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We present a lattice model for polymer solutions, explicitly incorporating interactions with solvent
molecules and the contribution of vacancies. By exploiting the well-known analogy between polymer
systems and the O(n)-vector spin model in the limit n → 0, we derive an exact field-theoretic
expression for the partition function of the system. The latter is then evaluated at the saddle-point,
providing a mean-field estimate of the free energy. The resulting expression, which conforms to the
Flory-Huggins type, is then used to analyze the system’s stability with respect to phase separation,
complemented by a numerical approach based on convex hull evaluation. We demonstrate that this
simple lattice model can effectively explain the behavior of polymer systems in explicit solvent, which
has been predominantly investigated through numerical simulations. This includes both single-chain
systems and polymer solutions. Our findings emphasize the fundamental role of vacancies whose
presence, rendering the system a ternary mixture, is a crucial factor in the observed phase behavior.

Introduction – In phase transitions for multi-
component systems [1–3], the study of polymer chains in
a bath of solvent molecules occupies a special place [4–9].
Take, for instance, a single chain in the infinite-dilution
limit: upon changing from “good” to “poor” solvent con-
ditions, the polymer undergoes a drastic change in size,
from a random coil to a globular collapsed conforma-
tion, the analogue of the gas-liquid transition. In poly-
mer solutions, with each chain simultaneously interact-
ing with both the solvent and the other chains, an even
richer hierarchy of ordered structures appears upon cool-
ing [10, 11]. Within this framework, in past years exten-
sive numerical work was dedicated [12–17] to explore the
interplay between the distinct interactions (monomer-
monomer (mm) vs. monomer-solvent (ms) vs. solvent-
solvent (ss)) behind chains’ swelling and collapse. In
a recent interesting study [16], the authors used model
Lennard-Jones polymer chains in explicit solvent of mod-
erate density to profile polymer/solvent phase separation
when ms affinity competes with mm and ss ones. Their
work unveiled unexpected re-entrant polymer collapse for
strong ms affinity (Fig. S1(a) in Supplemental Material
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(SM [18])), absent in implicit solvent simulations, that
was ascribed to the effective mm attraction “bridged”
by the solvent (a quite similar phenomenon holds in the
colloidal realm [19]). A later study [17], for a single chain
and much lower solvent density, confirmed this result for
a wider parameter space (Fig. S1(b) in SM [18]).

In this complex scenario, there is significant quest for
theoretical models that would assist both in interpret-
ing numerical experiments and in the systematic explo-
ration of parameter space. Motivated by these consider-
ations, in this Letter we introduce a novel O(n)-vector
spin model for polymer solutions on the d-dimensional
hypercubic lattice that integrates the explicit roles of
both solvent and vacancies, and solve it within a mean-
field (MF) approximation. Then, we show how the MF
theory (i) reproduces several phenomenological Flory-
Huggins free energies [20, 21] in the appropriate limits
and (ii) combined with a convenient graphical convex
hull scheme, recapitulates and rationalizes the aforemen-
tioned numerical results as well as “polymer-assisted con-
densation” [22], a molecular mechanism involved in the
nucleation of biomolecular condensates [23–25].

Microscopic model and Flory-Huggins free energy –
Our approach rests on the well-known mapping between
polymer systems and the formal n→ 0 limit of the O(n)-
vector model for interacting spins on the hypercubic lat-
tice in d spatial dimensions [26–31]. Polymer chains and
solvent molecules are arranged on the lattice of total sites
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FIG. 1. Illustration of a particular configuration on the
square lattice (d = 2), with N = 7× 7 = 49 sites. Monomers
and the bonds joining them into polymer chains are repre-
sented, respectively, by blue dots and solid black lines, while
solvent molecules are represented by red dots. Dashed lines
are for nearest-neighbour interactions: different colors distin-
guish between mm pairs (blue), ss pairs (red) and ms pairs
(green). In the example here (Eq. (1)): Nc = 3, Nb = 16,
Ns = 7 and Nmm = 5, Nss = 2, Nms = 9 (notice also pair
interactions via periodic boundary conditions (PBC)).

N (Fig. 1), with the lattice step as our unit of length.
Excluded volume interactions are strictly enforced: so a
lattice site can be occupied by either a monomer, or a
solvent molecule, or a vacancy (i.e., it is empty). For
convenience [31] we adopt the grand canonical ensemble,
with non-fixed total number of polymer chains Nc, bonds
Nb and solvent molecules Ns (as a consequence, the sys-
tem is typically polydisperse) and whose mean values de-
pend on respective fugacities κc, κb and κs [32]. Then,
with β = 1/(kBT ) the Boltzmann factor at temperature
T (kB is the Boltzmann constant), the grand canonical
partition function of the system reads

Z =
∑
{C}

κNc
c κNb

b κNs
s e−β(ϵmmNmm+ϵssNss+ϵmsNms) , (1)

where the sum is for all possible configurations {C}, and
Nmm, Nss and Nms are, respectively, the total number
of non-bonded mm, ss and ms pairs sitting at nearest-
neighbor lattice positions (including periodic boundary
conditions, Fig. 1) with corresponding pair interactions
ϵmm, ϵss and ϵms (so setting the stage for modeling the
systems of Refs. [16, 17], see also Fig. S1 in SM [18]).

In the n → 0 limit, the partition function (1) can
be recast in a convenient field-theoretic form (details in
Sec. S1A in SM [18]) that, although mathematically in-
tractable, is particularly amenable to a systematic ex-
pansion around the saddle-point [28–31]. By taking only
the leading term of the expansion (equivalent to the
MF approximation, Sec. S1B in SM [18], in particular

Eq. (S19)), we get a simple expression for the grand po-
tential per site, βΩ ≡ − ln(Z)/N that, by a Legendre
transform (Sec. S1C in SM [18]), gives the final system
MF free energy per site,

βf(ϕm, ϕs, ℓ) = dβϵmm ϕ
2
m + dβϵss ϕ

2
s + 2dβϵmsϕmϕs

+(1− ϕm − ϕs) ln(1− ϕm − ϕs)

+
ϕm
ℓ

ln(ϕm) + ϕs ln(ϕs)

+ϕm ln

(
(1− 2/ℓ)1−2/ℓ (2/ℓ2)1/ℓ

(2d eβϵmm−1(1− 1/ℓ))1−1/ℓ

)
,

(2)

as a function of monomer density (ϕm), solvent density
(ϕs) and mean chain contour length (ℓ) (all experimen-
tally accessible quantities).

Interestingly, βf is of the Flory-Huggins form [20, 21,
33]. However, unlike most conventional presentations (for
instance, see [2]), the derivation of (2) proceeds from a
genuinely microscopic model (Eq. (1)) and it can be al-
ways expanded beyond the saddle-point by the system-
atic inclusion of higher-order corrections [34]. From the
physical point of view, βf (2) describes the thermody-
namics of a ternary mixture [35, 36] of polymers, solvent
and vacancies, with the constraint ϕm+ϕs+ϕv = 1 where
ϕv is the vacancy density; it reduces to known cases of
binary mixtures when one species is absent (Sec. S1C in
SM [18]). Importantly, the ratio ϕm/ℓ tunes the chain
number density: at fixed ϕm and in the thermodynamic
limit N → ∞, a finite ℓ corresponds to a (polydisperse)
multi-chain solution, while ℓ → ∞ gives the single-chain
limit [37]. Eq. (2) is therefore valid for both single and
multiple chains, as it will be discussed further below and
in SM [18].

