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Abstract

The statistical mechanics of [2]catenanes in a solution with constrained number of maxima and

minima along a special direction (the height) is discussed. The interest in this system comes from the

fact that, in the homopolymer case, it has analogies with self-dual anyon field theory models and has

conformations that minimize the static energy and bear particular symmetries and properties. In the

first part of this work we provide a procedure for deriving the equations of motion in the case of replica

field theories in the limit of zero replicas. We compute also the partition function of the [2]catenane

at the lowest order in the frame of the so-called background field method. In the second part the

statistical mechanics of the system is investigated using numerical simulations based on the Wang-

Landau Monte Carlo method. At equilibrium, independently of the temperature, it turns out that

the conformations of the system are elongated in the height directions. The two rings composing the

[2]catenanes have approximately the same heights and are aligned. The thermodynamic properties

of the system are discussed and the results coming from the field theoretical approach are compared

with those of the numerical simulations.
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1 Introduction

2s−plats, with s = 1, 2, . . ., are structures formed by interlocked polymer rings. These structures are

characterized by a fixed number s of maxima and a fixed number s of minima in one special direction,

which we chose here to be the height t of the system. The use of the variable t instead of the variable z is

due to the analogy between the statistical mechanics of 2s−plats with a system of 2s anyons established

in [1,2], where there are two spatial dimensions and the third dimension is time. The constraint of fixed

number of maxima and minima implies that the polymer lines going from any point of minimum to the

nearest point of maximum are monotonic curves. More rigorously, in mathematics 2s−plats are defined

as closures of a number of 2s braids. The particular case s = 2 of 4−plats investigated in this paper is

common in DNA, see e.g. [3–8].

The present work focuses on 4−plats formed by [2]catenanes, i.e., two rings linked together. Systems

of this type have been thoroughly investigated in the past, for instance in [9–16]. The statistical

properties of 4−plats may be described using a model of replica complex scalar fields [1] that has been

later generalized in [2] by adding interactions and allowing for general values of s. Roughly speaking, the

scalar fields are related to the monomer densities of the polymer lines. In the field theoretical approach

considered here, the interactions are switched off, but there are still the interactions of entropic origin

due to the topological constraints. The latter are imposed using the Gauss linking number, one of the

simplest topological invariants that can be applied to distinguish the topological state of links formed

by two rings. The Gauss linking number can be written as the flux of a magnetic field across the

surface spanned by one of the rings. The magnetic field is generated by a fictitious current flowing

along the other ring. In summary, in the field theoretical model the interactions of topological origin

between the monomers, or, better, the complex scalar fields, are mediated by magnetic fields. Of course,

magnetic fields are connected with long-range forces. On the other side, the topological constraints

forbid that the polymer lines cross themselves. This requires also short-term interactions. Accordingly,

after the passage from polymer paths to fields is completed, in the action of the field theoretical model

appear also terms that take into account short-range Coulomb-like interactions. The part of the action

responsible for the long-range interactions has a property that is called self-duality [18]. The terms

2



responsible for the short-range interactions, which are not self-dual, are shown to vanish when the rings

are homopolymers [1].

The main motivation of this study comes from Ref. [17]. In particular, in [17] two classes of self-dual

solutions of the field equations of motion have been derived. These solutions minimize the static energy

of the 4−plat and are invariant under symmetry transformations: For instance, a large classe of solutions

with conformal symmetry can be found assuming that the height T of the [2]catenane is large and that,

at each given height, there are no differences in the monomer densities of the polymer lines 1. Other

solutions with translational symmetry in one of the directions on the plane that is perpendicular to the

height, have been obtained in the case in which the dimension of the system in the other direction is

small.

Of course, self-dual solutions are usually found in spin systems. Polymers are instead related to the

universality class of systems with spin zero. To solve this apparent contradiction, we derive here the

self-dual equations of motion in a way that shows explicitly that the first replica fields, corresponding

to a spin 1 field theory, have non-vanishing degrees of freedom. In doing that, we use the fact that the

probability distribution measuring the probability that the two rings wind up one around the other in

such a way that the required topological constraints are fulfilled, is formally written as a field theory

propagator of the first replica fields. In the following, the probability distribution will be referred as

partition function.

