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Abstract. This paper examines the link between the statistical mechanics of polymer

systems and field theory, focusing on topologically linked polymer rings in a 4-plat con-

figuration. We derive the partition function and interpret it through the lens of physics of

anyons. Using techniques from theory of anyons, we establish the self-duality equations

and find solutions that minimize the system’s energy. Under specific conditions, these

self-duality equations simplify to the Euclidean sinh-Gordon, cosh-Gordon, or Liouville

equations, for which we compute translationally invariant solutions and corresponding

polymer densities. Our findings provide new insights into the field-theoretic approach to

topologically constrained polymers.

1 Introduction

In the 1970s, R.G. de Gennes discovered a profound connection between the statistical mechanics of long

polymer molecules and magnetic systems described by multicomponent complex field theories with O(N)

symmetry [1, 2]. This groundbreaking discovery paved the way for a new field of research and ultimately

earned him the Nobel Prize in Physics in 1991. The idea of applying field theory techniques to study the

properties of polymers was further developed by many authors, including [3, 4, 5]. One of the primary

goals was to establish a theoretical framework for investigating topologically linked polymers [6]. This

research program was realized in the specific case of polymer rings linked together to form a 2s-plat, as

described in Refs. [7, 8, 9]. A 2s-plat is a link whose path in space is characterized by a fixed number of

2s maxima and minima along a specified direction, referred to here as the height (e.g., the z-axis). The

aim of this paper is to present this line of research and our latest findings to a broader audience. We will

focus on describing the simplest case, where s = 2, which has been thoroughly studied in [9].

This paper is organized as follows. In Section 2, we formulate the problem and, following the approach in

[9], derive the partition function for a system of two linked loops in a topological state characterized by a

fixed Gauss linking number. In the field-theoretic framework, the polymer partition function is interpreted

as a correlation function for a mixture of four types of anyons. In Section 3, utilising methods from the

physics of anyons, we derive the self-duality conditions and identify their solutions that minimize the

https://creativecommons.org/licenses/by/4.0/
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system’s energy. In Section 4, we demonstrate that the self-dual equations reduce to the two-dimensional

Euclidean sinh-Gordon or cosh-Gordon equations, depending on the sign of the integration constant. We

also show that when the integration constant is zero, the equations simplify to the Liouville equation.

Furthermore, we compute the translationally invariant solutions of the Euclidean sinh-Gordon and cosh-

Gordon equations and express the polymer densities in terms of these solutions. Finally, in Section 5, we

present our conclusions.

2 A field-theoretic model of two concatenated polymer rings

In this section, we aim to formulate a field-theoretic model involving two concatenated rings forming a

4-plat. A 4-plat knot refers to a type of braid where two strands cross over each other multiple times

before returning to their original positions, and when closed, the structure resembles a knot. In our

case, the two strands form two rings, making the system a complex topological structure. Our goal is to

Figure 1: Polymer rings vs. quasiparticles.

construct statistical mechanics (statistical field theory) of such objects, i.e., linked (polymer) rings with

a given topological state. A natural question arises: is this even possible? Our approach to constructing

such a system draws on the physics of anyons, a type of quasiparticle that emerges in two-dimensional

systems. Anyons are closely tied to topological quantum field theories (TQFTs) and topological phases

of matter. Their defining characteristic is that their quantum state depends on the braiding of particle

trajectories, meaning how these particles wind around one another in two-dimensional space. Given this,

it is natural to interpret the three-dimensional trajectories of two-dimensional quasiparticles as paths of

entangled polymers (cf. Fig.1). This opens up the possibility of applying TQFT methods to describe

such systems. However, one key limitation must be considered: the conformations of the rings must each

exhibit one minimum and one maximum. This constraint is crucial for the validity of the approach.

