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Spontaneous formation of knots in long polymers at equilibrium is inevitable but becomes rare
in sufficiently short chains. Here, we show that knotting and knot complexity increase by orders
of magnitude in diblock polymers with a fraction p of self-propelled monomers. Remarkably, this
enhancement is not monotonic in p with an optimal value independent of the monomer’s activity.
By monitoring the knot’s size and position we elucidate the mechanisms of its formation, diffusion,
and untying and ascribe the non-monotonic behaviour to the competition between the rate of knot
formation and the knot’s lifetime. These findings suggest a non-equilibrium mechanism to generate
entangled filaments at the nano-scale.

The emergence of topological signatures is ubiqui-
tous in soft matter physics, ranging from conventional
polymers, bio-polymers, defect loops, and vortices [1].
Knots are the best-known example of a topological state
due to their practical relevance in everyday life. Still,
they are also observed at the micro and nano-scales,
where their presence can have a significant impact on
the physical properties of the hosting system [2–7, 9–
11]. In biology, knots in DNA can affect the regulation
of gene expression [12–14], the process of DNA replica-
tion/recombination [15] and the spatial organisation and
ejection dynamics of viral DNAs [16–18]. Knotted mo-
tifs have been observed in proteins and they are believed
to play a crucial role in the folding and mechanical sta-
bility of the polypetides [19–24]. Going beyond thermo-
dynamic equilibrium, topological signatures have been
recently explored in active systems such as the cytoskele-
ton [25], actomyosin networks [26], gliding assays [27],
chromatin [28, 29] worms assemblies [30, 31] and ac-
tive nematics [32]. Natural playgrounds to explore the
physics of these systems are the so-called active poly-
mers, that lately have attracted interest because of their
unprecedented statistical properties and wide range of
applications [33, 34]. The relevance of the interplay be-
tween the activity and the topology of fluctuating fil-
aments has emerged in systems of active linear chains
under confinement[35, 36] in melts [37–40] as well as in
diluted [41–43] and concentrated [44–46] solutions of ac-
tive rings.
These works focus on unknotted rings or mutual entan-
glement in linear chains; self-entanglements have been
scarcely investigated in this context. In Ref. [47], the
authors observed fewer knots than in equilibrium in a
coarse-grained active polymer model with explicit mo-
tors; recently, it was shown that a grafted polar active
polymer spontaneously formed knots [48]. Indeed, in
these out-of-equilibrium systems, one may argue that the
local stresses due to activity may alter the mechanism of
entanglement formation and, consequently, the frequency
of spontaneous knot formation. As such, they represent
an intriguing venue for producing knotted filaments at

the nano-scales.
In this work, we study the formation of self-
entanglements in an active/passive diblock copolymer
where only a fraction of the monomers, p, are active.
Focusing on the knotting probability and the knot com-
plexity in steady state we show that, for relatively short
chains, the likelihood of observing a knot increases by or-
ders of magnitude if compared with the equilibrium case.
Strikingly, the knotting probability is a non-monotonic
function of p with an optimal value that seems indepen-
dent of the monomer’s activity. By exploring the knot-
ting/unknotting events and the knot motion along the
system we ascribe the non-monotonic behaviour to the
sum of two competing effects: the rate of knot forma-
tion, always occurring at the active extremity, and the
knots’ lifetime, dominated by its residence time in the
passive region. The system can therefore be steered to-
ward forming more knots by tuning the fraction p.
We consider a model of a flexible linear polymer chain of
length L = Nσ, σ = 1 being the bead’s diameter; we fo-
cus on N = 300, a length that in passive polymers is too
short to observe knot formation events [49]. Following
Ref. [5], we design the active/passive heterogeneity as a
diblock copolymer, namely a chain made by two contigu-
ous blocks, the active one of length pσ and the passive
one of length (N−p)σ. The active block is located at one
of the two ends of the chain, which we call the “head” of
the polymer. Each active monomer is self-propelled by
a force fa, with constant magnitude fa, directed as the
local tangent; this is known as tangential or polar self-
propulsion. The overall active force points in the direc-
tion of the head (also referred to as the “leading” end) [5].
Following [2, 5], both end beads are made passive (see a
sketch of the model in Fig. S1). We characterise the
strength of the self-propulsion via the Péclet number,
Pe = faσ/kBT , kBT being the unit of energy [2, 5]. The
system is evolved via Langevin dynamics simulations [1]
(see Suppl. Mat. Sec. 1A, B [53]). To monitor the for-
mation, motion, and disappearance of a physical knot
along the chain, we employed Kymoknot [6] a software
that uses a minimally interfering scheme to close an open
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FIG. 1. (a) Knotting probability, (b) ratio of occurrences of composite knots over prime knots, as a function of p for N = 300,
Pe = 1 (blue squares), Pe = 3 (green diamonds), Pe = 5 (red circles). Error bars refer to the standard error of the mean. (c)
Fraction of the different prime components for N = 300, Pe = 5, p = 0.3 (green), 0.5 (purple), 0.7 (cyan).