Further, the possibility of using the background field method [19] is considered. Within this ap-

proach, the partition function is computed starting as a zeroth approximation from a classical back-

ground field configuration. The corrections due to the thermal fluctuations are then evaluated by means

of perturbation theory. In this work we provide the explicit form of the partition function at the zeroth

order using as a background a generic solution of the self-dual equations of motion. Of course, this

strategy works at its best if the solutions of the field equations correspond to a deep point of minimum

in the energy landscape. However, the analytical calculations of [17] point out that the energy landscape

of the 4−plat is rather complex being characterized by a plethora of points of minimum. The depth

of the minima cannot be estimated by analytical methods, so we have switched to numerical simula-

tions. Such simulations allow to evaluate the free energy of the system. Moreover, we have searched

for possible symmetries emerging in the sampled conformations when the system is at equilibrium. The

goal is to check if some of the symmetries predicted by the analytical model are still present when the

thermal fluctuations are acting. The sampling of the statistically relevant conformations of the 4−plat

on a simple cubic lattice is performed by means of the Wang-Landay Monte Carlo algorithm [20]. With

respect to the theoretical model, the numerical approach presents two differences. In particular, the

system is subjected to short-term attractive interactions. Despite that, the comparison with the field

theory is still possible in the limit of high temperatures, in which the interactions become irrelevant

due to the strong thermal fluctuations. Secondly, the heights of the two rings are not constrained to be

1In the average, in a scale of time that is large with respect to the time scale of thermal fluctuations, this assumption

is true.
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equal to some large value T as in the field theoretical approach, but are able to fluctuate. Remarkably,

in all inspected conformations the final heights of the two rings are almost the same and are large with

respect to the other dimensions of the [2]catenane as assumed in the field theoretical model. The other

results obtained in this paper will be discussed in the Conclusions.

The material presented in this work is divided as follows. In Section 2 the field theoretical approach

to the statistical mechanics of 4−plats is discussed. The self-dual equations of motion of the system are

derived together with the expression of the partition function of the system computed in the background

of a self-dual solution. The results of the numerical simulations are the subject of Section 3. Finally,

the conclusions are drawn in Section 4.

2 Field theoretical approach

The starting point is the following partition function:

Z(λ, α) =

∫
D(fields)e−Smattereα

∏2
a=1 ψ

u(1)∗
a (ra,2,T )ψ

u(1)
a (ra,1,0)ψ

d(1)∗
a (ra,1,0)ψ

d(1)
a (ra,2,T ), (2.1)

where α is a small parameter and

D(fields) =
2∏

a=1

[
Dψu(1)∗a (x, t)Dψu(1)a (x, t) · · · Dψu(n)∗a (x, t)Dψu(n)a (x, t)

]
2∏

a=1

[
Dψd(1)∗a (x, t)Dψd(1)a (x, t) · · · Dψd(n)∗a (x, t)Dψd(n)a (x, t)

]
. (2.2)

Moreover, Ψ⃗u∗, Ψ⃗u, Ψ⃗d∗, Ψ⃗d are replica complex scalar fields:

Ψ⃗u,d∗(x, t) =
(
ψu,d(1)∗(x, t), . . . , ψu,d(n)∗(x, t)

)
, (2.3)

Ψ⃗u,d(x, t) =
(
ψu,d(1)(x, t), . . . , ψu,d(n)(x, t)

)
. (2.4)

The superscript u, d means u albo d fields. The symbol
∣∣∣Ψ⃗u,d

∣∣∣2 denotes the scalar product over replica

indices:
∣∣∣Ψ⃗u,d

∣∣∣2 =
∑n

ρ=1 ψ
u,d(ρ)∗ψu,d(ρ). Here, (x, t), where x = (x1, x2), is a point in a slice of a three-

dimensional space in which the height t varies within the interval [0, T ]. Middle latin letters i, j, . . . = 1, 2

will be used for the 2d spatial indices. The partial derivatives ∂
∂xi

and ∂
∂t will be denoted ∂i and ∂0

respectively.