Figure 2: The 4-plat within the framework of our parameterization.
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More precisely, we consider two loops having two points of minima and maxima along the z-direction

(cf. Fig.2). The topological relations are fixed using the Gauss linking number (GLN),

χ(Γ1,Γ2) = WΓu
1Γ

d
2
(z0, z1) +WΓu

1Γ
u
2
(z0, z1) +WΓd

1Γ
u
2
(z0, z1) +WΓd

1Γ
d
2
(z0, z1) (1)

which is expressed by the winding number WΓΓ′ (z0, z1) of two monotonic curves Γ, Γ
′ between the two

heights z0 and z1,

WΓΓ′ (z0, z1) = εij

z1∫
z0

d
(
xi(z)− x′i(z))

(
xj(z)− x′j(z))
|x(z)− x′(z)|2 , i, j = 1, 2. (2)

The partition function Z(μ) of the system composed by the two linked loops Γ1, Γ2 may be written as

follows,

Z(μ) =

⎡
⎢⎣ 2∏
a=1

xa(Ma)∫
xa(ma)

Dxu
a(z)

xa(ma)∫
xa(Ma)

Dxd
a(z)

⎤
⎥⎦ δ (χ(Γ1,Γ2)− μ) e−Apol . (3)

The coordinates xa(ma) and xa(Ma) denoting respectively the locations of the points of maximal and

minimal height of Γa are fixed. Moreover, the topological constraint

χ(Γ1,Γ2) = μ (4)

with μ being a constant is imposed in Eq. (3) using a Dirac delta function. Finally, Apol is the term

associated to chain connectivity:

Apol =
2∏

a=1

Ma∫
ma

dz

[
ga,u

∣∣∣∣dxu
a(z)

dz

∣∣∣∣
2

+ ga,d

∣∣∣∣dxd
a(z)

dz

∣∣∣∣
2
]
. (5)

For simplicity, interactions have been omitted, though this approach can be easily extended to include the

excluded volume potential. In the expressions above, xu,d
a (z) represent the curves describing the paths

of Γu,d
a . The constants ga,u and ga,d are related to the Kuhn length and characterize the flexibility of the

chains Γu
a and Γ

d
a.

At this stage, the Fourier transform can be applied to express the Dirac delta function δ (χ(Γ1,Γ2)− μ)
in the following form:

δ (χ(Γ1,Γ2)− μ) =

+∞∫
−∞

dλ eiλμ e−iλχ(Γ1,Γ2). (6)

This allows to rewrite the partition function Z(μ) in the simpler form:

Z(μ) =

+∞∫
−∞

dλ eiλμ Z(λ), (7)

where

Z(λ) =

⎡
⎢⎣ 2∏
a=1

xa(Ma)∫
xa(ma)

Dxu
a(z)

xa(ma)∫
xa(Ma)

Dxd
a(z)

⎤
⎥⎦ e−Apol e−iλχ(Γ1,Γ2) . (8)

The Fourier transformation from Z(μ) to Z(λ) is analogous to the transition from the microcanonical

ensemble to the canonical ensemble, but here the role of the Hamiltonian H is replaced by the Gauss

linking number χ(Γ1,Γ2), and the Boltzmann factor β = (kT )−1 is substituted by iλ.
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As shown in Ref. [8], the exponential e−iλχ(Γ1,Γ2), which involves a highly complex dependence on the

conformations xu,d
a (z), can be simplified by rewriting it as the partition function of an abelian BF model:

e−iλχ(Γ1,Γ2) =

∫
DB1(x, t)DB2(x, t)DB0

1(x, t)DB0
2(x, t)

× exp
{
−iSBF − iλ

∫
d2xdt

[
B2 · J1 +B0

2J
0
1

]− iκ

8π2

∫
d2xdt

[
B1 · J2 +B0

1J
0
2

]}
, (9)

where the BF action SBF is given by:

SBF =
κ

4π
εij

∫
d2xdt

[
B0

1∂
iBj

2 +B0
2∂

iBj
1

]
, i, j = 1, 2. (10)

Here and throughout, we assume the summation convention for repeated upper and lower indices rep-

resenting spatial coordinates. Let us note that the components (Ba, B
0
a), a = 1, 2 of the BF fields

are coupled in Eq. (9) to certain imaginary currents flowing through the loops Γ1 and Γ2. The vector

components Ba(x, t) satisfy the Coulomb gauge condition ∇·Ba(x, t) = 0.

