 

sphere and bulk solution near the overlap threshold. Earlier, a strong connection between these 

conditions of flexible self-avoiding polymers was pointed out.17  A close packing of imaginary 

spheres in bulk solution in 3D space is reduced in 2D representation to the hexagonal stacking of 

spheres imitating the quasi-spherical confinement of a central chain (Figure 9). At φ < φ*, the 

coils in bulk solution are more or less separated from each other. Still, the surrounding radially 

placed molecules may affect the conformation of the central molecule. At φ ≈ φ*, a similarity 

between polymers in a spherical confinement and bulk solution is quite conspicuous. 

Figure 9.  Schematic comparison of the space restraints on a polymer in a sphere and the central 

chain surrounded by hexagonally stacked chains slightly below φ* (a), and at φ ≈ φ* (b).   
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While the scaling description of polymer solution in bulk has gained wide acceptance, the 

issue of chain dimension at concentrations near the onset of the semidilute regime remains 

unsettled. The inspection of the numerous literature data prompts to an observation that the 

shrinking of chain size with increasing φ in bulk solution begins already below the threshold φ*. 

The simulation reports31-32, 35-36 suggest that this phenomenon is particularly noticeable in the 

unknotted and non-concatenated ring polymers of various chain lengths. Studies of polymer 

solutions under flow show that the chain shrinking below φ* is additionally enhanced by the 

hydrodynamic interaction.37-38  A reduction of Rg under φ* can also be noticed in the results for 

single-chain nanoparticles in solution.39  Besides, in measurements of the concentration 

dependence of fluorescence of polystyrene solutions, an unforeseen increase in fluorescence 

intensity in dilute solution was reported.40 This observation was assigned to the weak interaction 

of polystyrene coils and their ensuing compaction at concentrations under φ*.  

We have chosen to contrast the data in Refs 31-32 about the shrinking of polymers in bulk 

solution with our data for the cavity-confined polymers. The bulk solution data for chains of 

various lengths31-32 are precisely represented by the function Rg/Rg0 = (1+α(φ/φ*))β, where α and β 

are the parameters specific for the linear and ring polymers. The plots of Rg(φ) in a bulk solution 

seen in Figures 4 and S2 confirm an excellent agreement between the two sets of data. These bulk 

solution data31-32 show a small continuous decrease in the dilute regime that corroborates the 

existence of weak interaction at concentrations φ < φ*. Due to this interaction, the radius of 

gyration of linear chains at overlap transition φ* is reduced by 4% relative to Rg0, whereas in ring 

polymers this reduction amounts to 10% (Figures 4 and S2). Hence, the scaling theory 

assumption of the constant size Rg = Rg0 in the dilute regime should be considered as an 

approximation even in the case of bulk solutions. 
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The two examples of spherical constraints illustrated in Figure 9 differ primarily by the 

nature of the effective interaction energy. The strong hard-sphere repulsion between beads and 

the cavity surface gives rise to enormous free energy penalty Fsph forbidding coil penetration. 

This kind of strong interaction was originally predicted from the mean-field potential for two 

linear polymers in bulk solution41 resulting in the effective penalty Flin ~ N1/5kT. In long polymers, 

the predicted penalty is so strong that coils should behave as practically impenetrable to each 

other. This estimation of the two-chain interaction was later corrected42 by taking into account the 

monomer correlation. The analysis revealed43 that the two-chain energy penalty Flin is actually 

fairly weak, about 2 kT, allowing for an easy interpenetration of coils. A small, 4% impact of the 

neighboring stacked chains on the dimension of a central chain at φ ≈ φ* in linear polymers in 

Figure 4 is consistent with the low value of the free energy Flin. 

On the other hand, the concentration shrinking Rg(φ) in ring polymers is substantial, 

intermediate between those for the linear in bulk and confined polymers (Figure 4). This 

observation suggests that the interpenetration free-energy penalty Fring should be larger than Flin 

and lie somewhere between two extremities, Flin < Fring << Fsph. It is well known that the chain 

topology of ring polymers gives rise to their unique properties differing from the linear analogs. 

The ring polymers are subjected to topological constraints determined at the preparation stage 

due to concatenation and knotting.44 In dilute solution two unlinked rings feel an entropic 

repulsion upon a close approach as the number of possible conformations is reduced due to non-

concatenation.44 Hence, on increasing concentration, the ring polymers tend to squeeze 

themselves instead of penetrating other chains. The entropic repulsion specific to ring polymers 

affects the free-energy penalty Fring and can be determined from the effective interaction potential 

that in ring polymers possesses apart from the positive steric term (common with the linear 
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chains), also an extra topological term.45 Since the latter term is also positive, this estimation 

confirms that the mutual interpenetration of ring polymers is more difficult than the linear ones.