Single-chain systems: two-phase stability – From a
thermodynamic perspective, the polymer coil state corre-
sponds to a stable mixed phase whereas the globule state
is a phase-separate system where one phase has ϕm > 0
and the other(s) have ϕm = 0 [27, 37]. To better show
this point, take for simplicity a binary polymer/vacancy
mixture (Eq. (2), ϕs = 0): here the critical point is for

ϕ∗m = 1/(1+
√
ℓ) [2, 38], with the two branches of the bin-

odal critical line lying to the left and to the right of it. As
ℓ→ ∞, both ϕ∗m and the binodal left branch → 0, there-
fore the value of ϕm for the polymer-poor phase must be
also = 0 (Fig. 1 in [37]).

For a more complex ternary mixture of polymer, sol-
vent and vacancies, we detail first the thermodynamics of
separation in two phases, termed I and II, while three-
phase coexistence is outlined in Sec. S2 in SM [18]. The
generalization to multi-chain systems (ℓ < ∞ at fixed
ϕm) is discussed further below. Phase I is characterized
by ϕIm = 0, ϕIs > 0 and occupies volume V I , while phase
II is characterized by ϕIIm > 0, ϕIIs > 0 and occupies vol-
ume V II . By generalizing standard arguments for binary
mixtures [38], these phases and their regions of stability
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are determined by minimizing the total free energy

V If(0, ϕIs) + V IIf(ϕIIm , ϕ
II
s ) , (3)

of the phase-separate system [39], with additional con-
straints on volume and particle number of each species:

V I + V II = V , (4)

V IIϕIIm = V ϕm , (5)

V IϕIs + V IIϕIIs = V ϕs , (6)

where V is the total volume of the system and ϕm and ϕs
are the densities at which the system is prepared. Mini-
mization of Eq. (3) with constraints (4)-(6) via standard
Lagrange multipliers leads to 5 coupled equations with 3
constraints that, by some manipulations, give:

ϕIs
∂f

∂ϕs

∣∣∣∣ϕm=0

ϕs=ϕ
I
s

− f(0, ϕIs) = ϕIIm
∂f

∂ϕm

∣∣∣∣ϕm=ϕII
m

ϕs=ϕ
II
s

+ ϕIIs
∂f

∂ϕs

∣∣∣∣ϕm=ϕII
m

ϕs=ϕ
II
s

− f(ϕIIm , ϕ
II
s ) , (7)

∂f

∂ϕs

∣∣∣∣ϕm=0

ϕs=ϕ
I
s

=
∂f

∂ϕs

∣∣∣∣ϕm=ϕII
m

ϕs=ϕ
II
s

, (8)

ϕIs =
ϕsϕ

II
m − ϕmϕ

II
s

ϕIIm − ϕm
. (9)

Eqs. (7) and (8) can be easily identified as the balance of
the osmotic pressures and the chemical potentials of the
solvent in the two phases, while Eq. (9) is a generaliza-
tion of the familiar lever rule for binary mixtures [2]. If,
for a given pair (ϕm, ϕs), a solution to Eqs. (7)-(9) ex-
ists, the system minimizes its free energy by phase sep-
arating into two coexisting phases and is in a biphasic
region (see Sec. S2 in SM [18], for the discussion on the
triphasic case); in polymer language, the chain collapses
to a globule. The solution to Eqs. (7)-(9) is then used
(Eqs. (4)-(6)) to infer V I and V II , so characterizing the
two phases completely.

Convex hull construction and Gibbs triangle – So-
lution to Eqs. (7)-(9) (and analogues in Sec. S2 and
Sec. S3 in SM [18]) requires a non-trivial numerical proce-
dure [35, 36, 40]. The task, however, can be greatly sim-
plified by looking at the “geometrical” meaning [41, 42]
of these equations, i.e. the evaluation of the lower convex
hull (l.c.h.) [43, 44] enveloping the free energy surface in
the (ϕm, ϕs)-space. In particular, the regions where the
shape of the l.c.h. differs from that of the free energy sur-
face are those where phase separation occurs (in a binary
mixture, this corresponds to the usual common tangent
Maxwell construction, see Fig. 1 in [42]). In order to iden-
tify those regions (in particular, to distinguish biphasic
from triphasic ones) we follow [41, 42] and reconstruct
the shape of the l.c.h. by the accurate triangulation pro-
cedure introduced therein. We implement this method
via the publicly available Quickhull package [44], and get
an estimated phase diagram of the system that is then
used in concert with the numerical solutions of Eqs. (7)-
(9) and analogues in Sec. S2 and Sec. S3 in SM [18]. The
obtained stable-phase solutions are represented in terms
of the characteristic, and rather intuitive, barycentric co-

ordinates [35, 36, 45] of the Gibbs triangle (Fig. 2, (a) for
a general description and (b) for a few tutorial examples).

Single-chain systems: results – We start by applying
our theory to single-chain systems, and we focus on the
particular problem [16] discussed in the Introduction: a
single polymer represented by the Kremer-Grest bead-
spring model [46] in explicit solvent conditions, where
mm and ss interactions are described by the same attrac-
tive Lennard-Jones interaction. As the strength of the
ms attraction (also of the Lennard-Jones type) increases,
the chain swells as expected in standard good solvent con-
ditions. However, by increasing the ms attraction even
further, the polymer is observed to fold back thus giving a
re-entrant collapse (Fig. S1(a) in SM [18]). To reproduce
and rationalize this polymer behavior, consider the par-
ticular form of Eq. (2) with ℓ→ ∞, ϵmm = ϵss = −ϵ < 0
and with ϵms = −λϵ < 0 where λ > 0 tunes the ms
attraction. By introducing T ∗ ≡ kBT/ϵ, we focus on
phase stability of βf (2) as a function of densities ϕm
and ϕs, parameters λ and T ∗ and, hereafter, in spatial
dimensions d = 3. When the chosen densities (defining
the mean composition of the system) do not belong to
the stable region (as identified by the convex hull proce-
dure), we solve numerically Eqs. (7)-(9) and (S32)-(S35)
in SM [18] to determine the stable phases and represent
the corresponding phase separation by a solid black line
(a.k.a. a tie-line) in the Gibbs triangle.

To fix the ideas, we focus on the stability of 9 represen-
tative coordinates (ϕm, ϕs, ϕv) in the Gibbs triangle with
the same ϕm = 0.1, ϕs ∈ [0.05−0.85] and ϕv fixed accord-
ingly (large blue dots in Fig. 3). First, we start by fixing
the temperature T ∗ = 2.5 and increase λ systematically
(Fig. 3): this corresponds to changing the solvent quality
from “poor” to “good”. For λ = 0.6 (panel (a)), none of
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FIG. 2. (a) Gibbs triangle for a ternary mixture of monomers
(vertex M), solvent molecules (vertex S) and vacancies (ver-
tex V ). A generic point O inside the triangle represents the
state with densities ϕm = |OM ′|/|MM ′|, ϕs = |OS′|/|SS′|
and ϕv = |OV ′|/|V V ′|, where “| · |” denotes the length of
the segment. By elementary geometry, it is easily seen that
ϕm+ϕs+ϕv = 1. (b) Illustrative cases (dots’ color code is as
in Fig. 1) on the 3×3 lattice, featuring: equipopulation of the
three species (O is the triangle’s barycenter) and when one
species is absent (O lies on the side opposite to the vertex).

the points is stable as they all lay in the biphasic region
(light shaded area). This means that at this monomer
concentration and temperature the system always phase
separates in two different phases represented by the end
small dots of each black line. One of these phases (lying
on the SV edge) contains only solvent molecules and va-
cancies, mixed (see also Sec. S4 in SM [18]). The other
phase (lying on the edge of the dark shaded region) is
a polymer globule mixed with solvent molecules and va-
cancies [47]. As λ increases, the dark shaded region first
touches the SV edge, and two of the original state points
become stable (panel (b) for λ = 0.76) with the chain in
the coil conformation as described earlier [37]. Upon fur-
ther increase of λ more and more points are incorporated
in the stable region up to λ = 1.0 (panel (c)); notice that,
quite surprisingly, for low ϕs (or large ϕv), the system
still phase-separates. Increasing λ further (panel (d)), a
new feature emerges: the extension of the stable region
decreases and some of the former stable points switch
back to phase separation. This indeed represents the
re-entrant globule phase described in [16] (Fig. S1(a) in
SM [18]). Intriguingly, this re-entrance can be observed