Applying the identity (9) it is possible to convert the partition function Z(λ) to the following form:

Z(λ) =

∫ 2∏
a=1

DBaDB0
a Z

u
a (λ)Z

d
a(λ) e

−iSBF (11)

where

Zu
a (λ) =

xa(Ma)∫
xa(ma)

Dxu
a(z) e

−Su
a , (12)

Zd
a(λ) =

xa(ma)∫
xa(Ma)

Dxd
a(z) e

−Sd
a (13)

and

Su
a =

Ma∫
ma

dz

[
ga,u

∣∣∣∣dxu
a(z)

dz

∣∣∣∣
2

+ i
2∑

b=1

Cab

(
dxu

a(z)

dz
·Bb(x

u
a(z), z) +B0

b (x
u
a(z), z)

)]
, (14)

Sd
a =

Ma∫
ma

dz

[
ga,d

∣∣∣∣dxd
a(z)

dz

∣∣∣∣
2

− i
2∑

b=1

Cab

(
dxd

a(z)

dz
·Bb(x

d
a(z), z) +B0

b (x
d
a(z), z)

)]
. (15)

The 2× 2 matrix Cab is given by

Cab =

[
0 λ
κ

8π2 0

]
.

Let us note Su
a and Sd

a are formally equal to the actions of two particles immersed in the magnetic

fields generated by the vector potentials B1, B2 and interacting with the external potentials B0
1 , B

0
2 .

Accordingly, Zu
a (λ) may be interpreted as the transition amplitudes of particles x

u
a(z) to pass from an

initial state |xu
a(ma) 〉 to a final state 〈xu

a(Ma) |. An analogous interpretation can be given to Zd
a(λ).

This analogy with quantum mechanics allows to pass from paths to fields using the procedure of second

quantisation.

Indeed, the key tool here is the correspondence referred to as the quantum-mechanical analogy. Specif-

ically, one can introduce the probability distribution G(r1, r0, L; η), which describes the likelihood of a

fluctuating polymer chain having one end at r0 and the other at r1. This distribution depends on the
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polymer length L and an auxiliary field η, often referred to as white noise, which allows the implementa-

tion of self-avoiding interactions in the path integral.1 The probability distribution G(r1, r0, L; η) can be

interpreted as a quantum-mechanical transition amplitude, describing the evolution from the state |r0〉
at time s = 0 to the state 〈r1| at time s = L, in purely imaginary time s = it. In the special case of a

circular polymer, where r1 = r0, this simplifies. The distribution G(r1, r0, L; η)

i. is given by

G(r1, r0, L; η) = 〈r1|e
−

L∫

0

dtH(p(s),r(s);η)|r0〉,
where H is the Hamiltonian, and p(s) = ṙ(s) = dr(s)/ds;

ii. satisfies the pseudo-Schrödinger equation:[
∂

∂L
+H(−∇1, r0; η)

]
G(r1, r0, L; η) = δ(r1 − r0) δ(L). (16)

The solution to the Eq. (16) can be written as a path integral over replica complex scalar fields Ψ∗ and
Ψ, where Ψ = (ψ(1), . . . , ψ(n)), and in the limit n→ 0, one gets

G(r1, r0, L; η) = lim
n→0

∫
DΨ∗(x, s)DΨ(x, s)ψ∗(1)(r1, L)ψ(1)(r0, 0)

× e
− ∫

d3x
L∫

0

ds[Ψ∗(x,s)(∂s−a/6∇2−i
√
v0η(x))Ψ(x,s)]

.