 The role of the topological interaction increases with concentration, and in the semidilute 

solution, the ring polymers assume a collapsed non-Gaussian conformation. As a result, the 

shrinking of the size of ring chains in bulk scales with the exponent x = -0.295 in the power law 

Rg ~ φx (Figure 4), in deviation from x = -0.125
 
predicted by the scaling theory and validated in 

the linear polymers.31,32 The slopes of the concentration shrinking of the ring polymers in a cavity 

and bulk solution in Figure 4 are comparable, and both are slightly smaller than the limit of x = -

0.33 for the dense globule. The correspondence in the scaling exponent for chain shrinking is a 

compelling sign that the condensed conformations occurring in semidilute solutions of ring 

polymers in bulk and a cavity are comparable. 

CONCLUSIONS

The single-chain simulations in the paper are concentrated on three issues: (a) the shrinking of 

polymer dimensions in a cavity, (b) the polymer depletion in a repulsive sphere, and (c) the 

similarity between chain squeezing in a cavity and that in bulk solution at the threshold φ*. 

Firstly, the simulation data present evidence that the confinement of flexible linear and ring 

polymers into a sphere leads to a gradual crossover from a dilute to a semidilute regime. The 

chain size at the overlap concentration φ* is by about 40 % contracted for both topologies as 

compared with that at infinite dilution. These observations are not consistent with the scaling 

theory predictions of the constant chain size Rg0 in the dilute regime, and a discontinuous dilute-

semidilute crossover. 
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Next, it was shown that the concentration-induced chain squeezing is amplified by the 

emergence of the depletion layer. A new formula is proposed to compute the thickness of the 

depletion layer δ in a cavity.  In the dilute regime, a large part (up to two-thirds) of the total 

sphere volume is barely accessible to polymer segments. The depletion effect induces a 

substantial difference between the local polymer concentration far away from the cavity surface 

and the average concentration considered in the scaling theory.  

Finally, we have contrasted the squeezing of a polymer in a sphere with a parallel situation of 

the quasi-spherical stacking of coils in bulk solution near the threshold φ*. The recapitulated 

literature data provide evidence of weak interaction of polymers in the dilute regime neglected in 

the scaling theory. We have identified a systematic tendency of chain size reduction at threshold 

φ* in bulk solution. The shrinking of coils in solution near φ* is qualitatively like that observed 

in a cavity. The size contraction of about 10 % found in ring polymers in bulk is midway between 

those for the linear in bulk and 3D confined polymers. Different intensities of chain squeezing 

tendency in a sphere and bulk are linked to the free-energy penalty of penetration of surrounding 

barriers. 

The above findings advance the present understanding of polymer solutions under 3D 

confinement and will find use in the interpretation of experiments with the hard- and soft-shell 

particles and cavities in nanoscience and biomedicine. A prominent example is an array of box-

like cavities based on silicon wafers used in experiments to probe the organization of trapped 

polymers.46  
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In this Supporting Information, we present a few of additional figures. The figures broaden the 

analysis and support the conclusions arrived at in the main text.  

 

 

 
 

Figure S1. Logarithmic plot of the variation of the size of flexible polymers with concentration 

as predicted by the scaling theory for solution in bulk and in a cavity (characteristic slopes are 

indicated). The simulation data for linear polymers in a sphere (symbols) are also included.  The 

related predictions of the longitudinal component of the radius of gyration Rg0II/l for the slit and 

channel (dashed lines) are drawn schematically, not to the scale. Adapted from Ref.
1
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Figure S2. The linear representation of the dependence of the chain size on concentration from 

simulations of the linear (red squares) and ring (blue triangles) polymers in a sphere plotted using 

the reduced variables Rg/Rg0 and φ/φ*. In addition, the data from the related simulations of 

polymers in bulk solution
2-3

 are included,  represented by the function Rg/Rg0 = (1+α(φ/φ*))
x
, 

where α = 0.4; x = -0.125 (yellow) and α = 0.43; x = -0.295 (green) apply for linear and ring 

polymers, respectively in Ref.
2
 and α = 0.38;  x = -0.13 (magenta) and α = 0.45;  x = -0.295 

(black) in Ref.
3
  

 

 

 

(a)                                                                                (b)  

 
Figure S3. (a) The radial density profiles ρ(r) of a flexible linear polymer in a cavity at the 

reduced concentrations φ/φ* given in the legend based on the effective bond length l = 0.71 used 

in simulation. (b) A representation of the simulation profile for φ/φ* = 1.29 (symbols) by the step 

function. The depletion length  is computed from eq (1). The dashed line shows the average 

numerical density ρ.   
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Figure S4. Dependence of the depletion thickness   normalized by unconfined chain size Rg0 as 

a function of the reduced radius of a sphere R.   

 

 

 

 

 
 

Figure S5. Dependence of the depletion thickness normalized by unconfined chain size Rg0 as a 

function of the reduced concentration φ/φ*.   
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Figure S6.  The plot of the ratio ρp/ρ = φp/φ of the numerical or volume concentrations at the 

profile plateau to the respective average concentrations as a function of the concentration φ = ρv1 

for linear and ring polymers inside a sphere. 
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