(a)λ = 0.60 (b)λ = 0.76

(c)λ = 1.00 (d)λ = 2.30

FIG. 3. Phase diagrams for single chain systems upon vary-
ing λ (Eq. (2) with d = 3, ϵmm = ϵss = −ϵ < 0, ϵms = −λϵ
(λ > 0) and T ∗ = kBT/ϵ = 2.5). The dark- and light-shaded
areas correspond, respectively, to the stable (coil) and the
biphasic (globule) region as identified from the convex hull
procedure (see text for details). Large blue dots correspond
to 9 chosen mean compositions of the system with the same
ϕm = 0.1, while tiny black dots (connected by black lines) de-
note the compositions of the two stable phases in which the
system separates. The positions of the black dots are calcu-
lated by solving numerically Eqs. (7)-(9).

only for “intermediate” ϕs: at high solvent densities the
system remains in a coil state (at least, up to the value
λ = 2.3 considered here), while at low ϕs the polymer
never experiences the coil-globule transition and the sys-
tem remains in the biphasic region at all λ’s; the only
significant modification is the compactness of the glob-
ule with the latter becoming more and more swollen as λ
increases. Once more, this matches the findings of com-
puter simulations by Garg et al. [17], that were performed
at a much lower solvent density than Ref. [16]. There,
however, the authors claimed a direct “transition” from a
compact globule to a less compact one inflated by solvent
molecules (Fig. S1(b) in SM [18]). Our result, instead,
makes clear that the expansion is not a true thermody-
namic transition but rather the result of the continuous
modification of the coexistence line upon varying λ, with
the system always remaining in a biphasic region.

Polymer collapse can be also achieved by fixing the
ms interaction while decreasing the temperature. Here,
this translates in fixing λ (we choose λ = 0.7) and in de-
creasing T ∗ (Fig. 4). At high T ∗ (panel (a)), the system
separates in two phases only for very low ϕs. Then, as
temperature drops (panels (b) and (c)), more and more
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(a)T ∗ = 3.8 (b)T ∗ = 3.0

(c)T ∗ = 2.4 (d)T ∗ = 1.6

(e)T ∗ = 1.4 (f)T ∗ = 1.1

FIG. 4. Phase diagrams for single-chain system upon vary-
ing temperature (Eq. (2) with d = 3, ϵmm = ϵss = −ϵ < 0,
ϵms = −0.7ϵ and selected values of T ∗ = kBT/ϵ). Symbols,
color code and notation are as in Fig. 3. At high temperatures
(panels (a) to (d)), system’s behavior is as seen in the two-
phase situation. For T ∗ < 1.5 (panels (e) and (f)), triphasic
stability (white triangular region, identified by the convex hull
procedure) becomes possible: if the system is prepared inside
this region, it separates into 3 coexisting phases whose com-
positions (obtained by solving numerically Eqs. (S32)-(S35)
in SM [18]) lie at the corners of the white region.

points are incorporated in the two-phase region until, for
T ∗ < 1.5 (Sec. S4 in SM [18]), a triphasic domain ap-
pears and extends progressively. The latter corresponds
to the white triangle in panels (e) and (f), whose corners
identifies the stable compositions into which the system
separates; notice that two of these corners belong to the
SV edge where ϕm = 0. Contrary to previous cases,
three-phase coexistence was not studied in past numeri-
cal simulations [16, 17] and our analysis indicates that it
ought to be seen at sufficiently low temperatures.

As a further relevant application to single-chain sys-
tems, we revisit the recent “polymer-assisted condensa-
tion” [22] at the basis of the formation of biomolecular

condensates within cell nuclei: a two-component liquid
mixture originally in a single stable phase is induced to
phase-separate by the presence of a single polymer chain
displaying preferential attachment to one of the two com-
ponents. In our formalism, this condition can be easily
reproduced by considering the solvent molecules and the
vacancies as the original two-component mixture, with
only ms and ss attractions (ϵss = −ϵ < 0 and ϵms < 0)
and purely steric mm interactions (ϵmm = 0). Again, we
take ϵ as the energy scale, with T ∗ = kBT/ϵ and vary
ϵms = −λϵ via λ. By setting T ∗ = 1.3 (< the critical
value = 1.5 for phase separation in the solvent-vacancy
binary system, Secs. S1C and S4 in SM [18]), we select 3
representative coordinates (ϕm, ϕs, ϕv) with solvent den-
sities outside the miscibility gap [2] of the binary solvent-
vacancy set-up and study their stability by varying λ.
Remarkably (Fig. S2 in SM [18]), our theory reproduces
the simulation results of Ref. [22]: for low λ (panel (a))
all three points are stable, while as λ increases (panels
(b)-(d)) the early stable compositions phase-separate, be-
ginning with those with the highest ϕs.

Multi-chain systems: results – The picture described so
far can be extended to systems of multiple chains with a
finite mean contour length (ℓ <∞). Here one has to solve
a larger number of equations (Sec. S3A and Sec. S3B in
SM [18]) to determine the coexistence lines, but other-
wise there are no significant complications with respect
to the single-chain case. Also for a multi-chain system,
our MF theory predicts re-entrant phase behavior for in-
creasing λ (Fig. S3 in SM [18]) that, interestingly, differs
from the single-chain case since the polymer-poor phase
is now characterized by a small, yet non-zero, value of
the monomer density. In general, this is also in agree-
ment with numerical simulations of polymer solutions
(see Figs. 6 and 7 in [16]). Regrettably, the present ap-
proach does not allow to identify the spatial pattern of
the condensed phase in this case, but in principle this
could be achieved by introducing (see note [39]) proper
surface tension terms between the different phases [42].
Finally, as in the single-chain case, the temperature de-
pendence is also of particular interest and was not ana-
lyzed numerically before. Our theory predicts again that
upon cooling there is a large region of the parameter
space guaranteeing triphasic stability (white regions in
Fig. S4 in SM [18]), especially panel (e)) where we do
recognize a polymer-poor phase with ϕm > 0 that is ab-
sent in the single-chain case (compare to Fig. 4).

Conclusion – In this Letter, we have introduced a
new O(n → 0)-vector spin model equivalent to the ex-
act grand canonical partition function of lattice polymers
with explicit solvent molecules (Eq. (1)), and mapped it
to a field-theoretic form that is amenable to a saddle-
point approximation. The resulting expression, via Leg-
endre transform, gives the mean-field free energy of the
system (βf , Eq. (2)) that generalizes earlier work [30, 31]
and, notably, is of the Flory-Huggins form [20, 21] for a
ternary mixture of polymer, solvent and vacancies. A
systematic stability analysis of the equilibrium relations
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for two (Eqs. (7)-(9) and Eqs. (S36)-(S39) in SM [18])
and three phases (Eqs. (S32)-(S35) and Eqs. (S40)-(S45)
in SM [18]) by using the convex hull method [41, 42] of
the free energy profile reproduces transparently recent
results from extensive numerical simulations for single-
and multi-chain systems in explicit solvent [16, 17, 22].
In particular, we provide a unified explanation for two
seemingly unrelated observations: a re-entrant polymer
coil-globule transition (Fig. 3) and polymer-assisted con-
densation of the solvent (Fig. S2 in SM [18]). Notice that
although both transitions are triggered by increasing the
strength of the attractive ms interaction, the role of va-
cancies (and the consequent entropy of the solvent) re-
mains in both situations essential: these two phenomena
are in fact absent altogether in a pure polymer/solvent
binary mixture. Our approach enables us also to char-
acterize in a transparent way the roles of both, solvent

density and temperature, that would otherwise require
time-consuming computer simulations. In particular, we
have discovered whole new regions of low-temperature
three-phase stability (Fig. 4 and Fig. S4 in SM [18]) that
were never described before. Finally, we point out that
the main ideas and tools introduced here can be gen-
eralized to mixtures with more species, polymers with
intrinsic bending stiffness [31] or polymers with complex
architectures [48]. Work in that regard is currently under
way.
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S1. MICROSCOPIC LATTICE MODEL