chain (see Suppl. Mat. Sec. 2). This procedure allows us
to assign a topological state (knot type) to an open chain
and locate the knotted portion. Employing the standard
concept of crossing number nc [1], we limit ourselves
to knotted configurations with nc ≤ 8 [55]. Moreover,
since the knot identification is based on the Alexander
polynomial ∆, the composite knots are distinguished, by
visual inspection, from the corresponding prime knots
with nc = 8 having the same ∆ (e.g. the composite knots
31#31 and 31#41) [56]. To improve the statistical signif-
icance of the results, we simulate M = 100 independent
trajectories for each pair (p, Pe) considered. We assess
the conformational steady state condition of the polymer
by looking at the time-dependence of its gyration radius
(see Suppl. Mat. Fig. S3); at steady state knots form,
diffuse, and eventually untie. We thus sample the sim-
ulated trajectories in the steady state every τs = 10τ ,
with τ the unit of time (see Suppl. Mat. Sec. 1B).
In Fig. 1A we report the probability Pknot that, at steady
state, the system displays a knot as a function of p. It is
worth noting that: (i) At fixed p, Pknot increases mono-
tonically with Pe, at least in the range of the Peclet num-
ber considered here [57]. Moreover, for intermediate val-
ues of p, Pknot is orders of magnitudes higher than the
one measured in the fully passive (p=0) and fully active
(p=1) case. Indeed, from previous studies [49] one can
extrapolate Pknot ≈ 4 · 10−4 for passive polymers of con-
tour length L = 300σ, implying an enhancement of the
order of 102 − 103. (ii) Notably, for all activities investi-
gated Pknot is non-monotonic in p reaching a maximum
p∗ ≈ 0.4 that seems to be insensitive to the activity. Fi-
nally, at p = 1 (fully active polymers), Pknot is negligible,
in qualitative agreement with Ref. [47].
Next, we investigate the topological complexity of the
observed knots by partitioning the knot population ac-
cording to their knot type (knot spectrum). Specifically,
we look at the ratio between the probability of detect-
ing either composite or prime knots as a function of p
(Fig. 1b). Interestingly, the ratio is still non-monotonic in
p; further, while composite knots become more abundant
upon increasing Pe, most knots are prime knots. Their

dominance is a feature of this system, that sets it further
apart from the passive case where, for entropic reasons,
the knot spectrum of very long polymers is dominated
by the connected sum of several prime knots [7]. If we
restrict the analysis of the knot type to all prime knots
(including the prime components in composite knots),
we observe that (i) there is an overwhelming majority of
simple prime knots (31 and 41); (ii) the knot complexity
mildly increases with p; (iii) the knot spectrum broadens
upon increasing Pe (see Suppl. Mat. Fig. S.6) and (iv)
the probability of observing a 52 knot (twist knot) is al-
ways higher than the one of a 51 knot (torus knot). This
holds for passive polymers in the swollen phase but also
in everyday life, since twist knots are easier to form acci-
dentally [58]. It is important to stress that the dramatic
increase in spontaneous knotting is observed for swollen,
relatively short chains. This makes the active diblock
copolymers a valid alternative to approaches based either
on polymer compression [59, 60] or electrohydrodynamic
instability[61, 62]; these techniques may provide better
performances in knot production but tend to yield very
complex knots due to the relatively high degree of com-
paction reached by the polymer substrate [1, 60, 62, 63].
To understand the non-monotonic behaviour of Pknot,