The matter action Smatter is splitted into three parts:

Smatter = Isd + IC + IT . (2.5)

Isd contains the self dual contribution:

Isd =

2∑
a=1

∫ T

0
dt

∫
d2x

[
1

4ga,u
|(Du

a,1 + iDu
a,2)Ψ⃗

u
a|2 +

1

4ga,d
|(Dd

a,1 + iDd
a,2)Ψ⃗

d
a|2

]
. (2.6)
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IC takes into account short-range Coulomb-like interaction:

IC =
λ

8π

∫ T

0
dt

∫
d2x

[(
− 1

g1,u
|Ψ⃗u

1 |2 +
1

g1,d
|Ψ⃗d

1|2
)(

−|Ψ⃗u
2 |2 + |Ψ⃗d

2|2
)

+

(
1

g2,u
|Ψ⃗u

2 |2 −
1

g2,d
|Ψ⃗d

2|2
)(

−|Ψ⃗u
1 |2 + |Ψ⃗d

1|2
)]
. (2.7)

Finally, the terms with the derivatives ∂0 with respect to the height t are confined in IT :

IT =
2∑

a=1

∫ T

0
dt

∫
d2x

[
Ψ⃗u∗
a ∂0Ψ⃗

u
a + Ψ⃗d∗

a ∂0Ψ⃗
d
a

]
. (2.8)

In Eq. (2.6) the symbols Du,d
a,i denote the covariant derivatives:

Du
a,j = ∂j − i

2∑
b=1

cabBb,j , Dd
a,j = ∂j + i

2∑
b=1

cabBb,j , (2.9)

where the magnetic fields Bb(x, t) are the solutions of the equations:

1

4π
ϵij∂iB1,j = c12(−|Ψ⃗u

1 |2 + |Ψ⃗d
1|2), (2.10)

1

4π
ϵij∂iB2,j = c21(−|Ψ⃗u

2 |2 + |Ψ⃗d
2|2), (2.11)

cab is a 2 × 2 matrix of coupling constants:

cab =

[
0 λ
1

8π2 0

]
. (2.12)

The physical meaning of the real parameters λ, ga,u and ga,d will be explained later.

It is straightforward to show that the following limit:

Z(λ) = lim
α→0

Z(λ, α) − Z(λ, 0)

α
(2.13)

delivers the partition function Z(λ) of Ref. [17] that, in the limit of zero replicas, describes the statistical

mechanics of two concatenated polymer rings, or [2]catenane, whose topological constraints are imposed

using the Gauss linking number. An additional constraint is that the system should be in the conforma-

tion of a 4−plat in which each ring has only a maximum and a minimum heights. An example of such

a system is shown in Fig. 1. Each ring a = 1, 2 consists of two monotonic curves Γua and Γda. The loops

are oriented in such a way that the heights of Γua are growing, while the heights of Γda are decreasing.

The rings are supposed to be in a solution at the so-called Θ−point, so that the interactions between

the monomers are absent. As a consequence, the interaction terms Isd and IC are of entropic origin and

arise due to the constraints. This explains also why in Eq. (2.1) the temperature is missing despite the

fact that the 4−plat fluctuates in a solution. The reason is that the model considered takes into account
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Figure 1: Schematic picture of a 4−plat realized by two concatenated polymer rings (ring 1 in read

and ring 2 in blue). In the 4−plat configuration each ring a, with a = 1, 2, can be decomposed into two

monotonic curves Γua and Γda. The rings are oriented is such a way that the heigth of Γua always grows

while that of Γda decreases when going along the loop. The maximum height of both rings is T .

only the connectivity of the rings and the topological constraints due to the fact that they are concate-

nated. As a consequence, the internal energy of the system is always a constant and can always be set

to zero. The upshot is that the free energy of the 4−plat is given by F = −θS, where S is the entropy

and θ is the temperature. From this it follows that the partition function Z(λ) = e−βF (λ) = e−S/kB , kB

being the Boltzmann constant, is independent of the temperature. The parameter λ can be considered

as the chemical potential for the Gauss linking number. The ga,u and ga,d are the Kuhn lengths that

are related to the flexibility of the lines Γua and Γda.