A. Definition

The model adapts and generalizes the language of our field-theoretical formalism [31] for self-interacting polymers
on the d-dimensional hypercubic lattice by taking into account the explicit role of solvent molecules. We take the
elementary lattice step as our unit of length and we denote by N the total number of sites of the (hypercubic) lattice.
For simplicity, monomers and solvent molecules have the same “size”, namely one monomer or one solvent molecule
occupy one single lattice site; at the same time, to enforce the natural constraint of excluded volume, each lattice
site is either empty or occupied at most by one single molecular species (either a monomer or a solvent molecule)
otherwise double-occupancy is strictly forbidden. Importantly, the whole lattice may be not completely filled (i.e.,
lattice vacancies are present) and we consider the situation of completely flexible chains, namely the bond length of
the chains is equal to one lattice unit (see footnote [49]).

As explained in detail in the main text, our starting point is the grand canonical partition function Z =
Z(κc, κb, κs, ϵmm, ϵss, ϵms) (see Eq. (1) in the main text and the related definitions for the different quantities). By
introducing [31] at each lattice position x the n-component vector S(x) ≡ (S1(x), S2(x), ..., Sn(x)) with the internal
product S(x) ·S(x′) ≡ ∑n

i=1 S
i(x)Si(x′) between any two vectors associated to lattice points x and x′ and by defining

the trace operation (denoted by the symbol ⟨...⟩0) through the formal rules:

⟨1⟩0 = 1 , (S1)

⟨Si⟩0 = 0 , (S2)

⟨SiSj⟩0 = δij , (S3)

⟨Si1Si2 ... Sik⟩0 = 0 , if k ≥ 3 , (S4)

with S-vectors on different sites being independent from each other under the same trace operation, the following
identity holds (compare to Eq. (32) in [31])

Z =

∫ ∏
σ

Dψσ exp

(
− 1

2

∑
σ

∑
x⃗,x⃗′

∆−1(x,x′)ψσ(x)ψσ(x
′)

)

× lim
n→0

〈∏
x

(
1 +Hc(x)S

1(x) +Hs(x)(S
1(x))2

)
exp

[
1

2

∑
x,x′

∆(x,x′)h(x)h(x′)S(x) · S(x′)

]〉
0

, (S5)

where:

∆(x,x′) =

{
1 , if |x− x′| = 1 lattice step
0 , otherwise

, (S6)

Hc(x) =
√
κce

√
β(ϵms−ϵmm)

2 ψmm(x)+

√
−βϵms

2 ψms(x) , (S7)

Hs(x) = κse
√
β(ϵms−ϵmm)ψss(x)+

√
−βϵmsψms(x) , (S8)

h(x) =
√
κbe

βϵmm
2 e

√
β(ϵms−ϵmm)

2 ψmm(x)+

√
−βϵms

2 ψms(x) , (S9)

Dψσ ≡ (2π)−N/2 (det∆)−1/2
∏
x⃗ dψσ(x) is the measure associated to the auxiliary scalar fields ψσ = ψσ(x) with

σ = {mm,ms, ss} (i.e., there are 3 scalar fields per each lattice site) and – importantly! – the “limn→0” operation
is required [31] to rule out all contributions to the partition function that include chain topologies different from the
linear one. Then, the last step consists in “removing” the dependence on the S-vectors in the last term of Eq. (S5) in
favor of the vector field φ(x) ≡ (φ1(x), φ2(x), ..., φn(x)) with the associated measure

Dφ ≡ (2π)−nN/2 (det∆)
−n/2 ∏

x

dφ(x) , (S10)

by means of a standard Hubbard-Stratonovich transformation [50, 51]. After some manipulations, and up to an
unimportant prefactor, the grand canonical partition function takes the final form:

Z = lim
n→0

∫ ∏
x

∏
σ

dψσ(x)

∫ ∏
x

dφ(x) exp

{
−A−B +

∑
x

ln [1 + C]

}
, (S11)
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where:

A =
1

2

∑
σ

∑
x,x′

∆−1(x,x′)ψσ(x)ψσ(x
′) , (S12)

B =
1

2

∑
x,x′

∆−1(x,x′)φ(x) ·φ(x′) , (S13)

C = Hs(x) +
h2(x)

2
|φ(x)|2 +Hc(x)h(x)φ

1(x) . (S14)

B. Mean-field (saddle-point) formulation

Despite being formally exact, Eq. (S11) can not be evaluated directly. This field-theoretic form is however particu-
larly suitable for an expansion around the saddle-point [28–31]. In order to compute the first term of such expansion,
we differentiate the exponential in Eq. (S11) with respect to each φi(x) and ψσ(x) and set the obtained expressions
equal to 0. Then, we simplify the problem further by looking only for those solutions that both (i) satisfy translational
invariance and (ii) break the O(n) symmetry of the vector field [52], i.e. φ(x) = (φ, 0, . . . , 0) and ψσ(x) = ψσ for
every x, that leads to:

φ

2d
=

h2φ+Hch

1 +Hs +
h2

2 φ
2 +Hchφ

, (S15)

ψmm
2d

=

√
β(ϵms − ϵmm)

(
h2

2 φ
2 +Hchφ

)
1 +Hs +

h2

2 φ
2 +Hchφ

, (S16)

ψss
2d

=

√
β(ϵms − ϵss)Hs

1 +Hs +
h2

2 φ
2 +Hchφ

, (S17)

ψms
2d

=

√−βϵms
(
Hs +

h2

2 φ
2 +Hchφ

)
1 +Hs +

h2

2 φ
2 +Hchφ

, (S18)

where Hc, Hs and h are the same quantities defined in Eqs. (S7)-(S9), computed in correspondence of the saddle-
point. In terms of the solutions [53] φ = φ(κc, κb, κs, ϵmm, ϵss, ϵms) and ψσ = ψσ(κc, κb, κs, ϵmm, ϵss, ϵms) of the MF
Eqs. (S15)-(S18), the corresponding grand potential per lattice site, βΩ ≡ − ln(Z)/N , reads (up to an unimportant
additive constant) as the following:

βΩ(κc, κb, κs, ϵmm, ϵss, ϵms) =
ψ2
mm

4d
+
ψ2
ms

4d
+
ψ2
ss

4d
+
φ2

4d
− ln

[
1 +Hs +Hchφ+

h2

2
φ2

]
. (S19)

Eq. (S19), alongside Eqs. (S15)-(S18) and Eqs. (S7)-(S9) calculated at the saddle-point, defines completely the ther-
modynamics of the system. In particular, it is easy to derive the following expressions:

ϕc ≡ ⟨Nc⟩
N

= −βκc
∂Ω

∂κc
=

1

2

Hchφ

1 +Hs +Hchφ+ h2

2 φ
2
, (S20)

ϕb ≡ ⟨Nb⟩
N

= −βκb
∂Ω

∂κb
=
φ2

4d
, (S21)

ϕm ≡ ϕc + ϕb =
h2

2 φ
2 +Hchφ

1 +Hs +Hchφ+ h2

2 φ
2
, (S22)