we looked at the dynamics of knot formation, diffusion,
and disappearance. In the kymographs of Fig. 2 we show
examples of the time evolution of the reduced position
and size of a knot for active diblock copolymers at Pe = 1,
p = 0.3, 0.5 (panels a, b) and Pe = 5, p = 0.3, 0.5 (pan-
els c, d). Notice that knots always form in the active
region. The reason is twofold: first, the tangential ac-
tivity dominates the dynamics of the whole chain, also
modifying the conformation of both blocks [5]. In par-
ticular, the passive block is stretched by the active force;
as such, the back-folding of the passive free end is un-
favoured, hindering knot formation. Additionally, the
active block, if sufficiently long, attains a relatively com-
pact, globule-like conformation with an activity-induced
effective rigidity at short scales [2], further characterized
by the formation of “loop”-like structures [40, 41, 47].
Secondly, active monomers possess an enhanced mobil-
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FIG. 2. Kymograph of the reduced position of the ends of the knotted segment (red lines) and the center of the knot (full black
line) for (a) p = 0.3 and Pe = 1, (b) p = 0.3 and Pe = 5, (c) p = 0.7 and Pe = 1, (d) p = 0.7 and Pe = 5. Black dashed lines
mark the boundary between the active and passive sections. Active blocks are represented in orange and passive ones in blue.

ity, that allows the free end (the “head”) to increase
the chance of a successful back-folding event within the
globule-like region. Once formed, the knot travels from
the head to the tail. Indeed, in the active region, the
knot undergoes a sort of “railway motion”, because the
conformation of a polar active linear polymer follows the
trajectory set by the leading end. This motion drives the
knot towards the passive block that is kept under tension
by the active force. Notably, the knotted portion, often
initially spread (or de-localized) over the whole active
block, localizes around the boundary upon when reach-
ing the passive region. This is mainly due to the mobility
difference between the passive and the active blocks, as
one of the two edges of the knotted section reaches the
boundary first and becomes much less mobile than the
other. After crossing said boundary, the knot remains
quite tight, again because of the activity-induced ten-
sion, and keeps cruising down along the contour.
Notice that the migration speed in the active region
is roughly proportional to the “active” velocity of the
monomers va = fa/γ, γ being the friction coefficient.
For example, for p = 0.7, the time the knot spends in the
active section goes from ≈ 5 ·104τ at Pe =1 to ≈ 104τ at
Pe = 5 (see Fig. 2b, d). Interestingly, the same quantity
in the passive section is not proportional to the activ-
ity. Indeed, upon increasing Pe by a factor of five, the
migration time does not decrease accordingly (see again
Fig. 2).
Further, the relative amount of active beads p also

influences the length of the knotted portion ℓK as vis-
ible in Fig. 3a, reporting the knot length distribution,
P (ℓK), for different values of p at fixed Pe = 5 (see also

Suppl. Fig. S7 for additional values of p and Pe). In-
deed, while the most probable value of the distribution
does not change with p, a substantial change in the dis-
tribution’s shape is observed. At low values of p, P (ℓK)
is characterised by a single exponential decay in ℓK; upon
increasing p, the distribution at large ℓK crosses over a
second exponential behavior with a much smaller decay
constant. Eventually, at p = 1, when the chain is fully
active, the knots de-localize over the whole polymer (see
Suppl. Mat. Fig. S8). This behaviour reflects the phe-
nomenology described previously. Knots in the active re-
gion are de-localized; as such, the probability of observing
knots with a large size increases with p. However, these
large knots remain rare as they localize quickly. So, it
is much more probable to observe a tight knot, residing
in the passive region; this can be seen in the distribu-
tion of sK, the position of the centre of mass of the knot
along the contour (inset of Fig. 3a): the probability of
observing the knot in the active region is small and, un-
less p is sufficiently large, occurrences deep in the active
block are rare (see also Suppl. Mat. Fig.7, 9, 10). This
is confirmed in Fig. 3b, where we report the scatter plot
of ℓK as a function of sK: in the active region knots
are rare and quite de-localized, while they are abundant
and rather compact in the passive block. These fea-
tures seem to be tied to the diblock copolymer design:
a similar phenomenology can be observed qualitatively
for a knot in a diblock copolymer ring (see Suppl. Mat.
Fig. S5). The above findings allow us to rationalize the
non-monotonicity of the knotting probability (Fig. 1a)
as follows: knots are created by the action of the lead-
ing end, that backfolds in the globule-like conformation
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FIG. 3. (a) Distribution of the knot length P (ℓK) and (inset)
of the position of the knots’ centre P (sK) for p =0.3 (green),
0.5 (purple), 0.7 (cyan). (b) Scatter plot of ℓK/L and sK/L
for p = 0.4. In both panels, N = 300, Pe = 5.