The terms Isd and IC of Eqs. (2.6) and (2.7) are related to the topological constraints. IC takes into

account the short-range interactions while the self-dual contribution Isd is responsible for the long-range

interaction that are needed to preserve the topological state of the system. It was noted in [17] that in

the special case of homopolymer rings:

ga,u = ga,d = g (2.14)

the Coulomb-like interactions disappear. Moreover, in the limit of large values of the maximum height

T , the contribution IT becomes negligible and the self-dual term Isd dominates.

At this point, we work under the homopolymer conditions (2.14) and the assumption that T >> 1.

Thus, we restrict ourselves to the self-dual part of Smatter, in particular considering the equations
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defining the self-dual conformations:(
Du
a,1 + iDu

a,2

)
ψu(1)a (x, t) + αψua (ra,1, 0)δ(x− ra,2)δ(T − t)ψu∗c (rc,2, T )ψuc (rc,1, 0)

×
2∏
b=1

ψd∗b (ra,1, 0)ψdb (ra,2, T ) = 0, c ̸= a = 1, 2, (2.15)

and (
Du
a,1 + iDu

a,2

)
ψu(ρ)a (x, t) = 0, ρ = 2, . . . , n. (2.16)

Analogous equations may be written for the fields ψda(x, t) and for the complex conjugated fields

ψu∗a (x, t), ψd∗a (x, t).

We choose replica asymmetric solutions for which:

ψu(ρ)a = ψu(ρ)∗a = ψd(ρ)a = ψd(ρ)∗a = 0, ρ = 2, . . . , n. (2.17)

The first replica fields ψ
u(1)
a , ψ

u(1)∗
a , ψ

d(1)
a , ψ

d(1)∗
a cannot be put to zero due to the term proportional to

α in Eq. (2.15). Otherwise, the partition function Z(λ) of Eq. (2.13) will vanish identically and no

degrees of freedom will be propagated. Thus, we retain only the first replica fields, dropping the replica

index for simplicity. Since the parameter α can be considered very small due to the limit α → 0, it is

convenient to adopt the ansatz:

ψu,da = ψu,da,0 + αψu,da,1 . (2.18)

Separating in Eq. (2.15) the leading order contribution for the linear terms in α, we obtain:(
Du
a,1 + iDu

a,2

)
ψ
u(1)
a,0 (x, t) = 0, (2.19)(

Du
a,1 + iDu

a,2

)
ψ
u(1)
a,1 (x, t) + αψua,0(ra,1, 0)δ(x− ra,2)δ(T − t)ψu∗c,0(rc,2, T )ψuc,0(rc,1, 0)

×
2∏
b=1

ψd∗b,0(ra,1, 0)ψdb,0(ra,2, T ) = 0, c ̸= a = 1, 2. (2.20)

It would be tempting to expand the partition function Z(λ) around a self-dual solution of Eqs. (2.19-

2.20). Let’s suppose that

ηu,da = ψu,da,0 + αψu.da,1 (2.21)

is such a solution. Due to the fact that, if T is large and we are working in the homopolymer case in

which the conditions (2.14) hold, the self-dual term dominates the total action Smatter. It is thus easy

to show that, after taking the limit α→ 0 in Eq. (2.13), at the classical level:

Z(λ) =
2∏

a=1

ψu∗a,0(ra,2, T )ψua,0(ra,1, 0)ψd∗a,0(ra,1, 0)ψda,0(ra,2, T ) (2.22)

As a matter of fact, Smatter vanishes identically up to the first order in α included due to the equations

(2.19) and their analogues for the complex field configurations. The difficulty of this appealing approach
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based on the background field method, in which the partition function is expanded around a background

configuration, is that there is a plethora of such configurations. For instance, it has been shown in [17]

that there are several classes of “static” configurations that minimize the action Smatter, where static

means independent of the height t. It is reasonable to assume that these configurations are not stable

because of the thermal fluctuations that can easily make the system to pass from one configuration to

the other. Nonetheless, the static solutions found in Ref. [17] have quite peculiar properties, like for

instance self-similarity and periodicities. It is thus licit to expect that all these solutions have some

influence on the statistical mechanics of the two concatenated polymer rings if they are constrained to

stay in 4−plat conformations. As a check, we have performed numerical simulations, whose results will

be presented in the next Section.