ϕs ≡ ⟨Ns⟩
N

= −βκs
∂Ω

∂κs
=

Hs

1 +Hs +Hchφ+ h2

2 φ
2
, (S23)

for, respectively, the (mean) chain, bond, monomer and solvent fraction or density.
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C. Free energy of the system

An alternative, more convenient way to characterize the thermodynamics of the system is by means of the free
energy per lattice site,

βf = βf(ϕc, ϕb, ϕs) ≡ βΩ+ ϕc lnκc + ϕb lnκb + ϕs lnκs , (S24)

which is the Legendre transform [31] of the grand potential βΩ (S19), and where the fugacities

κc =
2ϕ2c

(ϕb − ϕc)(1− ϕm − ϕs)
e2dβ(ϵmmϕm+ϵmsϕs) , (S25)

κb =
ϕb − ϕc

2dϕb(1− ϕm − ϕs)
e2dβ(ϵmmϕm+ϵmsϕs)−βϵmm , (S26)

κs =
ϕs

1− ϕm − ϕs
e2dβ(ϵmmϕm+ϵssϕs) , (S27)

are given (see Eqs. (S20)-(S23)) as a function of densities ϕm, ϕs and ϕc = ϕm/ℓ where ℓ is the mean length of
the polymer chains (remember that within this model the system is intrinsically polydisperse, see main text). By
straightforward calculations, one finally obtains the free energy expression, βf , reported in Eq. (2) in the main text.
It is instructive to specialize βf to binary mixtures, namely when one of the three considered species (monomers

(m), solvent molecules (s) or vacancies (v)) is absent. In particular, by subtracting the contribution of the free
energy for the phase-separated system, we get the functional form of the free energy of mixing and the related Flory
parameter, χ, recapitulating the interaction between the two species (for reference, see [2, 27]). Three situations are
possible:

1. ϕm = 0: βf = βf(ϕs) = dβϵss ϕ
2
s +(1−ϕs) ln(1−ϕs)+ϕs ln(ϕs) corresponds to the free energy of a mixture of

solvent molecules and vacancies. By the corresponding free energy ofmixing – β∆f(ϕs) ≡ βf(ϕs)−ϕsβf(ϕs = 1)
– the Flory parameter for the solvent molecules is χ = −dβϵss. Accordingly, aggregation of solvent particles
happens at the critical Flory parameter χc = 2, corresponding to the critical temperature Tc = −dϵss

2kB
(obviously,

physical values of Tc are possible only for ϵss < 0, namely when solvent molecules attract each other).

2. ϕs = 0: βf = βf(ϕm, ℓ) = dβϵmm ϕ
2
s + (1 − ϕm) ln(1 − ϕm) + ϕm

ℓ ln(ϕm) + ϕm ln
(

(1−2/ℓ)1−2/ℓ (2/ℓ2)1/ℓ

(2d eβϵmm−1(1−1/ℓ))1−1/ℓ

)
corresponds to the free energy of a mixture of polymer chains of mean contour length ℓ and vacancies. Now
the free energy of mixing – β∆f(ϕm) ≡ βf(ϕm)− ϕmβf(ϕm = 1) – gives the Flory parameter for the polymer
molecules χ = −dβϵmm. The critical temperature of aggregation of polymer chains is particularly easy to
calculate in the two limit cases: (i) for ℓ = 1, this is analogous to the case of solvent particles and Tc = −dϵmm

2kB
;

(ii) for ℓ→ ∞, this reduces to the case by Doniach et al. [30] where Tc = − 2dϵmm

kB
.

3. ϕv = 1 − ϕm − ϕs = 0: βf(ϕm, ℓ) = dβϵmm ϕ
2
m + dβϵss (1 − ϕm)2 + 2dβϵmsϕm(1 − ϕm) + ϕm

ℓ ln(ϕm) + (1 −
ϕm) ln(1− ϕm) + ϕm ln

(
(1−2/ℓ)1−2/ℓ (2/ℓ2)1/ℓ

(2d eβϵmm−1(1−1/ℓ))1−1/ℓ

)
corresponds to the free energy of a mixture of polymer chains

of mean contour length ℓ and solvent molecules. By the same procedure as before, the free energy of mixing –
β∆f(ϕm) ≡ βf(ϕm)−ϕmβf(ϕm = 1)−(1−ϕm)βf(ϕm = 0) – gives the Flory parameter for the polymer/solvent
mixture χ = dβ(2ϵms − ϵmm − ϵss). Now, the critical temperatures for phase separation for the two limit cases

discussed at point (2) are: (i) for ℓ = 1, Tc =
d(2ϵms−ϵmm−ϵss)

2kB
; (ii) for ℓ→ ∞, Tc =

2d(2ϵms−ϵmm−ϵss)
kB

.

The special cases (1)-(3) will be viewed again in Sec. S4, in relation to the numerical solution to the complete free
energy of the ternary mixture (Eq. (2) in the main text).

S2. SINGLE-CHAIN SYSTEMS: THREE-PHASE STABILITY

In order to derive the conditions for the coexistence of three phases in single-chain systems we proceed similarly
as for the case of two phases. The starting point is the total free energy of the phase-separated system (compare to
Eq. (3) in the main text),

V If(0, ϕIs) + V IIf(0, ϕIIs ) + V IIIf(ϕIIIm , ϕIIIs ) , (S28)
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with the constraints (compare to Eqs. (4)-(6) in the main text):

V I + V II + V III = V , (S29)

V IIIϕIIIm = V ϕm , (S30)

V IϕIs + V IIϕIIs + V IIIϕIIIs = V ϕs . (S31)

This time, the minimization procedures leads to a system of 7 equations (with 3 constraints), that can be rearranged
into the following relations for the equilibrium densities:

ϕIs
∂f

∂ϕs

∣∣∣∣ϕm=0

ϕs=ϕ
I
s

− f(0, ϕIs) = ϕIIs
∂f

∂ϕs

∣∣∣∣ϕm=0

ϕs=ϕ
II
s

− f(0, ϕIIs ) , (S32)

ϕIs
∂f

∂ϕs

∣∣∣∣ϕm=0

ϕs=ϕ
I
s

− f(0, ϕIs) = ϕIIIm

∂f

∂ϕm

∣∣∣∣ϕm=ϕIII
m

ϕs=ϕ
III
s

+ ϕIIIs

∂f

∂ϕs

∣∣∣∣ϕm=ϕIII
m

ϕs=ϕ
III
s

− f(ϕIIIm , ϕIIIs ) , (S33)

∂f

∂ϕs

∣∣∣∣ϕm=0

ϕs=ϕ
I
s

=
∂f

∂ϕs

∣∣∣∣ϕm=0

ϕs=ϕ
II
s

(S34)

∂f

∂ϕs

∣∣∣∣ϕm=0

ϕs=ϕ
I
s

=
∂f

∂ϕs

∣∣∣∣ϕm=ϕIII
m

ϕs=ϕ
III
s

. (S35)

Again, if a non-trivial solution to Eqs. (S32)-(S35) exists, then the system minimizes its free energy by separating
into three coexisting phases. An interesting difference with respect to the biphasic case (compare to Eqs. (7)-(9) in
the main text) is that the solution to Eqs. (S32)-(S35) does not depend explicitly on the average densities ϕm and ϕs.
Three-phase stability is illustrated in Fig. 4 in the main text.

S3. MULTI-CHAIN SYSTEMS

In this Section, we describe the conditions for two-phase (Sec. S3A) and three-phase (Sec. S3B) stability for a
polymer solution in explicit solvent, assuming chains of finite mean contour length (i.e., ℓ <∞ in Eq. (2) in the main
text).