of the active block. This suggests that at fixed Pe the
rate of knot formation should increase upon increasing
p, as the region where self-entanglement can easily form
increases. This picture is confirmed in Fig. 4a, where we
show that the rate of knot formation αK (see also SM,
Sec. 3) steadily increases with p and Pe.
Once formed, the knot starts migrating from the active to
the passive end, where eventually it unties. The average
knot lifetime, τK, i.e. the period when the knot can be
observed on the chain, is estimated in Fig. 4b (see Suppl.
Mat. Sec. 3). Interestingly, the knot lifetime decreases
as a power law with p but depends weakly on Pe, except
for p = 1. This is consistent with the observation that
the knot spends most of its lifetime in the passive region,
where its migration speed is roughly independent of Pe.
The non-monotonic behavior of the product αKτK, re-
ported in Fig. 4c, confirms that the competition between
the knot formation rate (in the active region) and its resi-
dence time (mostly in the passive region) rationalizes the
non-monotonic behavior of Pknot.
In summary, we studied the spontaneous knot forma-
tion in the steady state of polar active diblock copoly-
mers, reporting a remarkable enhancement in the knot-
ting probability Pknot, compared to the standard passive
case. This probability is non-monotonic in p, suggesting
a specific value of p for optimal yield. We characterized

the formed knots in terms of their topological complex-
ity and size revealing that they are mostly simple and
subject to a tightening process as they migrate from the
active to the passive region. Finally, we rationalized the
observed non-monotonicity as the result of the interplay
of the knots’ formation rate and lifetime. Interestingly,
self-entanglement is, effectively, irrelevant for fully active
polymers as knots are ephemeral and have no effect on
their dynamics.
We thus show that polar active diblock copolymers can
be a viable substrate for knot production with high yield.
The polymers considered fluctuate in bulk and the knots
can eventually dissolve. However, since activity can be
turned on or off by external fields [64–66] and current
state-of-the-art experimental techniques allow for precise
single filament manipulation [67], we argue that knots,
once created can be trapped and stored for later use.
The proposed architecture may be useful not only to
study knots but also to improve the fabrication process
of microarchitected topological materials, that have been
shown to possess remarkable properties, in terms of ro-
bustness and compliance [68, 69].

FIG. 4. (a) Knot formation rate αK, (b) knot lifetime τK and
(c) product αK τK as a function of p for N = 300 and, Pe = 1
(blue squares), Pe = 3 (green diamonds), Pe = 5 (red circles).
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MODEL AND SIMULATION DETAILS

Active polymer model

Polymer chains are modeled as fully flexible, self-avoiding bead-spring linear chains consisting ofN = 300 monomers,
suspended in a 3D bulk fluid. Self-avoidance between any pair of monomers is implemented via a truncated and shifted
Lennard-Jones (LJ) potential:

VLJ(r) =

{
4ϵ

[(
σ
r

)12 − (
σ
r

)6
+ 1

4

]
for r < 21/6σ

0 for r ≥ 21/6σ
(S1)

where σ = 1 is the diameter of the monomer and is taken as the unit of length, ϵ = 10 kBT with kBT the scale of
energy and r = |r⃗i− r⃗j | is the Euclidean distance between the monomers i and j positioned at r⃗i and r⃗j , respectively.
The Finitely Extensible Nonlinear Elastic (FENE) potential [1]