3 From field theory to simulations

The simulations have been performed on a simple cubic lattice using a code described in Ref. [21] based

on the Wang-Landau Monte Carlo algorithm [20]. The shortest distance on the lattice is 1. Starting

from a seed conformation of the 4−plat formed by two polymer rings with L = 484 monomers each, the

sampling is performed by applying random transformations. The used random transformations are the

pivot moves [22]. The total number of monomers in the system is N = 968. The topological constraints

are enforced by the pivot algorithm and excluded area (PAEA) method of Ref. [21]. Additionally,

it is required that all conformations have only two points of minimum and two points of maximum.

The minimum and maximum of ring 1 are located at the positions of the monomers 122 and 362

respectively, while the minimum and maximum of ring 2 are located at the positions of monomers 607

and 848 resepectively. The total heights of the rings are not preserved. Another difference between the

field theoretical model and the simulation is that in the latter short-range attractive interactions are

allowed. With a slight change of notation, now RA is a three-dimensional vector specifying the position

of the A-th monomer, where A = 1, . . . , 968. The Hamiltonian of the system is given by:

H = −mABϵ A,B = 1, . . . , 968, (3.23)

where

mAB =

{
1 if |RA −RB| = 1

0 otherwise
(3.24)

and ϵ is a positive energy scale. The effects of the interactions become negligible at high temperatures

due to the strong thermal fluctuations. As a consequence, in this regime the results of the simulations

can be compared with those of the field theory, where interactions are absent. The temperature will

be denoted with the symbol θ. Finally, the rings are completely flexible and the segments connecting

the monomers can be oriented in every direction without energy penalties. Of course, in the height

direction the polymer lines must be monotonic. The specific heat capacity C/N of the system is shown

in Fig 2. As it is possible to see, there is a single peak with bumps and a shoulder. The single peak is
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poly[2]catenane, L=484, N=968, bad solvent

Figure 2: Plot of the specific heat capacity of a 2]catenane with N = 968 monomers constrained to be

in 4−plat conformations.

typical of knotted polymer rings in good and bad solvent, where there is a single phase transition from

compact to extended coil phase, see e.g. [21]. With respect to single knots, however, the specific heat

capacity exhibits an unusually broad peak, because the expansion phase can be considered as concluded

at θ ∼ 4.00. For single knots, the transition stops already at θ ≤ 2. The gyration radius of the 4−plat

jumps from R2
G ∼ 170 up to R2

G ∼ 1067 when the temperature grows from θ = 0.05 to θ = 20, see

Fig. 3. In Fig. 4 it is displayed a conformation of the system that is typical of high temperatures, where

the effects of the interactions become negligible due to the strong thermal fluctuations and the structure

of the 4−plat is purely entropic. Fig. 4 shows that the conformations of the two rings is elongated in

one particular direction that actually coincides with the t direction. This is a common characteristics

of all the conformations of the system, independently of the temperature. For instance, an example

of conformations appearing in the lowest studied temperature θ = 0.05 is provided in Fig. 5. Quite

interestingly, at low temperatures there is a periodicity in the way in which the two rings interact. This

periodicity is not visible from Fig. 5 because it represents a single conformations, but becomes evident

by looking at the contact maps that averages the contacts between the monomers over hundreds of
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Figure 3: Plot of the mean square gyration radius R2
G of a [2]catenane with N = 968 monomers

constrained to be in 4−plat conformations.

billions of conformations. To obtain the contact map of Fig. 6, the system has been divided into 44

compartments containing 22 monomers each. A 45th compartment, which is coinciding with the first

one, has been added for continuity, The contact map consists of a colormap in which brighter colors

correspond to a higher likelihood that the compartments are in contact. By the definition used in this

work, a contact is established when two compartment overlap, i.e., when the sum of their gyration

radii is less than 1.5 times the distance between their centers of mass. Fig. 6 is naturally divided into

four sectors. The colormap is divided into 452 pixels with pixel Σ,Σ′ corresponding to the interactions

between the compartments Σ and Σ′. The number of times in which all pairs of compartments enter

in contact during a simulation is stored and out of this information the probability that they can be

found in contact is computed. Of course, going from left to right and from bottom to top, the upper

and lower triangular components of the colormap are symmetric

The two sectors along the diagonal of the colormap in Fig. 6 can be considered as contact submaps

that take into account the contacts of the compartments belonging to a single ring. The off-diagonal

sectors correspond instead to the contact between compartments belonging to different rings. As it is
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Figure 4: Plot of a conformation of the [2]catenane with specific energy E = 20 (the energy is given here

in dimensionless units). Such expanded conformations are common when temperatures are high and

the thermal fluctuations are strong, so that the attractive interactions between the monomers become

negligible. While the picture of the system has been rotated in order to fit it in a rectangle whose largest

side is lying horizontally, it is worth noticing that the [2]catenane is elongated along the t−axis.