A. Two-phase stability

Contrarily to the single-chain case, in the derivation of the equations for the equilibrium densities (namely, the
equivalent of Eqs. (7)-(9) in the main text), we can not assume that one of the phases in which the system separates
has ϕm = 0. Based on that, and by adopting the same notation of the main text, for the two-phase case we have to
determine ϕIm > 0 in addition to all the other quantities. After some math, the new set of equations becomes:

ϕIm
∂f

∂ϕm

∣∣∣∣ϕm=ϕI
m

ϕs=ϕ
I
s

+ ϕIs
∂f

∂ϕs

∣∣∣∣ϕm=ϕI
m

ϕs=ϕ
I
s

− f(ϕIm, ϕ
I
s) = ϕIIm

∂f

∂ϕm

∣∣∣∣ϕm=ϕII
m

ϕs=ϕ
II
s

+ ϕIIs
∂f

∂ϕs

∣∣∣∣ϕm=ϕII
m

ϕs=ϕ
II
s

− f(ϕIIm , ϕ
II
s ) , (S36)

∂f

∂ϕm

∣∣∣∣ϕm=ϕI
m

ϕs=ϕ
I
s

=
∂f

∂ϕm

∣∣∣∣ϕm=ϕII
m

ϕs=ϕ
II
s

, (S37)

∂f

∂ϕs

∣∣∣∣ϕm=ϕI
m

ϕs=ϕ
I
s

=
∂f

∂ϕs

∣∣∣∣ϕm=ϕII
m

ϕs=ϕ
II
s

, (S38)

ϕm − ϕIm
ϕIIm − ϕIm

=
ϕs − ϕIs
ϕIIs − ϕIs

. (S39)

Notice in particular, and in comparison to Eqs. (7)-(9) in the main text, the “new” Eq. (S37) as the consequence
of having ϕIm > 0. Moreover, and as already noticed for ℓ → ∞, also in this more general case the solution to
Eqs. (S36)-(S39) depends explicitly on the preparation conditions of the system, ϕm and ϕs.

Two-phase stability for multi-chain systems is illustrated in Fig. S3 for the same set of parameters considered in
Fig. 3 in the main text and chain mean length ℓ = 10. The major difference with respect to the single-chain case
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is in the appearance of a dilute, yet strictly non-zero, polymer phase that, intuitively, is expected to become more
pronounced for lower values of ℓ. Finally, as can be noticed in Fig. S3, a re-entrance condition does still exist for
λ > 1.0, in agreement with the results of molecular dynamics computer simulations by Huang and Cheng [16].

B. Three-phase stability

The last case to be addressed is that of three-phase coexistence in multi-chain system. Again, the main difference
with respect to the single-chain counterpart is that we can no longer assume that ϕm = 0 in any of the phases in
which the system separates. Therefore, in total we need now to compute 6 equilibrium densities. By implementing
the same procedure of the minimization of the free energy (Eq. (2) in the main text) with the proper constraints leads
to the following equations:
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Once again, we notice that Eqs. (S40)-(S45) imply the equality of the osmotic pressure and the chemical potential of
both species (monomers and solvent molecules) in all 3 phases.

S4. BINARY MIXTURES AS SPECIAL CASES

The numerical results presented in Fig. 3 and Fig. 4 in the main text are in perfect agreement with the limit cases
where one of the species is absent (see the related discussion in Sec. S1C):

1. ϕm = 0: A binary mixture of solvent molecules and vacancies is represented as a point on the SV side of the
Gibbs triangle. Here the critical temperature T ∗

c = d/2 (= 3/2 for d = 3): accordingly, for T ∗ < T ∗
c some points

on the SV sides become non-stable and a triphasic region appears (see Fig. 4).

2. ϕs = 0: A system with no solvent molecules corresponds to a point on the sideMV . Now the critical temperature
T ∗
c = 2d (= 6 for d = 3): for T ∗ < T ∗

c the system phase-separates and the density of the globule is given by the
binodal line, that depends only on temperature. Therefore, at fixed T ∗, the stability of the MV side should not
change: this is easily noticed in Fig. 3 in the main text.

3. ϕv = 1− ϕm − ϕs = 0: Finally, a system with no vacancies is represented by a point on the MS side. In these
conditions, the critical temperature T ∗

c = 4d(1 − λ) (= 12(1 − λ) for d = 3). Therefore, for λ > 1 the entire
MS side is expected to be in the stable region, regardless of the value of T ∗. For the example shown in Fig. 4,
λ = 0.7 and T ∗

c = 3.6 for the MS system: indeed, at T ∗ = 3.8 (panel (f)) the entire MS side is contained in
the stable region.
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example is shown in Figure 2B. When ϵps is increased fur-
ther, chains adopt swollen conformations. The case in
Figure 2C for ϵps = 1.5ϵ is one such example.

A surprise is revealed in the simulations with large
values of ϵps. As shown in Figure 2D, the chain becomes
less extended at ϵps = 2.0ϵ compared with the case at

ϵps = 1.5ϵ. The trend is clearer when ϵps is increased fur-
ther. For example, the snapshot in Figure 2E is for
ϵps = 4.0ϵ, where the chain is apparently collapsed. This
result is unexpected as a large value of ϵps indicates that
the monomer beads interact strongly with the solvent
atoms, where we would naively expect the polymer chain
to be well solvated by the solvent and therefore to adopt
extended conformations. Below we further quantify the
variation of chain sizes as ϵps is increased and then
discuss the implication of our results.

We compute the radius of gyration, Rg, of each poly-
mer chain as a way to quantify chain conformations.
Since the correlation time of Rg is found to be around or
shorter than 2.5τ, Rg is computed every 2.5τ and its aver-
age value is output every 50τ. A statistical analysis is then
performed for a sequence of such average values to
obtain the mean value and uncertainty of Rg reported
here. In Figure 3, Rg is plotted against the monomer-
solvent interaction strength, ϵps, for three chains with
Nm = 64, 128, and 256, respectively. Results for other
values of Nm studied are all included in the Supporting
information. Consistent with the snapshots shown in
Figure 2, Rg is initially small when ϵps is small. A first
sharp transition of Rg occurs at ϵps ’ 1.0ϵ, around which
point the solvent quality changes from poor to θ and then
to good. When ϵps is increased beyond about 2.0ϵ (i.e., the
monomer-solvent interaction is twice as strong as the
solvent-solvent and nonbonded monomer-monomer
interactions), Rg starts to decrease, indicating the collaps-
ing of the chain and the worsening of the solvent quality.
Therefore, there is another θ-point around ϵps ’ 2.0ϵ.
This second θ-transition is sharper for a longer chain.

FIGURE 1 Snapshot of a 50-bead chain suspended in the LJ
solvent at ϵps = 2.0ϵ

FIGURE 2 Representative snapshots of a 50-bead chain at
various values of ϵps: (A) 0.4ϵ, (B) 0.95ϵ, (C) 1.5ϵ, (D) 2.0ϵ, and
(E) 4.0ϵ

FIGURE 3 Radius of gyration (Rg) versus monomer-solvent
interaction strength (ϵps) for Nm = 64 (squares), 128 (triangles), and
256 (circles)
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values of ϵps. As shown in Figure 2D, the chain becomes
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result is unexpected as a large value of ϵps indicates that
the monomer beads interact strongly with the solvent
atoms, where we would naively expect the polymer chain
to be well solvated by the solvent and therefore to adopt
extended conformations. Below we further quantify the
variation of chain sizes as ϵps is increased and then
discuss the implication of our results.