VFENE(r) = −Kr20
2

ln

[
1−

(
r

r0

)2
]

(S2)

acts between any pair of consecutive monomers along the polymer chain. We set K = 30 ϵ/σ2 = 300 kBT/σ
2 and

r0 = 1.5σ in order to avoid strand crossings.
Activity is introduced as a tangential self-propulsion[2]. An active monomer i at position r⃗i is subject to an active

force f⃗a
i = fat̂i where t̂i = (r⃗i+1− r⃗i−1)/|r⃗i+1− r⃗i−1| is the normalized tangent vector. The end monomers are always

passive. The strength of the activity is controlled, by varying the dimensionless parameter Pe = |fa|σ/kBT called the
Péclet number.
We consider the special case in which only a fraction p of the chain is composed by active monomers. The N · p

FIG. S1. Sketch of the diblock copolymer architecture. Active monomers are in orange, the arrows indicating the direction of
the self-propulsion, passive monomers are in blue.

monomers are grouped in a contiguous block, placed at one of the free end of the chain; since the last monomer
is always passive, the active block starts from the nearest neighbor of the chosen end monomer. We are therefore
considering di-block polymers composed of two blocks, one passive and one active; in the special cases p = 0 and
p = 1 we obtain passive and fully active polymers, respectively.
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Simulation details

The polymer chains, initially unknotted, are simulated in bulk conditions, by means of periodic boundary conditions,
employing the open source code LAMMPS[3], with in-house modifications to implement the tangential activity.
Langevin Dynamics simulations are performed, disregarding hydrodynamic interactions. The equations of motion are
integrated using the velocity Verlet algorithm, with an elementary time step ∆t = 10−3. The unit of mass, length,
and energy are set to m = 1, σ = 1, and kBT = 1, respectively. The unit of time is τ =

√
mσ2/kBT = 1. The

overdamped regime is ensured by setting the friction coefficient γ = 20τ−1[4].

Polymers of length N = 300 are simulated for different percentages of active sites 0.0 ≤ p ≤ 1.0, with different values
of the activity parameters: Pe = 1,3,5. M =100 independent trajectories are simulated for each set of parameters.
After reaching a steady state, production runs are performed for 2 × 106 time steps and polymer conformations are
sampled at a rate of 104 time steps, that is larger than the decorrelation time of the end-to-end vector[5]. Simulations
for all values of Pe and p ≥ 0.5 have been extended by 14× 104 time steps with a sampling rate of 102 time steps in
order to collect data regarding the short time dynamics of the knots.

KNOT ANALYSIS

Knot detection algorithm

Identifications of the knots are performed using the KymoKnot algorithm[6]. This algorithm is based on the
computation of standard topological invariants; for open filaments, a closing procedure of the linear backbone with
auxiliary arcs is performed. More precisely, Alexander polynomial are used as topological invariants [7] and the chains
are closed following a ”minimally interfering closure” strategy: the ends are connected directly if they are sufficiently
close to each other otherwise are connected to the convex hull of the chain[8].
We perform KymoKnot’s analysis on each frame of the M =100 independent trajectories. If, considering the whole
chain, a composite knot or a very complex prime knot is detected, we run Kymoknot on a portion of the chain,
centered at the position of the detected knot. The size of such a portion is enlarged iteratively, until a prime knot
is detected. If the starting result was a complex prime knot and such result is confirmed, we terminate the search;
otherwise, the process is repeated on a different subportion until all the prime knots, hosted within the portion of the
chain that contains the composite knot, are detected. This process ensures that the algorithm is able to detect all
the prime knots present on the chain. Indeed, in certain conditions, the knot lifetime is larger than the average time
lag between two knotting events. In these conditions, this analysis allows us to distinguish and track knots that are
effectively distinct and non-interacting and to correctly compute their lifetime.