Using the quantum-mechanical analogy, one can demonstrate that the “one-particle transition ampli-

tudes”,

Zu,d
a (λ) = Gu,d

a (xa(Ma)− xa(ma),Ma −ma) , (17)

satisfy pseudo-Schrödinger equations:⎡
⎣ ∂

∂t
− i

2∑
b=1

CabB
0
b (x, t)−

1

4ga,u

(
∇x − i

2∑
b=1

CabBb(x, t)

)2
⎤
⎦Gu

a(x− y, t− t′)

= δ(2)(x− y) δ (t− t′) , (18)⎡
⎣ ∂

∂t
+ i

2∑
b=1

CabB
0
b (x, t)−

1

4ga,d

(
∇x + i

2∑
b=1

CabBb(x, t)

)2
⎤
⎦Gd

a(x− y, t− t′)

= δ(2)(x− y) δ (t− t′) . (19)

Then, by employing well-established field-theoretic techniques, one can derive

Z(λ) = lim
n→0

∫ 2∏
a=1

DBaDB0
aDΨ∗u

a DΨu
aDΨ∗ d

a DΨd
a

× ψ∗u(1)
a (x(Ma),Ma)ψ

u(1)
a (x(ma),ma)ψ

∗ d(1)
a (x(ma),ma)ψ

d(1)
a (x(Ma),Ma)

× e−Smatter e−iSBF , (20)

1These interactions are expressed as

e
−v0

L∫

0
ds

L∫

0
ds′δ(r(s)−r(s′))

=

∫
Dη(x) exp

⎧⎨
⎩−

∫
d3x

η2

4
− iv0

L∫
0

ds η(r(s))

⎫⎬
⎭ ,

where r(s) is the polymer path, and s is the arc-length.
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where the action Smatter, after integrating out the z-components B
0
a, takes the form

2

Smatter =
2∑

a=1

∫
d2x

T∫
0

dt

⎡
⎣Ψ∗u

a ∂0Ψ
u
a +

1

4ga,u

∣∣∣∣∣
(
∇x − i

2∑
b=1

CabBb

)
Ψu

a

∣∣∣∣∣
2

+ Ψ∗ d
a ∂0Ψ

d
a +

1

4ga,d

∣∣∣∣∣
(
∇x + i

2∑
b=1

CabBb

)
Ψd

a

∣∣∣∣∣
2
⎤
⎦ . (21)

As a final remark in this section, we note that although the partition function Z(λ) in Eq. (20) originates

from a polymer problem, it can also be interpreted as the correlation function of a mixture of four types

of anyon particles, with densities

∣∣∣Ψu,d
a

∣∣∣2 := n∑
r=1

ψu,d(r)
a ψ∗u,d(r)

a ,

and the action (21).

3 Self-duality in the system of two concatenated polymer rings

The analogy with anyons suggests that the action (21) should be examined using the methods of self-dual

systems. To this end, following [10, 11] and [7], we introduce the covariant derivatives:

Du
a,j = ∂j − i

2∑
b=1

CabBb,j , (22)

Dd
a,j = ∂j + i

2∑
b=1

CabBb,j , (23)

where j = 1, 2 labels the spatial coordinates and a = 1, 2 labels the contributions coming from loops Γ1

and Γ2. As a result, the action in Eq. (21) can be rewritten as follows:

Smatter = IT + Isd + IC, (24)

where

— IT is the “time” dependent part,

IT =
2∑

a=1

∫
d2x

T∫
0

dt
[
Ψ∗u

a ∂0Ψ
u
a +Ψ∗ d

a ∂0Ψ
d
a

]
; (25)

— Isd is the self-dual part of the action,

Isd =
2∑

a=1

∫
d2x

T∫
0

dt

[
1

4ga,u

∣∣(Du
a,1 + iDu

a,2

)
Ψu

a

∣∣2 + 1

4ga,d

∣∣∣(Dd
a,1 + iDd

a,2

)
Ψd

a

∣∣∣2] ; (26)

2For simplicity, from now on we assume that m1 = m2 = 0 and M1 = M2 = T . Integrating out B0
a one gets the

constraint
2∑

c=1

dacε
ij∂iBc,j =

2∑
b=1

Cba

(
− |Ψu

b |2 +
∣∣∣Ψd

b

∣∣∣2) ,

where dab =

[
0 κ

4π
κ
4π

0

]
.
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— IC accounts for the Coulomb-like interactions,