We compute the radius of gyration, Rg, of each poly-
mer chain as a way to quantify chain conformations.
Since the correlation time of Rg is found to be around or
shorter than 2.5τ, Rg is computed every 2.5τ and its aver-
age value is output every 50τ. A statistical analysis is then
performed for a sequence of such average values to
obtain the mean value and uncertainty of Rg reported
here. In Figure 3, Rg is plotted against the monomer-
solvent interaction strength, ϵps, for three chains with
Nm = 64, 128, and 256, respectively. Results for other
values of Nm studied are all included in the Supporting
information. Consistent with the snapshots shown in
Figure 2, Rg is initially small when ϵps is small. A first
sharp transition of Rg occurs at ϵps ’ 1.0ϵ, around which
point the solvent quality changes from poor to θ and then
to good. When ϵps is increased beyond about 2.0ϵ (i.e., the
monomer-solvent interaction is twice as strong as the
solvent-solvent and nonbonded monomer-monomer
interactions), Rg starts to decrease, indicating the collaps-
ing of the chain and the worsening of the solvent quality.
Therefore, there is another θ-point around ϵps ’ 2.0ϵ.
This second θ-transition is sharper for a longer chain.

FIGURE 1 Snapshot of a 50-bead chain suspended in the LJ
solvent at ϵps = 2.0ϵ

FIGURE 2 Representative snapshots of a 50-bead chain at
various values of ϵps: (A) 0.4ϵ, (B) 0.95ϵ, (C) 1.5ϵ, (D) 2.0ϵ, and
(E) 4.0ϵ
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that are reported are for Nm = 100 unless otherwise stated. We
simulate systems with different interaction strengths ranging from
�mm = 0.1–1.0 and �mc = 0.1–4.0. For all these systems, we simulate
two crowder–crowder interaction strengths: �cc = 1.0 and 0.3. Most
of the results described are with �cc = 1.0 unless otherwise stated. All
the length scales are measured in terms of σmm.

The crowder number density, ρc, is defined as the ratio of
the number of crowders to the simulation box volume (40 × 40× 40). Most of the simulation results are for crowder number den-
sity ρc = 0.047. Higher values of ρc are explored to understand the
role of crowder density on the conformational phase diagram. The
monomer number density, defined as the ratio of the number of
monomers to the volume of the simulation box, is 1.562 × 10−3. The
equations of motion are integrated using the MD LAMMPS software
package,41 and visualization of images and trajectories has been done
in the visual molecular dynamics (VMD) package.42 Various analy-
ses have been performed with in house codes. All the systems are
simulated for 2 × 107 steps using a velocity Verlet algorithm with
time step δt = 0.001τ. The initial configurations were obtained by
setting up a dilute system of the neutral polymer simulated in an
NPT ensemble for 107 time steps to obtain desired density. Subse-
quently, simulations are performed under a constant volume and
temperature condition (T = 1.0) using a Nose Hoover thermostat.
The block average over the last 9000 frames is calculated to get the
average of each parameter in each simulation. We check that the sys-
tem reaches equilibrium by doing simulations with both extended
and collapsed initial conditions and verify that the equilibrium
configurations are independent of the initial conditions.

III. RESULTS
A. Conformational phase diagram
with attractive crowders

In this section, we explore the conformations of a neutral poly-
mer in the �mm–�mc plane. For all the simulations in this section,
crowder number density ρc = 0.047 and crowder–crowder interac-
tion �cc = 1.0. The conformations of the polymer are characterized
via its radius of gyration, Rg , as follows:

R2
g = 1

N

N�
i=1
(ri − rcm)2, (3)

where ri is the position vector of the ith monomer and rcm is the
position of the center of mass of the polymer.

Figure 1 shows the variation of Rg with monomer–crowder
interaction, �mc, for different values of monomer–monomer inter-
actions, �mm. For small values of �mc, the polymer is extended
for weak monomer–monomer interactions (�mm � 0.5) and col-
lapsed for higher values of �mm. When �mc is increased, for weak
monomer–monomer interactions, the polymer undergoes a transi-
tion from an extended phase to a collapsed phase around �mc ≈ 1.0
and remains in a collapsed conformation up to the largest �mc that
we have studied. For intermediate �mm, Rg increases slightly with �mc
before decreasing to a collapsed phase. For large �mc, regardless of
the �mm values, the polymer is in a collapsed phase. These features,
up to �mc = 1.0, are as reported in Ref. 33. However, in our simula-
tions, we show a second transition from a collapsed phase induced
by strong intra-polymer attraction to a collapsed phase induced by

FIG. 1. The variation of the mean radius of gyration, Rg with attractive
monomer–crowder interaction, �mc , for different inter monomer interaction, �mm.
In the snapshots along the collapse pathway, monomers are shown in red, and the
crowders that are within a distance of 2σmc of at least one monomer are shown in
yellow. All the snapshots are for �mm = 0.1 except for the bottom left, which is for
�mm = 1.0. The data are for �cc = 1.0 and ρc = 0.047.

bridging crowders, when �mc is increased. We will show that these
two collapsed phases differ in their Rg and their structure, aspects
that were not explored earlier.

From these observations, we identify three predominant phases
in the conformational phase diagram of neutral polymers with
attractive crowders: (1) an extended phase, E, in which both intra-
polymer and polymer–crowder interactions are weak (2) a collapsed
phase, CI, which is characterized by strong intra-polymer attraction,
and (3) a collapsed phase, CB, which is characterized by bridging
interactions due to strong polymer–crowder interactions. We now
explore the complete conformational �mm–�mc phase diagram and
identify the nature of the three phase lines, E–CB, CI–CB, and E–CI.

To obtain the phase diagram, we proceed as follows. We iden-
tify the transition points between different phases as those values of
�mm and �mc at which the radius of gyration Rg changes most rapidly,
i.e., dRg�d�mc or dRg�d�mm is maximum. To obtain these gradients,
we fit the region near the transition, in Fig. 1, to a hyperbolic tangent
function. The phase diagram, thus, obtained, is shown in Fig. 2. The
three phases extended E, collapsed due to intra-polymer attraction
CI, and collapsed due to bridging crowders CB, are shown in three
different colors. We now examine the polymer conformations and
crowder distributions in these three phases to rationalize the phase
lines.

For relatively smaller values of �mc and moving along the
increasing �mm values, there is a phase transition from extended
phase, E, to intra-polymer attraction dominated collapsed phase, CI
at a value of �∗mm ≈ 0.4, which is consistent with the transition point
found in Ref. 33. We find that the �∗mm is utmost weakly dependent
on �mc, which may be understood as follows. For the low value of
crowder density simulated, the typical monomer–crowder separa-
tion (ρ−1�3

c ≈ 2.77), being larger than the LJ minimum (≈1.12), and
the E–CI transition is largely independent of �mc.
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FIG. 2. Conformational phase diagram of the neutral polymers with attractive crow-
ders in the �mm–�mc plane. The simulated systems corresponding to extended
phase (E), strong intra-polymer interaction induced collapsed phase (CI), and
bridging crowder induced collapsed phase (CB) are colored in red, yellow, and
blue, respectively. The data are for �cc = 1.0 and ρc = 0.047.

For �mm = 0.1, the E–CB transition occurs at �∗mc ≈ 0.77. For
higher values of �mm, the phase line slopes slightly to the left (the
slope being larger when �cc is lowered, as in Sec. III B) showing
that bridging interactions start dominating at a smaller value of �mc.
The decrease of �∗mc with increasing �mm can be rationalized as fol-
lows. Since the intra-polymer interactions are attractive, an increase
in �mm enhances the propensity to collapse. An additional inclu-
sion of bridging crowder interaction (�mc) only further stabilizes the
CB phase and, hence, lowers the critical value of �∗mc needed for the
transition.

In contrast, for large �mm, �∗mc increases linearly with �mm for
the CI–CB transition. This can be rationalized as follows. In the
CI phase, every non-bonded monomer–monomer interaction low-
ers energy by �mm. The CI–CB transition requires the replacement
of a strong monomer–monomer interaction by at least an equiva-
lent monomer–crowder interaction, resulting in higher �mc values
for larger �mm.