possible to see, the off-diagonal sectors are with good approximation repeating the dark-light patterns of

the contact submaps in the diagonal sectors with a periodicity of 22 pixels. More precisely, let’s assume

that the compartments Σ and Σ′ belong to ring 1, Then, Σ+22 and Σ′ +22 are compartments of ring 2.

From the colormap in Fig. 6, it turns out that the probability that Σ,Σ′ are in contact is approximately

equal to the probabilities that the compartments Σ+22,Σ′, Σ,Σ′+22 and Σ+22,Σ′+22 are in contact.

The only difference in the color patterns between the diagonal and off-diagonal sectors (pairs Σ + 22,Σ′

and Σ,Σ′ + 22, is that the pixels of the latter are slightly less bright. Moreover, there is a glitch in the

color map forming a cross that divides the four sectors. This glitch is probably due to the fact that the

two rings cannot be perfectly aligned along the t axis due to the topological constraints.

4 Conclusions

In this work an alternative derivation of the field equation of motion of a 4−plat studied in Ref. [17] has

been provided. This new derivation shows why, despite the zero replica limit, the degrees of freedom

corresponding to the first replica fields still propagate. In this way it has also been possible to compute
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Figure 5: Plot of a conformation of the [2]catenane with specific energy E = 1470. Such conformations

appear when the temperatures is very low (in this case θ = 0.05). Let us note that the [2]catenane is

elongated along the t−axis.

the explicit expression of the partition function of the 4−plat on the background of any self-dual solution

of the field equations of motion, see Eq. (2.22). Next, the system has been investigated using numerical

simulations based on the Wang-Landau Monte Carlo algorithm. In turns out that, at equilibrium,

4−plats exhibit peculiar properties. First of all, despite the fact that both the points of minimum and

maximum of the two rings are allowed to fluctuate, we have seen that the [2]catenane is organized in

such a way that its structure is elongated along the special t direction. Examples of these structures at

different temperatures are provided in Figs. 4 and 5. Moreover, both rings have more or less the same

height T >> 1 and are aligned. This is exactly the situation considered in the field theoretical model.

With respect to single knots, the transition from a compact state to the expanded coil state typical of

polymers in a bad solvent takes place at a much higher temperature. Also the peak of the specific heat

capacity of Fig. 2 is much broader. During the expansion, the gyration radius of the 4−plat increases

by a factor six as shown in Fig.3. There is also a symmetry at low temperatures between the two rings.

Namely, the contact map of Fig. 6 is symmetric if a monomer Σ of the first ring is replaced by the

monomers Σ + 22 of the second ring.

Finally, the field theoretical approach to 4−plats has been compared with the results of numerical

simulations obtained at high temperatures. The peculiar properties of the self-dual solutions minimizing

the static energy of the system derived in Ref. [17] are not observed, apart from the already mentioned
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Figure 6: Contact map of the 4−plat at the low temperature θ = 0.15. Each ring has been divided into

22 compartments. Each compartment contains 22 monomers. The contact map consists in a colormap

containing a number of 442 pixels. A pixel is identified by its position ΣΣ′ on the colormap, where Σ

numerates the rows and Σ′ the columns of the colormap. Each pixel ΣΣ′ expresses the probability that

two compartments are in contact. Darker colors correspond to smaller probabilities. The probability is

computed by averaging over several hundreds of billions of sampled conformations.

fact that the rings are aligned and their height is very large. The absence of particular symmetries

like those characterizing the analytical solution is probably due to the strong thermal fluctuations that

make the system to pass from one of the many points of minimum in the complex energy landscape to

the other. Also the plot of the specific free energy of the system F/E does not show points of minima,

see Fig. 7.
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