IC =
λ

8π

∫
d2x

T∫
0

dt

[(
− 1

g1,u
|Ψu

1 |2 +
1

g1,d

∣∣∣Ψd
1

∣∣∣2)(
− |Ψu

2 |2 +
∣∣∣Ψd

2

∣∣∣2)

+

(
1

g2,u
|Ψu

2 |2 −
1

g2,d

∣∣∣Ψd
2

∣∣∣2)(
− |Ψu

1 |2 +
∣∣∣Ψd

1

∣∣∣2)]
. (27)

In writing the action in Eqs. (24)-(27) terms that are total derivatives have been neglected.

It turns out that the term IT becomes negligibly small when the height τ , in which the paths of both

loops are defined, become large. To demonstrate this, we can perform the variable change τσ = t in

Eqs. (25), (26), and (27). This transformation causes the self-dual contribution Isd and the Coulomb

interaction terms IC to acquire a factor of τ , while IT remains unaffected. Henceforth, we will work in

the limit of large τ , where

Smatter ∼ Isd + IC . (28)

Notably, while the variable t represents the height of the polymer loops rather than time, the action

remains formally equivalent to that of a system of anyons. This leads to the expectation that, in the

limit τ → ∞, the monomer distribution will not vary significantly at different heights, allowing us to

discuss static solutions akin to those for anyons — albeit with the distinction that “static” here refers to

an absence of changes along the z-axis.

Proceeding analogously as in the case of anyons, on the basis of Eq. (28) one can define the density of

energy per unit of height z,

E(z) =
2∑

a=1

∫
d2x

[
1

4ga,u

∣∣(Du
a,1 + iDu

a,2

)
Ψu

a

∣∣2 + 1

4ga,d

∣∣∣(Dd
a,1 + iDd

a,2

)
Ψd

a

∣∣∣2]

+
λ

8π

∫
d2x

[(
− 1

g1,u
|Ψu

1 |2 +
1

g1,d

∣∣∣Ψd
1

∣∣∣2)(
− |Ψu

2 |2 +
∣∣∣Ψd

2

∣∣∣2)

+

(
1

g2,u
|Ψu

2 |2 −
1

g2,d

∣∣∣Ψd
2

∣∣∣2)(
− |Ψu

1 |2 +
∣∣∣Ψd

1

∣∣∣2)]
. (29)

An interesting case is when the monomer densities of Γu
a or Γu

a can be considered as constant. For

instance, assuming that |Ψd
1|2 = V 2

1 and |Ψd
2|2 = V 2

2 with V1, V2 = const., we obtain

E(z) = Esd(z)
+

λ

8π

∫
d2x

[(
1

g1,u
|Ψu

1 |2 −
1

g1,d
V 2
1

)(
|Ψu

2 |2 − V 2
2

)

+

(
1

g2,u
|Ψu

2 |2 −
1

g2,d
V 2
2

)(
− |Ψu

1 |2 + V 2
1

)]
, (30)

where Esd(z) is the energy density of the self-dual part,

Esd(z) =
2∑

a=1

∫
d2x

[
1

4ga,u

∣∣(Du
a,1 + iDu

a,2

)
Ψu

a

∣∣2 + 1

4ga,d

∣∣∣(Dd
a,1 + iDd

a,2

)
Ψd

a

∣∣∣2] . (31)

The energy in Eq. (30) is minimized by the self-duality conditions:[
Du,d

a,1 + iDu,d
a,2

]
Ψu,d

a = 0 (32)

which are satisfied. There are two distinct minima corresponding to the following cases:

|Ψu
1 |2 =

g1,u
g1,d

V 2
1 and |Ψu

2 |2 =
g2,u
g2,d

V 2
2 (33)
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or

|Ψu
1 |2 = V 2

1 and |Ψu
2 |2 = V 2

2 . (34)

