Understanding how entanglements affect the behavior of polymeric complex fluids is an open challenge in many fields. To elucidate the nature and consequence of entanglements in dense polymer solutions, we propose a novel method: a “dynamical entanglement analysis” (DEA) to extract spatiotemporal entanglement structures from the pairwise displacement correlation of entangled chains. By applying this method to large-scale molecular dynamics simulations of linear and unknotted, nonconcatenated ring polymers, we find a strong and unexpected cooperative dynamics: the footprint of mutual entrainment between entangled chains. We show that DEA is a powerful and sensitive probe that reveals previously unnoticed and architecture-dependent spatiotemporal structures of dynamical entanglement in polymeric solutions. We also propose a mean-field approximation of our analysis that provides previously under-appreciated physical insights into the dynamics of generic entangled polymers. We envisage DEA will be useful to analyze the dynamical evolution of entanglements in generic polymeric systems such as blends and composites.