EUTOPIA

EUropean TOPology Interdisciplinary Action

EUTOPIA: COST Action CA17139

The physical properties of many systems, ranging from naturally occurring biopolymers to artificial materials, often crucially depend on those global features that cannot be ascribed to a particular geometry or arrangement, rather to a more abstract notion: topology. The latter manifests itself in the knotted state of proteins and artificial polymers, the intertwining among DNA rings, or the topologically distinct classes of defect lines that can be found in liquid crystals. A better understanding of the interplay between a system’s topological state, its three-dimensional structure, and its overall characteristics paves the way to an improved control of relevant natural molecules or human-made materials, with remarkable impact on fundamental science as well as high-tech applications. These goals, however, can only be achieved through a multidisciplinary effort, involving a wide spectrum of expertise in a concerted manner.

The EUTOPIA COST Action will establish a collaborative platform to approach all those problems, in the study of biological and soft matter, that feature topological characteristics. In doing this, it will create a pan-European, synergistic network of researchers from different fields that will overcome geographical, economical and societal barriers, as well as those naturally surrounding traditional academic communities.

The outcomes of the research carried out thanks to the EUTOPIA Action will push forward the boundaries of our current understanding of key systems, and foster the knowledge transfer of scientific findings to industry and, ultimately, to society as a whole.

The Working Groups

WG1

Theory of topological entanglement in polymers and fibres.

WG2

Polymeric and fibrous topological materials.

WG3

Entangled and self-entangled proteins.

WG4

DNA, chromosomes, and other entangled genetic material.

WG5

Topologically complex fluids.

EVENTS

Upcoming Meetings and Conferences

Calendar View

Browse Events by month

LATEST NEWS

News, Job Offers and more

Towards Optimal Production of Graphene by Electrolysis in Molten Salts Using Machine Learning
Read more.
Single-Molecule Morphology of Topologically Digested Olympic Networks
Read more.
Interpenetrated and Bridged Nanocylinders from Self-Assembled Star Block Copolymers
Read more.

CONTACTS

For inquiries about STSM and other COST-related questions, please write to eutopia@unitn.it or compile next form.

External EUTOPIA COST page

CONTACT FORM

    I declare to accept Privacy Policy Terms.