We now quantitatively differentiate between the two collapsed
phases CI and CB. To do so, we compare the monomer–monomer
pair correlation function, g(r), for these two phases in Fig. 3. In the
calculation of g(r), the bonded pairs are excluded. In the CI phase,
there is a peak close to r ≈ 1.1, corresponding to a large number
of non-bonded monomer–monomer pairs leading to the collapsed
phase. In sharp contrast, this peak is completely absent in the CB
phase, showing that intra-polymer interactions are less significant.
In the CB phase, the dominant interactions are monomer–crowder
as shown in the peak at r ≈ 1.1 in the monomer–crowder gmc(r) in
Fig. 3. Furthermore, the larger extent of gmm(r) for the CB phase,
as compared to the CI phase, is consistent with a larger Rg . In addi-
tion, due to the dominant intra-polymer interactions in the CI phase,
we expect gmm(r) to depend strongly on �mm. However, when the
polymer–crowder interactions are dominant, as in the CB phase,
we expect gmm(r) to be largely independent of �mm. This aspect
is clearly seen in Fig. S1 (see the supplementary material), where

FIG. 3. The pair correlation function, g(r), for both monomer–monomer and
monomer–crowder in the CB phase (�mm = 0.1 and �mc = 4.0) and the CI phase
(�mm = 1.0 and �mc = 0.1). The data are for �cc = 1.0 and ρc = 0.047. The contri-
butions from the bonded monomers are excluded. The snapshots of the polymer
in CI and CB phases are shown in red with bridging crowders (shown in yellow).

gmm(r) for different �mm are shown. For �mc = 0.1, corresponding
to the CI phase, gmm has a strong dependence on the �mm, and the
emergence of a structure between monomers can be seen as �mm
is increased [see Fig. S1(a)]. However, for strong polymer–crowder
attraction, the structure of the collapsed phase CB is identical within
numerical error [Fig. S1(b)] and has a similar structure correspond-
ing to a collapsed phase. In addition, the overall size of the collapsed
state CB approaches a limiting value (independent of �mm and func-
tion of only polymer length). We conclude that the CB phase is
distinctly different from the CI phase and largely independent of
intra-polymer interactions.

We now look at bridging crowders to further differentiate
between the CB and CI collapsed phases. Although the concept
of attractive crowders acting as bridges or glue between distant
monomers has been invoked in earlier works,33,34,36–39 a quantitative
definition of the same is lacking. We define a crowder as a bridg-
ing crowder if it interacts with at least k monomers. It is a priori
not clear what the optimal value of k should be. If k is too small, the
crowders that are adsorbed on the surface of the collapsed polymer
will be incorrectly counted as bridging crowders. On the other hand,
if k is too large, very few crowders will satisfy the bridging criterion.
We determine the optimal value of k as follows. Let nk denote the
number of crowders that have exactly k monomers within a sphere
of radius 1.5σ centered about the crowder. We choose 1.5σ as it is
larger than the LJ minimum of 21/6σ and smaller than the position
of the second peak seen in the monomer–crowder pair correlation
function (see Fig. 3). The variation of nk with k is shown in Fig. 4(a)
for parameter values corresponding to both CI and CB phases. We
find that for the CI phase, nk is nearly zero for k > 2. On the other
hand, for the CB phase, we find that nk is comparable to the length of
the polymer for small values of k and decreases to zero for k > 10. To
distinguish surface adsorbed crowders from bridging crowders, we
calculate nk for three different values of polymer length Nm. We find
that the data for small k and different Nm collapse onto one curve
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FIG. S1. Phase-behavior of single polymers in explicit solvent, insight from Molecular Dynamics computer simulations.
Polymers are modeled as linear chains of beads (or monomers) and solvent molecules as single particles; monomers and
solvent particles have the same linear size = b, and monomer-monomer (mm), solvent-solvent (ss) and monomer-solvent (ms)
interactions are of the Lennard-Jones type. (a) The first set-up is from Ref. [16], with a single chain immersed in a bath of
solvent molecules at density ρs = 0.64/b3. mm and ss pair interactions are attractive, with equal fixed strength defining our
energy scale (ϵmm = ϵss = −ϵ < 0); the ms interaction is attractive and of variable strength. The polymer mean gyration
radius in bond units (Rg/b, l.h.s.) as a function of the ms strength (−ϵms/ϵ) demonstrates that the polymer undergoes a
compact-swollen-compact re-entrant behavior upon increasing the polymer affinity with the solvent. The re-entrant globule
phase is characterized by the presence of solvent molecules inside the globule, which makes it more swollen. On the r.h.s., a few
representative chain conformations from low to high ms affinity (panels (A) to (E)). Notice that in the same work, the authors
discussed also multi-chain systems. Reprinted and adapted from [16], with the permission of John Wiley and Sons.
(b) The second set-up is from Ref. [17], with a single chain immersed in a bath of solvent molecules at density ρs = 0.047/b3

(i.e., very dilute conditions and, so, much smaller than in the previous case). The ss interaction strength (ϵss = −ϵ) fixes the
energy scale, and mm (ϵmm) and ms (ϵms) are varied to characterize the mean chain gyration radius (l.h.s.) and the phase
diagram (r.h.s.). For relevant parameters here (ϵmm = ϵss, bottom line in the l.h.s. panel), by increasing the ms affinity
the chain undergoes a transition from two distinct compact phases, from one (CI) stabilized by intra-polymer interactions
to that (CB) stabilized by bridging (solvent-mediated) interactions. Reprinted and adapted from Ref. [17], with the
permission of AIP Publishing.
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(a)λ = 0.5 (b)λ = 0.7

(c)λ = 0.9 (d)λ = 1.1

FIG. S2. Single-chain systems, polymer-assisted condensation (Eq. (2) in the main text with d = 3, ϵmm = 0, ϵss = −ϵ < 0,
ϵms = −λϵ (λ > 0) and T ∗ = kBT/ϵ = 1.3). The gray dashed line denotes the miscibility gap [2] of the binary SV mixture:
its extremities correspond to the binodal concentrations. The three large blue dots denote corresponding mean compositions
of the system with the same monomer density ϕm = 0.04 and as many values of ϕs outside the miscibility gap.
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(a)λ = 0.3 (b)λ = 0.5 (c)λ = 0.6

(d)λ = 1.0 (e)λ = 1.3 (f)λ = 1.7

FIG. S3. Multi-chain systems, two-phase stability (Eq. (2) in the main text with d, ϵmm, ϵss, ϵms and T ∗ as in the caption
of Fig. 3 in the main text, and with chains of finite mean contour length ℓ = 10). Symbols (in particular, the blue points
corresponding to 9 chosen mean compositions of the system with the same ϕm = 0.1), color code and notation are as in Fig. 3
in the main text. The positions of the black dots are calculated by solving numerically Eqs. (S36)-(S39).
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(a)T ∗ = 3.0 (b)T ∗ = 2.3 (c)T ∗ = 1.8

(d)T ∗ = 1.6 (e)T ∗ = 1.4 (f)T ∗ = 1.1

FIG. S4. Multi-chain systems, three-phase stability (Eq. (2) in the main text with d, ϵmm, ϵss, ϵms and T ∗ as in the caption
of Fig. 4 in the main text, and with chains of finite mean contour length ℓ = 10). At high temperatures (panels (a) to (c)) the
behavior is similar to the single-chain situation, with larger portions of the Gibbs triangle interested by two-phase separation
as temperature drops. As temperature drops below the critical value (panels (d) to (e)), the triphasic region (white triangular
region) becomes stable: the system at any mean composition inside this region separates into 3 coexisting phases of compositions
(obtained by solving numerically Eqs. (S40)-(S45)) lying at the corners of the white triangle. Symbols (in particular, the blue
points corresponds to 9 chosen mean compositions of the system with the same ϕm = 0.1), color code and notation are as in
Fig. 3 in the main text.
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