Most interesting is probably the homopolymer case in which all legs Γu,d
1 and Γu,d

2 are homogeneous, so

that
1

g1,u
=

1

g1,d
=

1

g2,u
=

1

g2,d
=

1

g
. (35)

Remarkably, if all parameters ga,u and ga,d are equal, then the Coulomb-like short range interactions

disappear and the system becomes self-dual, i.e., E(z) = Esd(z). The vanishing of the short-range inter-
actions reminds the case of solutions at high monomer concentration and good solvents, in which the

interactions act on each monomer symmetrically from any direction, so that their total effect is negligi-

ble. The situation is similar here. The term IC of Eq. (27) accounts for the short range interactions and

they vanish in the limit τ → ∞ and when the loops are homogeneous, see condition (35). As already

mentioned, in the large τ limit the monomer distribution is not depending on the z direction implying

that the short range forces due to the topological constraints acting on a monomer from above are coun-

terbalanced by the forces acting from below. In the xy directions all legs Γu
a and Γ

d
a are equal under the

conditions (35). It is thus likely that the short range interactions of topological origin become isotropic

as in the case of polymer solutions at high monomer concentrations. Of course, what is not cancelled are

the long-range interactions because they are necessary to keep the topology of the link. These long term

interactions are taken into account by the self-dual contributions in Eq. (26).

4 Self-dual equations and their solutions

In this section, we derive certain solutions to the self-dual equations (32). We focus on solutions that

exhibit replica symmetry breaking, specifically considering only the first replica sector. In this case

Eqs. (32) take the form [
Du,d

a,1 + iDu,d
a,2

]
ψu,d
a = 0. (36)

We perform in (36) the transformation

ψu,d
a =

√
ρu,da eiθ

u,d
a .

Recall that |ψu,d
a |2 = ρu,da offers a meaningful interpretation of the monomer densities for the four segments

in two linked polymer rings. We obtain 4+1 equations after separating the real and imaginary terms:

1

2
∂1 log ρ

u
a − ∂2θua +

2∑
b=1

CabBb,2 = 0, (37)

∂1θ
u
a −

2∑
b=1

CabBb,1 +
1

2
∂2 log ρ

u
a = 0, (38)

1

2
∂1 log ρ

d
a − ∂2θda −

2∑
b=1

CabBb,2 = 0, (39)

∂1θ
d
a +

2∑
b=1

CabBb,1 +
1

2
∂2 log ρ

d
a = 0, (40)

2∑
c=1

dacε
ij∂iBc,j =

2∑
b=1

Cba

(−ρub + ρdb
)
. (41)

We require that

θua = −θda, ρua =
Aa

ρda
, ρu1 = ρu2 , A1 = A2.
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What remains to be solved is the following equation for ρu1 ,

Δ log ρu1 =
λ

π

(
ρu1 −

A1

ρu1

)
, where Δ = ∂21 + ∂22 .

1. Taking A1 > 0 in the equation above, i.e., A1 = |A1| and putting ρu1 =
√|A1|eη one gets

Δη =
λ
√|A1|
π

(
eη − e−η

)
. (42)

2. Taking A1 < 0 in the equation above, i.e., A1 = −|A1| and putting ρu1 =
√|A1|eη one gets

Δη =
λ
√|A1|
π

(
eη + e−η

)
. (43)

3. Taking A1 = 0 and substituting ρu1 = eφ one gets Δφ = λ
π e

φ.

Thus, the self-dual equation for ρu1 can be reduced to the sinh-Gordon equation when A1 > 0, or to the

cosh-Gordon equation when A1 < 0. There is also a third possibility, A1 = 0, which leads to the Liouville

equation.