Steady state assessment: knotting frequency and mean gyration radius

FIG. S2. Example of the evolution of the gyration radius Rg of the chains for a) Pe = 1 and p = 0.7 and b) Pe = 5 and p = 0.3
presented in the main text. Yellow rectangles highlight the time intervals when the chains are knotted.
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In this section, we briefly show how we checked the steady state in our simulations. We assess steady state by
means of two observables: a metric one, the gyration radius and a topological one, the fraction of knotted chains.
We do not rely only on the metric property because, in these systems, knots do not distinctively change the gyration
radius of the chain; two examples are shown in Fig. S2. As shown, there is not an evident variation in the gyration
radius when knots are present. Indeed, the conformations attained by the chains are subjected to large fluctuations,
especially at large values of Pe. Further, knots are either de-localized in a region where the polymer is relatively
compact or are localized; so, in both cases, they do not affect the gyration radius considerably.
So, we look at statistical properties, averaging over the M independent samples we simulated. In Fig. S3, we report

FIG. S3. (a,c,d) Knotting frequency (i.e. fraction of knotted polymers) and (b,d,f) mean gyration radius ⟨Rg⟩ as a function of
time for N = 300, p = 0.3, 0.5, 0.7 and (a,b) Pe = 1 (c,d) Pe = 3 (e,f) Pe = 5.

the Knotting frequency (i.e. the fraction of knotted polymers) and the mean gyration radius ⟨Rg⟩ as a function of
time for N = 300, p = 0.3, 0.5, 0.7 and (a,b) Pe = 1 (c,d) Pe = 3 (e,f) Pe = 5. We observe that, after a relatively short
amount of time, that we discard (as mentioned in Sec. ), the average gyration radius fluctuates around a constant
value. This indeed ensures us that the “patological” conformations, showcased in [5], do not appear. Furthermore,
the fraction of knotted chains is, after an equilibration time, fluctuating around a constant value. This ensures us
that knots are forming and untying at a steady rate.
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Measurement of knot formation rate and lifetime

FIG. S4. a): Number of knots in a particular chain as a function of time. b): Time derivative of the number of knots as a
function of time. Green arrows indicate the intervals between a positive and a corresponding negative peak of the derivative.
For both panels p = 0.6, Pe = 5.

Dynamical information on knots, such as the lifetime, are measured by analyzing the time derivative of the number
of knots dnknot/dt along the trajectory; statistics is collected from the M =100 independent runs.
The rate of formation is measured as the number of positive peaks of dnknot/dt divided by the total simulation time
of the trajectory.
The knot lifetime is measured as the average time between a positive peak and the corresponding negative peak of
dnkn/dt. Here, identifying the “corresponding” negative peak refers to the identification of the correct tying-untying
pair; it is of course relevant only when multiple knots per chain are present. To simplify the analysis, leveraging on
the broken symmetry of the system, that causes directional motion of the knots, and on the driven nature of the knot
migration, we assume that new knots can not overcome old ones along the chain. We have also never observed such
type of event, within the window of parameters considered. As such, when observing two formation events and one
untying event (as in Fig. S4B), we associate the event to the first knot and we measure the lifetime accordingly.
Finally, Kymoknot may wrongly identify a knot in some conditions. Such knots usually last for only one frame of
the trajectory (see the last peak in Fig. S4B). This type of event is clearly not considered as a knot in our analysis,
neither in the statistics reported below and in the main text, since it corresponds to a transient configuration of the
chain that does not correspond to a physical knot.

SUPPLEMENTARY RESULTS

Dynamic of a knot on a partially active ring polymer

We briefly consider, in this section, the dynamical property of a trefoil (31) knot in an active/passive diblock
copolymer ring. We simulate the ring polymer employing the model described in Section , i.e. the same used for the
linear chains. Naturally, in this setting the knot can’t untie; as such we follow its dynamics in a steady state over a
relatively short time span of ∼ 103τ . We report a few highlights in Fig. S5 for a ring of N = 300, p = 0.7 and Pe = 1
(top), Pe = 5 (bottom). Due to the tangential nature of the active force, the knot also travels along the contour and
periodically crosses a point, arbitrarily labeled as the beginning/end of the ring. Interestingly, in both cases the knot
spends most of the time in the passive section, highlighted by the two dashed lines, as happens in linear chains. The
knot also moves through the active block very fast, due to the high mobility of the active monomers.