We search for translationally invariant solutions along x2 ≡ y. This case becomes realistic in a confined

geometry of a box of sides L1 × L2 × T with L2 � L1 and T � 1.3 Let us write Eqs. (42) and (43) in

the unified form

∂21η + ∂22η =
m2

2

(
eη + te−η

)
, (44)

where m2 = π−12λ
√|A1|, and t = 1 for the cosh-Gordon equation, while t = −1 for the sinh-Gordon

equation. It can be shown in a few steps that, for translationally invariant solutions where η(x1, x2) =

η1(x1), Eq. (44) simplifies to the Weierstrass ordinary differential equation,(
dy

dz

)2

= 4y3 − g2y − g3. (45)

• Indeed, in the first step one can show that

d2η1
dx21

=
m2

2

(
eη1 + te−η1

) ⇔ 1

2

(
dη1
dx1

)2

− m2

2

(
eη1 − te−η1

)
= E,

where E is an arbitrary constant.

• Next, substituting v1 =
m2

2 eη1 one gets(
dv1
dx1

)2

= 2v31 + 2Ev21 − t
m4

2
v1.

• Finally, after one more substitution v1 = 2y− 1
3E the above equation takes the standard Weierstrass

form: (
dy

dx1

)2

= 4y3 −
(
1

3
E2 + t

m4

4

)
y +

E

3

(
1

9
E2 + t

m4

8

)
≡ 4y3 − g2y − g3.

We focus exclusively on real solutions. In this case, the solutions y to the Weierstrass equation can take

on three distinct ranges, which are summarized in Table 1. Let us recall that e1, e2 and e3 are the roots

of the cubic polynomial Q(y) = 4y3 − g2y − g3, which appears in Eq. (45).
The monomer densities ρu,da , with a = 1, 2, for the four segments of two linked polymer rings are given

by the solutions presented in Table 1 (see Table 2). It is important to emphasize that only bounded

solutions are physically meaningful.

3The limit T � 1 corresponds to the “static” case, referring to long polymer loops extending in the z-direction.
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unbounded solutions bounded solution

y ∈ [e1,+∞) for Δ > 0 y ∈ [e3, e2] for Δ > 0

y ∈ [e2,+∞) for Δ < 0

Table 1: The ranges of real solutions of the Eq. (45).

parameters ρu1 = ρu2 =
π
λv1 unbounded range bounded range

t = +1 2π
λ (y − e2)

[
2π
λ (e1 − e2),+∞

) [− 2π
λ (e2 − e3), 0

]
t = −1, E > m2 2π

λ (y − e1) [0,+∞)
[− 2π

λ (e1 − e3),− 2π
λ (e1 − e2)

]
t = −1, E < −m2 2π

λ (y − e3)
[
2π
λ (e1 − e3),+∞

) [
0, 2πλ (e2 − e3)

]
t = −1, |E| < m2 2π

λ (y − e2) [0,+∞) —

Table 2: The ranges of ρu1 and ρ
u
2 .

5 Concluding remarks

The key conclusions from our research, which may be relevant to non-specialists, are as follows:

— The expectation values of observables in polymer-like systems with topological constraints can be

computed using field-theoretic methods.

— The magnetic fields that arise in topologically constrained polymer systems play a key role in

maintaining the topology by mediating both long- and short-range interactions. In the case of a

topological state resembling a 4-plat, self-dual solutions have been derived.

— Numerical simulations are necessary to gain a deeper understanding of the self-dual case.
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[4] Schäfer L, Witten Jr T A 1977 Jour. Chem. Phys. 66 (5) 2121

[5] Oono Y, Ohta T, Freed K F 1981 J. Chem. Phys. 74 6458

[6] Edwards S F 1968 Jour. Phys. A: General Physics (1) 15

[7] Ferrari F 2004 Phys. Lett. A 323 351-359

[8] Ferrari F, Paturej J, Pia̧tek M, Zhao Y 2019 Nucl. Phys. B 945 114673

[9] Abbasi Taklimi N, Ferrari F, Pia̧tek M 2024 Nucl. Phys. B 999 116447

[10] Dunne G V 1998 Aspects of Chern-Simons Theory (Preprint hep-th/9902115)

[11] Dunne G V 1994 Self-Dual Chern-Simons Theories (Preprint hep-th/9410065)