Distribution of knot types

In this section, we present complementary data concerning the distribution of prime knot types for our different
sets of parameters. Figs. S6 show the distribution of prime knot types for N = 300 and Pe =1,3,5 for different values
of p. The distribution of knot types is computed by counting the number of occurrences of each prime knot type along
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FIG. S5. Kymograph of the position of the knot (left) and distribution of the knot’s center (right) for an active diblock ring
polymer with p = 0.7 active monomers for Pe = 1 (top) and Pe = 5 (bottom).

the 100 independent trajectories. The results are presented as bar plots, where the height of each bar represents the
percentage of occurrence of the corresponding knot type. We use the Alexander-Briggs notation to label the knots,
where the first number indicates the number of crossings, and the second number is a label indicating the type of
knot. From knots presenting 6 to 8 crossings, we use x as subscript label instead of a number in order to include all
the knots having a given number of crossings. As mentioned in the main text, the complexity of the knots slighly
increases upon increasing Pe; however, the overwhelming majority of the knots are 31 and 41.

FIG. S6. Distribution of prime knot types for N = 300 and Pe = 1 (a), Pe = 3 (b), Pe = 5 (c) for different percentages of
active sites p.

Distribution of the positions of the center of the knot

In this section, we present complementary data concerning the distribution of the positions of the center of individual
prime components along the polymer chain for different values of Pe and p. The distributions are reported in Fig. S7
A vertical dashed line (with the same color as the corresponding data) is drawn in order to highlight the position
of the end of the active block (EAB); one can appreciate that knots are mainly located in the passive block up to
p = 0.7− 0.8.
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FIG. S7. Distribution of sK (prime components) for N = 300 and Pe = 1 (a-c), Pe = 3 (d-f), Pe = 5 (g-i) at different values of
p.

Distribution of the lengths of the knots

This section presents complementary data concerning the distribution of the lengths of individual prime knots for
different values of Pe and p. The distributions of knot lengths are presented as histograms in Figs. S8. The length
of a knot is defined as the contour length of the knotted region, as identified by Kymoknot. It can bee seen that the
majority of the knots are made by approximately 10% of the monomers of the chain, i.e. about 30 monomers. As
reported in the main text, upon increasing p the distributions develop a second tail at large values of ℓkn, corresponding
to the cases where the knots, still in the active section, are delocalized and spread over the entire active section of the
chain.

Correlation the knots’ length and position

In this section, we present complementary data concerning the correlation between the length of the knots and the
position of their center along the polymer chain for our different sets of parameters. The results are presented as
scatter plots in Figs. S9 to S10. In Fig. S9, we report scatter plots of sK/L versus ℓK/L at fixed p =0.5 and different
values of Pe. We observe that, in all three cases, the knot in the active region is de-localized; it can be even fully
spread over the region (ℓK/L ≃ p). The scattered points have also a marked triangular pattern in the active region,
that indicates how the knot shrinks, while approaching the active passive boundary. On the other hand, triangular,
asymmetric, shape of the data in the passive region quantifies the localisation process and suggests, as also happens
in passive polymers, that the knot swells before untying. Finally, in Fig. S10, we report scatter plots of sK/L versus
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FIG. S8. Distribution of ℓK (prime components) for N = 300 and Pe = 1 (a-c), Pe = 3 (d-f), Pe = 5 (g-i) at different values of
p.

FIG. S9. Correlation between the reduced knot length ℓK/L and the reduced position of their center sK/L, for N = 300 and
Pe = 1, Pe = 3, Pe = 5 for p = 0.5.

ℓK/L at fixed Pe =5 and different values of p. Also these plots confirm the picture given so far; interestingly, for large
values of p one can find more frequently relatively small knots in the active section, occurrence that is rarer for small
values of p.
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FIG. S10. Correlation between the reduced knot length ℓK/L and the reduced position of their center sK/L, for N = 300 and
Pe = 5 for p = 0.2, p = 0.4, p = 0.6, p = 0.8.
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